hackrf/firmware/hackrf_usb/usb_api_sweep.c
2022-09-23 14:46:52 -04:00

233 lines
6.8 KiB
C

/*
* Copyright 2016-2022 Great Scott Gadgets <info@greatscottgadgets.com>
* Copyright 2016 Mike Walters, Dominic Spill
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "usb_api_sweep.h"
#include "usb_queue.h"
#include <stddef.h>
#include <hackrf_core.h>
#include "usb_api_transceiver.h"
#include "usb_bulk_buffer.h"
#include "usb_api_m0_state.h"
#include "tuning.h"
#include "usb_endpoint.h"
#include "streaming.h"
#include <libopencm3/lpc43xx/m4/nvic.h>
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define FREQ_GRANULARITY 1000000
#define MAX_RANGES 10
#define THROWAWAY_BUFFERS 2
static uint64_t sweep_freq;
static uint16_t frequencies[MAX_RANGES * 2];
static unsigned char data[9 + MAX_RANGES * 2 * sizeof(frequencies[0])];
static uint16_t num_ranges = 0;
static uint32_t dwell_blocks = 0;
static uint32_t step_width = 0;
static uint32_t offset = 0;
static enum sweep_style style = LINEAR;
/* Do this before starting sweep mode with request_transceiver_mode(). */
usb_request_status_t usb_vendor_request_init_sweep(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint32_t num_bytes;
int i;
if (stage == USB_TRANSFER_STAGE_SETUP) {
num_bytes = (endpoint->setup.index << 16) | endpoint->setup.value;
dwell_blocks = num_bytes / 0x4000;
if (1 > dwell_blocks) {
return USB_REQUEST_STATUS_STALL;
}
num_ranges = (endpoint->setup.length - 9) / (2 * sizeof(frequencies[0]));
if ((1 > num_ranges) || (MAX_RANGES < num_ranges)) {
return USB_REQUEST_STATUS_STALL;
}
usb_transfer_schedule_block(
endpoint->out,
&data,
endpoint->setup.length,
NULL,
NULL);
} else if (stage == USB_TRANSFER_STAGE_DATA) {
step_width = ((uint32_t) (data[3]) << 24) | ((uint32_t) (data[2]) << 16) |
((uint32_t) (data[1]) << 8) | data[0];
if (1 > step_width) {
return USB_REQUEST_STATUS_STALL;
}
offset = ((uint32_t) (data[7]) << 24) | ((uint32_t) (data[6]) << 16) |
((uint32_t) (data[5]) << 8) | data[4];
style = data[8];
if (INTERLEAVED < style) {
return USB_REQUEST_STATUS_STALL;
}
for (i = 0; i < (num_ranges * 2); i++) {
frequencies[i] =
((uint16_t) (data[10 + i * 2]) << 8) + data[9 + i * 2];
}
sweep_freq = (uint64_t) frequencies[0] * FREQ_GRANULARITY;
set_freq(sweep_freq + offset);
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
void sweep_bulk_transfer_complete(void* user_data, unsigned int bytes_transferred)
{
(void) user_data;
(void) bytes_transferred;
// For each buffer transferred, we need to bump the count by three buffers
// worth of data, to allow for the discarded buffers.
m0_state.m4_count += 3 * 0x4000;
}
void sweep_mode(uint32_t seq)
{
// Sweep mode is implemented using timed M0 operations, as follows:
//
// 0. M4 initially puts the M0 into RX mode, with an m0_count threshold
// of 16K and a next mode of WAIT.
//
// 1. M4 spins until the M0 switches to WAIT mode.
//
// 2. M0 captures one 16K block of samples, and switches to WAIT mode.
//
// 3. M4 sees the mode change, advances the m0_count target by 32K, and
// sets next mode to RX.
//
// 4. M4 adds the sweep metadata at the start of the block and
// schedules a bulk transfer for the block.
//
// 5. M4 retunes - this takes about 760us worst-case, so should be
// complete before the M0 goes back to RX.
//
// 6. M4 spins until the M0 mode changes to RX, then advances the
// m0_count limit by 16K and sets the next mode to WAIT.
//
// 7. Process repeats from step 1.
unsigned int blocks_queued = 0;
unsigned int phase = 0;
bool odd = true;
uint16_t range = 0;
uint8_t* buffer;
transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP);
// Set M0 to RX first buffer, then wait.
m0_state.threshold = 0x4000;
m0_state.next_mode = M0_MODE_WAIT;
baseband_streaming_enable(&sgpio_config);
while (transceiver_request.seq == seq) {
// Wait for M0 to finish receiving a buffer.
while (m0_state.active_mode != M0_MODE_WAIT) {
if (transceiver_request.seq != seq) {
goto end;
}
}
// Set M0 to switch back to RX after two more buffers.
m0_state.threshold += 0x8000;
m0_state.next_mode = M0_MODE_RX;
// Write metadata to buffer.
buffer = &usb_bulk_buffer[phase * 0x4000];
*buffer = 0x7f;
*(buffer + 1) = 0x7f;
*(buffer + 2) = sweep_freq & 0xff;
*(buffer + 3) = (sweep_freq >> 8) & 0xff;
*(buffer + 4) = (sweep_freq >> 16) & 0xff;
*(buffer + 5) = (sweep_freq >> 24) & 0xff;
*(buffer + 6) = (sweep_freq >> 32) & 0xff;
*(buffer + 7) = (sweep_freq >> 40) & 0xff;
*(buffer + 8) = (sweep_freq >> 48) & 0xff;
*(buffer + 9) = (sweep_freq >> 56) & 0xff;
// Set up IN transfer of buffer.
usb_transfer_schedule_block(
&usb_endpoint_bulk_in,
buffer,
0x4000,
sweep_bulk_transfer_complete,
NULL);
// Use other buffer next time.
phase = (phase + 1) % 2;
if (++blocks_queued == dwell_blocks) {
// Calculate next sweep frequency.
if (INTERLEAVED == style) {
if (!odd &&
((sweep_freq + step_width) >=
((uint64_t) frequencies[1 + range * 2] *
FREQ_GRANULARITY))) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t) frequencies[range * 2] *
FREQ_GRANULARITY;
} else {
if (odd) {
sweep_freq += step_width / 4;
} else {
sweep_freq += 3 * step_width / 4;
}
}
odd = !odd;
} else {
if ((sweep_freq + step_width) >=
((uint64_t) frequencies[1 + range * 2] *
FREQ_GRANULARITY)) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t) frequencies[range * 2] *
FREQ_GRANULARITY;
} else {
sweep_freq += step_width;
}
}
// Retune to new frequency.
nvic_disable_irq(NVIC_USB0_IRQ);
set_freq(sweep_freq + offset);
nvic_enable_irq(NVIC_USB0_IRQ);
blocks_queued = 0;
}
// Wait for M0 to resume RX.
while (m0_state.active_mode != M0_MODE_RX) {
if (transceiver_request.seq != seq) {
goto end;
}
}
// Set M0 to switch back to WAIT after filling next buffer.
m0_state.threshold += 0x4000;
m0_state.next_mode = M0_MODE_WAIT;
}
end:
transceiver_shutdown();
}