hackrf/host/hackrf-tools/src/hackrf_debug.c
Martin Ling 03551cb1fd Detect whether the M0 missed its deadline.
Counter-intuitively, this actually saves us two cycles because we unroll
the first iteration of the loop that spins on the interrupt flag, saving
a branch in the case that the flag is clear the first time.
2024-11-26 19:34:29 +00:00

744 lines
19 KiB
C

/*
* Copyright 2012-2022 Great Scott Gadgets <info@greatscottgadgets.com>
* Copyright 2012 Jared Boone <jared@sharebrained.com>
* Copyright 2013 Benjamin Vernoux <titanmkd@gmail.com>
* Copyright 2017 Dominic Spill <dominicgs@gmail.com>
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <hackrf.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <getopt.h>
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#define REGISTER_INVALID 32767
int parse_int(char* s, uint32_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
long long_value;
if (strlen(s) > 2) {
if (s[0] == '0') {
if ((s[1] == 'x') || (s[1] == 'X')) {
base = 16;
s += 2;
} else if ((s[1] == 'b') || (s[1] == 'B')) {
base = 2;
s += 2;
}
}
}
s_end = s;
long_value = strtol(s, &s_end, base);
if ((s != s_end) && (*s_end == 0)) {
*value = (uint32_t) long_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
int max2837_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result =
hackrf_max2837_read(device, (uint8_t) register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%2d] -> 0x%03x\n", register_number, register_value);
} else {
printf("hackrf_max2837_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int max2837_read_registers(hackrf_device* device)
{
uint16_t register_number;
int result = HACKRF_SUCCESS;
for (register_number = 0; register_number < 32; register_number++) {
result = max2837_read_register(device, register_number);
if (result != HACKRF_SUCCESS) {
break;
}
}
return result;
}
int max2837_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_max2837_write(device, (uint8_t) register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%03x -> [%2d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int si5351c_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result = hackrf_si5351c_read(device, register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%3d] -> 0x%02x\n", register_number, register_value);
} else {
printf("hackrf_si5351c_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int si5351c_read_registers(hackrf_device* device)
{
uint16_t register_number;
int result = HACKRF_SUCCESS;
for (register_number = 0; register_number < 256; register_number++) {
result = si5351c_read_register(device, register_number);
if (result != HACKRF_SUCCESS) {
break;
}
}
return result;
}
int si5351c_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_si5351c_write(device, register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%2x -> [%3d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
#define SI5351C_CLK_POWERDOWN (1 << 7)
#define SI5351C_CLK_INT_MODE (1 << 6)
#define SI5351C_CLK_PLL_SRC (1 << 5)
#define SI5351C_CLK_INV (1 << 4)
#define SI5351C_CLK_SRC_XTAL 0
#define SI5351C_CLK_SRC_CLKIN 1
#define SI5351C_CLK_SRC_MULTISYNTH_0_4 2
#define SI5351C_CLK_SRC_MULTISYNTH_SELF 3
void print_clk_control(uint16_t clk_ctrl)
{
uint8_t clk_src, clk_pwr;
printf("\tclock control = \n");
if (clk_ctrl & SI5351C_CLK_POWERDOWN) {
printf("\t\tPower Down\n");
} else {
printf("\t\tPower Up\n");
}
if (clk_ctrl & SI5351C_CLK_INT_MODE) {
printf("\t\tInt Mode\n");
} else {
printf("\t\tFrac Mode\n");
}
if (clk_ctrl & SI5351C_CLK_PLL_SRC) {
printf("\t\tPLL src B\n");
} else {
printf("\t\tPLL src A\n");
}
if (clk_ctrl & SI5351C_CLK_INV) {
printf("\t\tInverted\n");
}
clk_src = (clk_ctrl >> 2) & 0x3;
switch (clk_src) {
case 0:
printf("\t\tXTAL\n");
break;
case 1:
printf("\t\tCLKIN\n");
break;
case 2:
printf("\t\tMULTISYNTH 0 4\n");
break;
case 3:
printf("\t\tMULTISYNTH SELF\n");
break;
}
clk_pwr = clk_ctrl & 0x3;
switch (clk_pwr) {
case 0:
printf("\t\t2 mA\n");
break;
case 1:
printf("\t\t4 mA\n");
break;
case 2:
printf("\t\t6 mA\n");
break;
case 3:
printf("\t\t8 mA\n");
break;
}
}
int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number)
{
uint_fast8_t i, reg_base, reg_number;
uint16_t parameters[8], clk_control;
uint32_t p1, p2, p3, r_div;
uint_fast8_t div_lut[] = {1, 2, 4, 8, 16, 32, 64, 128};
int result;
printf("MS%d:", ms_number);
result = hackrf_si5351c_read(device, 16 + ms_number, &clk_control);
if (result != HACKRF_SUCCESS) {
return result;
}
print_clk_control(clk_control);
if (ms_number < 6) {
reg_base = 42 + (ms_number * 8);
for (i = 0; i < 8; i++) {
reg_number = reg_base + i;
result = hackrf_si5351c_read(device, reg_number, &parameters[i]);
if (result != HACKRF_SUCCESS) {
return result;
}
}
p1 = ((parameters[2] & 0x03) << 16) | (parameters[3] << 8) |
parameters[4];
p2 = ((parameters[5] & 0x0F) << 16) | (parameters[6] << 8) |
parameters[7];
p3 = ((parameters[5] & 0xF0) << 12) | (parameters[0] << 8) |
parameters[1];
r_div = (parameters[2] >> 4) & 0x7;
printf("\tp1 = %u\n", p1);
printf("\tp2 = %u\n", p2);
printf("\tp3 = %u\n", p3);
if (p3) {
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n",
((double) 800 /
(double) (((double) p1 * p3 + p2 + 512 * p3) / (double) (128 * p3))) /
div_lut[r_div]);
}
} else {
// MS6 and 7 are integer only
unsigned int parms;
reg_base = 90;
for (i = 0; i < 3; i++) {
uint_fast8_t reg_number = reg_base + i;
int result =
hackrf_si5351c_read(device, reg_number, &parameters[i]);
if (result != HACKRF_SUCCESS) {
return result;
}
}
r_div = (ms_number == 6) ? parameters[2] & 0x7 :
(parameters[2] & 0x70) >> 4;
parms = (ms_number == 6) ? parameters[0] : parameters[1];
printf("\tp1_int = %u\n", parms);
if (parms) {
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n",
(800.0f / parms) / div_lut[r_div]);
}
}
printf("\toutput divider = %u\n", div_lut[r_div]);
return HACKRF_SUCCESS;
}
int si5351c_read_configuration(hackrf_device* device)
{
uint_fast8_t ms_number;
int result;
for (ms_number = 0; ms_number < 8; ms_number++) {
result = si5351c_read_multisynth_config(device, ms_number);
if (result != HACKRF_SUCCESS) {
return result;
}
}
return HACKRF_SUCCESS;
}
/*
* RFFC5071 and RFFC5072 are similar components with a compatible control
* interface. RFFC5071 was used on some early prototypes, so the libhackrf API
* calls are named that way. Because we use RFFC5072 on production hardware,
* we use that name here and present it to the user.
*/
int rffc5072_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result =
hackrf_rffc5071_read(device, (uint8_t) register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%2d] -> 0x%03x\n", register_number, register_value);
} else {
printf("hackrf_rffc5071_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int rffc5072_read_registers(hackrf_device* device)
{
uint16_t register_number;
int result = HACKRF_SUCCESS;
for (register_number = 0; register_number < 31; register_number++) {
result = rffc5072_read_register(device, register_number);
if (result != HACKRF_SUCCESS) {
break;
}
}
return result;
}
int rffc5072_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_rffc5071_write(device, (uint8_t) register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%03x -> [%2d]\n", register_value, register_number);
} else {
printf("hackrf_rffc5071_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
enum parts {
PART_NONE = 0,
PART_MAX2837 = 1,
PART_SI5351C = 2,
PART_RFFC5072 = 3,
};
int read_register(hackrf_device* device, uint8_t part, const uint16_t register_number)
{
switch (part) {
case PART_MAX2837:
return max2837_read_register(device, register_number);
case PART_SI5351C:
return si5351c_read_register(device, register_number);
case PART_RFFC5072:
return rffc5072_read_register(device, register_number);
}
return HACKRF_ERROR_INVALID_PARAM;
}
int read_registers(hackrf_device* device, uint8_t part)
{
switch (part) {
case PART_MAX2837:
return max2837_read_registers(device);
case PART_SI5351C:
return si5351c_read_registers(device);
case PART_RFFC5072:
return rffc5072_read_registers(device);
}
return HACKRF_ERROR_INVALID_PARAM;
}
int write_register(
hackrf_device* device,
uint8_t part,
const uint16_t register_number,
const uint16_t register_value)
{
switch (part) {
case PART_MAX2837:
return max2837_write_register(device, register_number, register_value);
case PART_SI5351C:
return si5351c_write_register(device, register_number, register_value);
case PART_RFFC5072:
return rffc5072_write_register(device, register_number, register_value);
}
return HACKRF_ERROR_INVALID_PARAM;
}
static const char* mode_name(uint32_t mode)
{
const char* mode_names[] = {"IDLE", "WAIT", "RX", "TX_START", "TX_RUN"};
const uint32_t num_modes = sizeof(mode_names) / sizeof(mode_names[0]);
if (mode < num_modes) {
return mode_names[mode];
} else {
return "UNKNOWN";
}
}
static const char* error_name(uint32_t error)
{
const char* error_names[] = {
"NONE",
"RX_TIMEOUT",
"TX_TIMEOUT",
"MISSED_DEADLINE"};
const uint32_t num_errors = sizeof(error_names) / sizeof(error_names[0]);
if (error < num_errors) {
return error_names[error];
} else {
return "UNKNOWN";
}
}
static void print_state(hackrf_m0_state* state)
{
printf("M0 state:\n");
printf("Requested mode: %u (%s) [%s]\n",
state->requested_mode,
mode_name(state->requested_mode),
state->request_flag ? "pending" : "complete");
printf("Active mode: %u (%s)\n",
state->active_mode,
mode_name(state->active_mode));
printf("M0 count: %u bytes\n", state->m0_count);
printf("M4 count: %u bytes\n", state->m4_count);
printf("Number of shortfalls: %u\n", state->num_shortfalls);
printf("Longest shortfall: %u bytes\n", state->longest_shortfall);
printf("Shortfall limit: %u bytes\n", state->shortfall_limit);
printf("Mode change threshold: %u bytes\n", state->threshold);
printf("Next mode: %u (%s)\n", state->next_mode, mode_name(state->next_mode));
printf("Error: %u (%s)\n", state->error, error_name(state->error));
}
static void usage()
{
printf("\nUsage:\n");
printf("\t-h, --help: this help\n");
printf("\t-n, --register <n>: set register number for read/write operations\n");
printf("\t-r, --read: read register specified by last -n argument, or all registers\n");
printf("\t-w, --write <v>: write register specified by last -n argument with value <v>\n");
printf("\t-c, --config: print SI5351C multisynth configuration information\n");
printf("\t-d, --device <s>: specify a particular device by serial number\n");
printf("\t-m, --max2837: target MAX2837\n");
printf("\t-s, --si5351c: target SI5351C\n");
printf("\t-f, --rffc5072: target RFFC5072\n");
printf("\t-S, --state: display M0 state\n");
printf("\t-T, --tx-underrun-limit <n>: set TX underrun limit in bytes (0 for no limit)\n");
printf("\t-R, --rx-overrun-limit <n>: set RX overrun limit in bytes (0 for no limit)\n");
printf("\t-u, --ui <1/0>: enable/disable UI\n");
printf("\t-l, --leds <state>: configure LED state (0 for all off, 1 for default)\n");
printf("\nExamples:\n");
printf("\thackrf_debug --si5351c -n 0 -r # reads from si5351c register 0\n");
printf("\thackrf_debug --si5351c -c # displays si5351c multisynth configuration\n");
printf("\thackrf_debug --rffc5072 -r # reads all rffc5072 registers\n");
printf("\thackrf_debug --max2837 -n 10 -w 22 # writes max2837 register 10 with 22 decimal\n");
printf("\thackrf_debug --state # displays M0 state\n");
}
static struct option long_options[] = {
{"config", no_argument, 0, 'c'},
{"register", required_argument, 0, 'n'},
{"write", required_argument, 0, 'w'},
{"read", no_argument, 0, 'r'},
{"device", required_argument, 0, 'd'},
{"help", no_argument, 0, 'h'},
{"max2837", no_argument, 0, 'm'},
{"si5351c", no_argument, 0, 's'},
{"rffc5072", no_argument, 0, 'f'},
{"state", no_argument, 0, 'S'},
{"tx-underrun-limit", required_argument, 0, 'T'},
{"rx-overrun-limit", required_argument, 0, 'R'},
{"ui", required_argument, 0, 'u'},
{"leds", required_argument, 0, 'l'},
{0, 0, 0, 0},
};
int main(int argc, char** argv)
{
int opt;
uint32_t register_number = REGISTER_INVALID;
uint32_t register_value;
hackrf_device* device = NULL;
int option_index = 0;
bool read = false;
bool write = false;
bool dump_config = false;
bool dump_state = false;
uint8_t part = PART_NONE;
const char* serial_number = NULL;
bool set_ui = false;
uint32_t ui_enable;
bool set_leds = false;
uint32_t led_state;
uint32_t tx_limit;
uint32_t rx_limit;
bool set_tx_limit = false;
bool set_rx_limit = false;
int result = hackrf_init();
if (result) {
printf("hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
while ((opt = getopt_long(
argc,
argv,
"n:rw:d:cmsfST:R:h?u:l:",
long_options,
&option_index)) != EOF) {
switch (opt) {
case 'n':
result = parse_int(optarg, &register_number);
break;
case 'w':
write = true;
result = parse_int(optarg, &register_value);
break;
case 'r':
read = true;
break;
case 'c':
dump_config = true;
break;
case 'S':
dump_state = true;
break;
case 'T':
set_tx_limit = true;
result = parse_int(optarg, &tx_limit);
break;
case 'R':
set_rx_limit = true;
result = parse_int(optarg, &rx_limit);
break;
case 'd':
serial_number = optarg;
break;
case 'm':
if (part != PART_NONE) {
fprintf(stderr, "Only one part can be specified.'\n");
return EXIT_FAILURE;
}
part = PART_MAX2837;
break;
case 's':
if (part != PART_NONE) {
fprintf(stderr, "Only one part can be specified.'\n");
return EXIT_FAILURE;
}
part = PART_SI5351C;
break;
case 'f':
if (part != PART_NONE) {
fprintf(stderr, "Only one part can be specified.'\n");
return EXIT_FAILURE;
}
part = PART_RFFC5072;
break;
case 'u':
set_ui = true;
result = parse_int(optarg, &ui_enable);
break;
case 'l':
set_leds = true;
result = parse_int(optarg, &led_state);
break;
case 'h':
case '?':
usage();
return EXIT_SUCCESS;
default:
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if (result != HACKRF_SUCCESS) {
printf("argument error: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (write && read) {
fprintf(stderr, "Read and write options are mutually exclusive.\n");
usage();
return EXIT_FAILURE;
}
if (write && dump_config) {
fprintf(stderr, "Config and write options are mutually exclusive.\n");
usage();
return EXIT_FAILURE;
}
if (dump_config && part != PART_SI5351C) {
fprintf(stderr, "Config option is only valid for SI5351C.\n");
usage();
return EXIT_FAILURE;
}
if (!(write || read || dump_config || dump_state || set_tx_limit ||
set_rx_limit || set_ui || set_leds)) {
fprintf(stderr, "Specify read, write, or config option.\n");
usage();
return EXIT_FAILURE;
}
if (part == PART_NONE && !set_ui && !dump_state && !set_tx_limit &&
!set_rx_limit && !set_leds) {
fprintf(stderr, "Specify a part to read, write, or print config from.\n");
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result) {
printf("hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (write) {
result = write_register(device, part, register_number, register_value);
}
if (read) {
if (register_number == REGISTER_INVALID) {
result = read_registers(device, part);
} else {
result = read_register(device, part, register_number);
}
}
if (dump_config) {
si5351c_read_configuration(device);
}
if (set_tx_limit) {
result = hackrf_set_tx_underrun_limit(device, tx_limit);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
if (set_rx_limit) {
result = hackrf_set_rx_overrun_limit(device, rx_limit);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
if (dump_state) {
hackrf_m0_state state;
result = hackrf_get_m0_state(device, &state);
if (result != HACKRF_SUCCESS) {
printf("hackrf_get_m0_state() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
print_state(&state);
}
if (set_ui) {
result = hackrf_set_ui_enable(device, ui_enable);
}
if (set_leds) {
if (led_state > 0xf) {
fprintf(stderr,
"Specify LED state bit field (0 for all off, 1 for default).\n");
usage();
return EXIT_FAILURE;
}
result = hackrf_set_leds(device, led_state);
}
result = hackrf_close(device);
if (result) {
printf("hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
hackrf_exit();
return EXIT_SUCCESS;
}