The power measurement depends on the number of bytes that were valid
from the previous use of the transfer buffer.
The number of bytes to be read to fill the next transfer, is the full
size of the buffer.
The statistics reported to the user now reflect only completed USB
transfers and do not include information about the empty buffers that
are preloaded with data at the start of a TX operation.
Rather than using sleep() for 1s at a time, set up an interval timer
that will fire once per second, and wait in the main loop for either
this or some other event.
On POSIX, the timing is set up with setitimer(), which generates a
SIGALRM signal each time the timer fires. The main loop runs pause() to
wait for any signal.
On Windows, the timing is set up using CreateWaitableTimer, which
provides an event handle that is set each time the timer fires. The main
loop runs WaitForMultipleObjects() to wait on this and an interrupt
event.
The TX and RX callbacks can now stop the main loop immediately when they
stop streaming. This fixes#1019.
Using _MSC_VER here means that the choice of signal() versus
SetConsoleCtrlHandler depends on the compiler being used, rather
than the OS being targeted. When built with MinGW rather than MSVC,
this happens to work because MinGW's signal emulation is used, but
that emulation is quite limited.
Instead, be consistent and use the Win32 API when building for that
platform, regardless of compiler.
Note that if building for Cygwin, _WIN32 is not defined and POSIX
APIs are used.
This change avoids various possible races in which an autonomous mode
change by the M0 might clobber a mode change made from the M4, as well
as related races on other state fields that can be written by the M4.
The previous mode field is replaced by two separate ones:
- active_mode, which is written only by the M0, and indicates the
current operating mode.
- requested_mode, which is written by the M4 to request a change.
This field includes both the requested mode, and a flag bit. The M4
writes the field with the flag bit set, and must then wait for the
M0 to signal completion of the request by clearing the flag bit.
Whilst the M4 is blocked waiting for the flag bit to be cleared, the
M0 can safely make all the required changes to the state that are
needed for the transition to the requested mode. Once the transition
is complete, the M0 clears the flag bit and the M4 continues execution.
Request handling is implemented in the idle loop. To handle requests,
mode-specific loops simply need to check the request flag and branch to
idle if it is set.
A request from the M4 to change modes will always require passing
through the idle loop, and is not subject to timing guarantees. Only
transitions made autonomously by the M0 have guaranteed timing
constraints.
The work previously done in reset_counts is now implemented as part of
the request handling, so the tx_start, rx_start and wait_start labels
are no longer required.
An extra two cycles are required in the TX shortfall path because we
must now load the active mode to check whether we are in TX_START.
Two cycles are saved in the normal TX path because updating the active
mode to TX_RUN can now be done without checking the previous value.
Previously, finding the M0 in IDLE mode was ambiguous; it could indicate
either a normal outcome, or a shortfall limit having being hit.
To disambiguate, we add an error field to the M0 state. The errors
currently possible are an RX timeout or a TX timeout, both of which
can be obtained efficiently from the current operating mode due to
the values used.
This adds 3 cycles to both shortfall paths, in order to shift down
the mode to obtain the error code, and store it to the M0 state.
This lays the groundwork for implementing timed operations (#86). The M0
can be configured to automatically change modes when its byte count
reaches a specific value.
Checking the counter against the threshold and dispatching to the next
mode is handled by a new `jump_next_mode` macro, which replaces the
unconditional branches back to the start of the TX and RX loops.
Making this change work requires some rearrangement of the code, such
that the destinations of all conditional branch instructions are within
reach. These branch instructions (`b[cond] label`) have a range of -256
to +254 bytes from the current program counter.
For this reason, the TX shortfall handling is moved earlier in the file,
and branches in the idle loop are restructured to use an unconditional
branch to rx_start, which is furthest away.
The additional code for switching modes adds 9 cycles to the normal RX
path, and 10 to the TX path (the difference is because the dispatch in
`jump_next_mode` is optimised for the longer RX path).
In TX_START mode, a lack of data to send is not treated as a shortfall.
Zeroes are written to SGPIO, but no shortfall is recorded in the stats.
Using this mode helps avoid spurious shortfalls at startup.
As soon as there is data to transmit, the M0 switches to TX_RUN mode.
This change adds five cycles to the normal TX path, in order to check
for TX_START mode before sending data, and to switch to TX_RUN in that
case.
It also adds two cycles to the TX shortfall path, to check for TX_START
mode and skip shortfall processing in that mode.
Note the allocation of r3 to store the mode setting, such that this
value is still available after the tx_zeros routine.
This limit allows implementing a timeout: if a TX underrun or RX overrun
continues for the specified number of bytes, the M0 will revert to idle.
A setting of zero disables the limit.
This change adds 5 cycles to the TX & RX shortfall paths, to check if a
limit is set and to check the shortfall length against the limit.
To enable this, we keep a count of the current shortfall length. Each
time an SGPIO read/write cannot be completed due to a shortfall, we
increase this length. Each time an SGPIO read/write is completed
successfully, we reset the shortfall length to zero.
When a shortfall occurs and the existing shortfall length is zero, this
indicates a new shortfall, and the shortfall count is incremented.
This change adds one cycle to the normal RX & TX paths, to zero the
shortfall count. To enable this to be done in a single cycle, we keep a
zero handy in a high register.
The extra accounting adds 10 cycles to the TX and RX shortfall paths,
plus an additional 3 cycles to the RX shortfall path since there are
now two branches involved: one to the shortfall handler, and another
back to the main loop.
In the idle mode, the M0 simply waits for a different mode to be set.
No SGPIO access is done.
One extra cycle is added to both TX code paths, to check whether the
M0 should return to the idle loop based on the mode setting. The RX
paths are unaffected as the branch to RX is handled first.