233 lines
6.8 KiB
C
233 lines
6.8 KiB
C
/*
|
|
* Copyright 2016-2022 Great Scott Gadgets <info@greatscottgadgets.com>
|
|
* Copyright 2016 Mike Walters, Dominic Spill
|
|
*
|
|
* This file is part of HackRF.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "usb_api_sweep.h"
|
|
#include "usb_queue.h"
|
|
#include <stddef.h>
|
|
#include <hackrf_core.h>
|
|
#include "usb_api_transceiver.h"
|
|
#include "usb_bulk_buffer.h"
|
|
#include "usb_api_m0_state.h"
|
|
#include "tuning.h"
|
|
#include "usb_endpoint.h"
|
|
#include "streaming.h"
|
|
|
|
#include <libopencm3/lpc43xx/m4/nvic.h>
|
|
|
|
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
|
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
|
#define FREQ_GRANULARITY 1000000
|
|
#define MAX_RANGES 10
|
|
#define THROWAWAY_BUFFERS 2
|
|
|
|
static uint64_t sweep_freq;
|
|
static uint16_t frequencies[MAX_RANGES * 2];
|
|
static unsigned char data[9 + MAX_RANGES * 2 * sizeof(frequencies[0])];
|
|
static uint16_t num_ranges = 0;
|
|
static uint32_t dwell_blocks = 0;
|
|
static uint32_t step_width = 0;
|
|
static uint32_t offset = 0;
|
|
static enum sweep_style style = LINEAR;
|
|
|
|
/* Do this before starting sweep mode with request_transceiver_mode(). */
|
|
usb_request_status_t usb_vendor_request_init_sweep(
|
|
usb_endpoint_t* const endpoint,
|
|
const usb_transfer_stage_t stage)
|
|
{
|
|
uint32_t num_bytes;
|
|
int i;
|
|
if (stage == USB_TRANSFER_STAGE_SETUP) {
|
|
num_bytes = (endpoint->setup.index << 16) | endpoint->setup.value;
|
|
dwell_blocks = num_bytes / 0x4000;
|
|
if (1 > dwell_blocks) {
|
|
return USB_REQUEST_STATUS_STALL;
|
|
}
|
|
num_ranges = (endpoint->setup.length - 9) / (2 * sizeof(frequencies[0]));
|
|
if ((1 > num_ranges) || (MAX_RANGES < num_ranges)) {
|
|
return USB_REQUEST_STATUS_STALL;
|
|
}
|
|
usb_transfer_schedule_block(
|
|
endpoint->out,
|
|
&data,
|
|
endpoint->setup.length,
|
|
NULL,
|
|
NULL);
|
|
} else if (stage == USB_TRANSFER_STAGE_DATA) {
|
|
step_width = ((uint32_t) (data[3]) << 24) | ((uint32_t) (data[2]) << 16) |
|
|
((uint32_t) (data[1]) << 8) | data[0];
|
|
if (1 > step_width) {
|
|
return USB_REQUEST_STATUS_STALL;
|
|
}
|
|
offset = ((uint32_t) (data[7]) << 24) | ((uint32_t) (data[6]) << 16) |
|
|
((uint32_t) (data[5]) << 8) | data[4];
|
|
style = data[8];
|
|
if (INTERLEAVED < style) {
|
|
return USB_REQUEST_STATUS_STALL;
|
|
}
|
|
for (i = 0; i < (num_ranges * 2); i++) {
|
|
frequencies[i] =
|
|
((uint16_t) (data[10 + i * 2]) << 8) + data[9 + i * 2];
|
|
}
|
|
sweep_freq = (uint64_t) frequencies[0] * FREQ_GRANULARITY;
|
|
set_freq(sweep_freq + offset);
|
|
usb_transfer_schedule_ack(endpoint->in);
|
|
}
|
|
return USB_REQUEST_STATUS_OK;
|
|
}
|
|
|
|
void sweep_bulk_transfer_complete(void* user_data, unsigned int bytes_transferred)
|
|
{
|
|
(void) user_data;
|
|
(void) bytes_transferred;
|
|
|
|
// For each buffer transferred, we need to bump the count by three buffers
|
|
// worth of data, to allow for the discarded buffers.
|
|
m0_state.m4_count += 3 * 0x4000;
|
|
}
|
|
|
|
void sweep_mode(uint32_t seq)
|
|
{
|
|
// Sweep mode is implemented using timed M0 operations, as follows:
|
|
//
|
|
// 0. M4 initially puts the M0 into RX mode, with an m0_count threshold
|
|
// of 16K and a next mode of WAIT.
|
|
//
|
|
// 1. M4 spins until the M0 switches to WAIT mode.
|
|
//
|
|
// 2. M0 captures one 16K block of samples, and switches to WAIT mode.
|
|
//
|
|
// 3. M4 sees the mode change, advances the m0_count target by 32K, and
|
|
// sets next mode to RX.
|
|
//
|
|
// 4. M4 adds the sweep metadata at the start of the block and
|
|
// schedules a bulk transfer for the block.
|
|
//
|
|
// 5. M4 retunes - this takes about 760us worst-case, so should be
|
|
// complete before the M0 goes back to RX.
|
|
//
|
|
// 6. M4 spins until the M0 mode changes to RX, then advances the
|
|
// m0_count limit by 16K and sets the next mode to WAIT.
|
|
//
|
|
// 7. Process repeats from step 1.
|
|
|
|
unsigned int blocks_queued = 0;
|
|
unsigned int phase = 0;
|
|
bool odd = true;
|
|
uint16_t range = 0;
|
|
|
|
uint8_t* buffer;
|
|
|
|
transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP);
|
|
|
|
// Set M0 to RX first buffer, then wait.
|
|
m0_state.threshold = 0x4000;
|
|
m0_state.next_mode = M0_MODE_WAIT;
|
|
|
|
baseband_streaming_enable(&sgpio_config);
|
|
|
|
while (transceiver_request.seq == seq) {
|
|
// Wait for M0 to finish receiving a buffer.
|
|
while (m0_state.active_mode != M0_MODE_WAIT) {
|
|
if (transceiver_request.seq != seq) {
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
// Set M0 to switch back to RX after two more buffers.
|
|
m0_state.threshold += 0x8000;
|
|
m0_state.next_mode = M0_MODE_RX;
|
|
|
|
// Write metadata to buffer.
|
|
buffer = &usb_bulk_buffer[phase * 0x4000];
|
|
*buffer = 0x7f;
|
|
*(buffer + 1) = 0x7f;
|
|
*(buffer + 2) = sweep_freq & 0xff;
|
|
*(buffer + 3) = (sweep_freq >> 8) & 0xff;
|
|
*(buffer + 4) = (sweep_freq >> 16) & 0xff;
|
|
*(buffer + 5) = (sweep_freq >> 24) & 0xff;
|
|
*(buffer + 6) = (sweep_freq >> 32) & 0xff;
|
|
*(buffer + 7) = (sweep_freq >> 40) & 0xff;
|
|
*(buffer + 8) = (sweep_freq >> 48) & 0xff;
|
|
*(buffer + 9) = (sweep_freq >> 56) & 0xff;
|
|
|
|
// Set up IN transfer of buffer.
|
|
usb_transfer_schedule_block(
|
|
&usb_endpoint_bulk_in,
|
|
buffer,
|
|
0x4000,
|
|
sweep_bulk_transfer_complete,
|
|
NULL);
|
|
|
|
// Use other buffer next time.
|
|
phase = (phase + 1) % 2;
|
|
|
|
if (++blocks_queued == dwell_blocks) {
|
|
// Calculate next sweep frequency.
|
|
if (INTERLEAVED == style) {
|
|
if (!odd &&
|
|
((sweep_freq + step_width) >=
|
|
((uint64_t) frequencies[1 + range * 2] *
|
|
FREQ_GRANULARITY))) {
|
|
range = (range + 1) % num_ranges;
|
|
sweep_freq = (uint64_t) frequencies[range * 2] *
|
|
FREQ_GRANULARITY;
|
|
} else {
|
|
if (odd) {
|
|
sweep_freq += step_width / 4;
|
|
} else {
|
|
sweep_freq += 3 * step_width / 4;
|
|
}
|
|
}
|
|
odd = !odd;
|
|
} else {
|
|
if ((sweep_freq + step_width) >=
|
|
((uint64_t) frequencies[1 + range * 2] *
|
|
FREQ_GRANULARITY)) {
|
|
range = (range + 1) % num_ranges;
|
|
sweep_freq = (uint64_t) frequencies[range * 2] *
|
|
FREQ_GRANULARITY;
|
|
} else {
|
|
sweep_freq += step_width;
|
|
}
|
|
}
|
|
// Retune to new frequency.
|
|
nvic_disable_irq(NVIC_USB0_IRQ);
|
|
set_freq(sweep_freq + offset);
|
|
nvic_enable_irq(NVIC_USB0_IRQ);
|
|
blocks_queued = 0;
|
|
}
|
|
|
|
// Wait for M0 to resume RX.
|
|
while (m0_state.active_mode != M0_MODE_RX) {
|
|
if (transceiver_request.seq != seq) {
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
// Set M0 to switch back to WAIT after filling next buffer.
|
|
m0_state.threshold += 0x4000;
|
|
m0_state.next_mode = M0_MODE_WAIT;
|
|
}
|
|
end:
|
|
transceiver_shutdown();
|
|
}
|