30 Commits

Author SHA1 Message Date
Martin Ling
03551cb1fd Detect whether the M0 missed its deadline.
Counter-intuitively, this actually saves us two cycles because we unroll
the first iteration of the loop that spins on the interrupt flag, saving
a branch in the case that the flag is clear the first time.
2024-11-26 19:34:29 +00:00
grvvy
fe86f005f6 change the device long option to required in hackrf_debug 2023-02-08 12:18:27 -07:00
Michael Ossmann
173612ac77 add --led option to hackrf_debug
and corresponding changes to libhackrf and firmware
2022-12-18 07:22:17 -05:00
Michael Ossmann
06b9d7bee0 Clean up source code copyright notices. 2022-09-23 14:46:52 -04:00
Martin Ling
c0d13de598 Add braces to all control statements without them. 2022-08-03 23:46:46 +01:00
Martin Ling
c3fdf402d7 Reformat all code to new clang-format standard. 2022-08-03 23:46:44 +01:00
Martin Ling
f3633e285f Replace direct setting of M0 mode with a request/ack mechanism.
This change avoids various possible races in which an autonomous mode
change by the M0 might clobber a mode change made from the M4, as well
as related races on other state fields that can be written by the M4.

The previous mode field is replaced by two separate ones:

- active_mode, which is written only by the M0, and indicates the
  current operating mode.

- requested_mode, which is written by the M4 to request a change.
  This field includes both the requested mode, and a flag bit. The M4
  writes the field with the flag bit set, and must then wait for the
  M0 to signal completion of the request by clearing the flag bit.

Whilst the M4 is blocked waiting for the flag bit to be cleared, the
M0 can safely make all the required changes to the state that are
needed for the transition to the requested mode. Once the transition
is complete, the M0 clears the flag bit and the M4 continues execution.

Request handling is implemented in the idle loop. To handle requests,
mode-specific loops simply need to check the request flag and branch to
idle if it is set.

A request from the M4 to change modes will always require passing
through the idle loop, and is not subject to timing guarantees. Only
transitions made autonomously by the M0 have guaranteed timing
constraints.

The work previously done in reset_counts is now implemented as part of
the request handling, so the tx_start, rx_start and wait_start labels
are no longer required.

An extra two cycles are required in the TX shortfall path because we
must now load the active mode to check whether we are in TX_START.

Two cycles are saved in the normal TX path because updating the active
mode to TX_RUN can now be done without checking the previous value.
2022-02-13 17:53:34 +00:00
Martin Ling
137f2481e5 Make an error code available when a shortfall limit is hit.
Previously, finding the M0 in IDLE mode was ambiguous; it could indicate
either a normal outcome, or a shortfall limit having being hit.

To disambiguate, we add an error field to the M0 state. The errors
currently possible are an RX timeout or a TX timeout, both of which
can be obtained efficiently from the current operating mode due to
the values used.

This adds 3 cycles to both shortfall paths, in order to shift down
the mode to obtain the error code, and store it to the M0 state.
2022-02-13 17:53:34 +00:00
Martin Ling
cca7320fe4 Add a wait mode for the M0.
In wait mode, the byte counter is advanced, but no SGPIO read/writes are
done. This mode is intended to be used for implementing timed operations.
2022-02-13 16:46:12 +00:00
Martin Ling
3618a5352f Add a counter threshold at which the M0 will change to a new mode.
This lays the groundwork for implementing timed operations (#86). The M0
can be configured to automatically change modes when its byte count
reaches a specific value.

Checking the counter against the threshold and dispatching to the next
mode is handled by a new `jump_next_mode` macro, which replaces the
unconditional branches back to the start of the TX and RX loops.

Making this change work requires some rearrangement of the code, such
that the destinations of all conditional branch instructions are within
reach. These branch instructions (`b[cond] label`) have a range of -256
to +254 bytes from the current program counter.

For this reason, the TX shortfall handling is moved earlier in the file,
and branches in the idle loop are restructured to use an unconditional
branch to rx_start, which is furthest away.

The additional code for switching modes adds 9 cycles to the normal RX
path, and 10 to the TX path (the difference is because the dispatch in
`jump_next_mode` is optimised for the longer RX path).
2022-02-13 16:46:12 +00:00
Martin Ling
00b5ed7d62 Add an M0 TX_START mode, in which zeroes are sent until data is ready.
In TX_START mode, a lack of data to send is not treated as a shortfall.
Zeroes are written to SGPIO, but no shortfall is recorded in the stats.
Using this mode helps avoid spurious shortfalls at startup.

As soon as there is data to transmit, the M0 switches to TX_RUN mode.

This change adds five cycles to the normal TX path, in order to check
for TX_START mode before sending data, and to switch to TX_RUN in that
case.

It also adds two cycles to the TX shortfall path, to check for TX_START
mode and skip shortfall processing in that mode.

Note the allocation of r3 to store the mode setting, such that this
value is still available after the tx_zeros routine.
2022-02-13 16:46:12 +00:00
Martin Ling
5abc39c53a Add USB requests and host support to set TX/RX shortfall limits.
This adds `-T` and `-R` options to `hackrf_debug`, which set the TX
underrun and RX overrun limits in bytes.
2022-02-13 16:46:12 +00:00
Martin Ling
2f79c03b2c hackrf_debug: allow parse_int() to handle 32-bit parameters. 2022-02-13 16:46:12 +00:00
Martin Ling
f0bc6eda30 Add a shortfall length limit.
This limit allows implementing a timeout: if a TX underrun or RX overrun
continues for the specified number of bytes, the M0 will revert to idle.

A setting of zero disables the limit.

This change adds 5 cycles to the TX & RX shortfall paths, to check if a
limit is set and to check the shortfall length against the limit.
2022-02-13 16:46:12 +00:00
Martin Ling
2c86f493d9 Keep track of longest shortfall.
This adds six cycles to the TX and RX shortfall paths.
2022-02-13 16:46:12 +00:00
Martin Ling
a7bd1e3ede Keep count of number of shortfalls.
To enable this, we keep a count of the current shortfall length. Each
time an SGPIO read/write cannot be completed due to a shortfall, we
increase this length. Each time an SGPIO read/write is completed
successfully, we reset the shortfall length to zero.

When a shortfall occurs and the existing shortfall length is zero, this
indicates a new shortfall, and the shortfall count is incremented.

This change adds one cycle to the normal RX & TX paths, to zero the
shortfall count. To enable this to be done in a single cycle, we keep a
zero handy in a high register.

The extra accounting adds 10 cycles to the TX and RX shortfall paths,
plus an additional 3 cycles to the RX shortfall path since there are
now two branches involved: one to the shortfall handler, and another
back to the main loop.
2022-02-13 16:46:12 +00:00
Martin Ling
32c725dd61 Add an idle mode for the M0.
In the idle mode, the M0 simply waits for a different mode to be set.
No SGPIO access is done.

One extra cycle is added to both TX code paths, to check whether the
M0 should return to the idle loop based on the mode setting. The RX
paths are unaffected as the branch to RX is handled first.
2022-02-13 16:46:12 +00:00
Martin Ling
5b50b2dfac Replace TX flag with a mode setting.
This is to let us start adding new operatin modes for the M0.
2022-02-13 16:46:12 +00:00
Martin Ling
79853d2b28 Add a second counter to keep track of bytes transferred by the M4.
With both counters in place, the number of bytes in the buffer is now
indicated by the difference between the M0 and M4 counts.

The M4 count needs to be increased whenever the M4 produces or consumes
data in the USB bulk buffer, so that the two counts remain correctly
synchronised.

There are three places where this is done:

1. When a USB bulk transfer in or out of the buffer completes, the count
   is increased by the number of bytes transferred. This is the most
   common case.

2. At TX startup, the M4 effectively sends the M0 16K of zeroes to
   transmit, before the first host-provided data.

   This is done by zeroing the whole 32K buffer area, and then setting
   up the first bulk transfer to write to the second 16K, whilst the M0
   begins transmission of the first 16K.

   The count is therefore increased by 16K during TX startup, to account
   for the initial 16K of zeros.

3. In sweep mode, some data is discarded. When this is done, the count
   is incremented by the size of the discarded data.

   The USB IRQ is masked whilst doing this, since a read-modify-write is
   required, and the bulk transfer completion callback may be called at
   any point, which also increases the count.
2022-02-13 16:46:12 +00:00
Martin Ling
21dabc920f Replace M0 state offset field with a byte count.
Instead of this count wrapping at the buffer size, it now increments
continuously. The offset within the buffer is now obtained from the
lower bits of the count.

This makes it possible to keep track of the total number of bytes
transferred by the M0 core.

The count will wrap at 2^32 bytes, which at 20Msps will occur every
107 seconds.
2022-02-13 16:46:12 +00:00
Martin Ling
fd073e391f Add USB vendor request to read M0 state, and host support for doing so.
This adds a `hackrf_debug [-S|--state]` option, and the necessary
plumbing to libhackrf and the M4 firmware to support it.

The USB API and libhackrf versions are bumped to reflect the changes.
2022-02-13 16:46:12 +00:00
Mike Walters
4aac303480 Add option to disable HackRF UI
Fixes #608
2020-01-22 21:23:30 +00:00
Dominic Spill
5f02620a49 ahckrf_debug: finx type conversion warning from Windows build 2018-03-26 18:06:13 -06:00
Dominic Spill
f636658c54 Add clock control hackrf_debug 2017-02-21 17:41:05 -07:00
Michael Ossmann
405a11fb96 added multisynth config to hackrf_debug example usage 2017-02-08 14:42:39 -07:00
Michael Ossmann
f2877d20af change si5351c usage example to be the most common register that folks are likely to want to read 2017-02-08 14:42:39 -07:00
Michael Ossmann
b6d2774a0b fixed long option usage examples 2017-02-08 14:42:39 -07:00
Michael Ossmann
77ace5a118 made part naming consistent in hackrf_debug 2017-02-08 14:42:39 -07:00
Dominic Spill
1587c95a59 Support max2837, rffc5071, and si5351 2017-02-07 17:11:13 -07:00
Dominic Spill
ebaebf42f8 Initial commit of combined debug tool 2017-02-07 17:11:13 -07:00