Merge branch 'master' of git://github.com/jboone/hackrf

This commit is contained in:
TitanMKD
2012-10-13 13:40:46 +02:00
7 changed files with 302 additions and 225 deletions

View File

@ -200,6 +200,11 @@ extern "C"
/* TODO add other Pins */
typedef enum {
TRANSCEIVER_MODE_RX,
TRANSCEIVER_MODE_TX,
} transceiver_mode_t;
void delay(uint32_t duration);
void cpu_clock_init(void);

View File

@ -59,17 +59,23 @@ void sgpio_test_interface() {
// Make all SGPIO controlled by SGPIO's "GPIO" registers
for (uint_fast8_t i = 0; i < 16; i++) {
SGPIO_OUT_MUX_CFG(i) = (0L << 4) | (4L << 0);
SGPIO_OUT_MUX_CFG(i) =
SGPIO_OUT_MUX_CFG_P_OE_CFG(0)
| SGPIO_OUT_MUX_CFG_P_OUT_CFG(4);
}
// Set SGPIO output values.
SGPIO_GPIO_OUTREG = (1L << host_direction_sgpio_pin)
| (1L << host_disable_sgpio_pin);
SGPIO_GPIO_OUTREG =
(1L << host_direction_sgpio_pin)
| (1L << host_disable_sgpio_pin);
// Enable SGPIO pin outputs.
SGPIO_GPIO_OENREG = (1L << host_direction_sgpio_pin)
| (1L << host_disable_sgpio_pin) | (0L << host_capture_sgpio_pin)
| (0L << host_clock_sgpio_pin) | (0xFF << 0);
SGPIO_GPIO_OENREG =
(1L << host_direction_sgpio_pin)
| (1L << host_disable_sgpio_pin)
| (0L << host_capture_sgpio_pin)
| (0L << host_clock_sgpio_pin)
| (0xFF << 0);
// Configure SGPIO slices.
@ -83,159 +89,61 @@ void sgpio_test_interface() {
}
}
void sgpio_configure_for_tx() {
void sgpio_configure(
const transceiver_mode_t transceiver_mode,
const bool multi_slice
) {
// Disable all counters during configuration
SGPIO_CTRL_ENABLE = 0;
sgpio_configure_pin_functions();
// Set SGPIO output values.
const uint_fast8_t cpld_direction =
(transceiver_mode == TRANSCEIVER_MODE_TX) ? 1 : 0;
SGPIO_GPIO_OUTREG =
(1L << 11) | // direction
(1L << 10); // disable
(cpld_direction << 11)
| (1L << 10) // disable
;
// Enable SGPIO pin outputs.
const uint_fast16_t sgpio_gpio_data_direction =
(transceiver_mode == TRANSCEIVER_MODE_TX)
? (0xFF << 0)
: (0x00 << 0);
SGPIO_GPIO_OENREG =
(1L << 11) | // direction: TX: data to CPLD
(1L << 10) | // disable
(0L << 9) | // capture
(0L << 8) | // clock
0xFF; // data: output
(1L << 11) // direction
| (1L << 10) // disable
| (0L << 9) // capture
| (0L << 8) // clock
| sgpio_gpio_data_direction
;
SGPIO_OUT_MUX_CFG( 8) = 0; // SGPIO: Input: clock
SGPIO_OUT_MUX_CFG( 9) = 0; // SGPIO: Input: qualifier
SGPIO_OUT_MUX_CFG(10) = (0L << 4) | (4L << 0); // GPIO: Output: disable
SGPIO_OUT_MUX_CFG(11) = (0L << 4) | (4L << 0); // GPIO: Output: direction
SGPIO_OUT_MUX_CFG( 8) = // SGPIO: Input: clock
SGPIO_OUT_MUX_CFG_P_OE_CFG(0)
| SGPIO_OUT_MUX_CFG_P_OUT_CFG(0)
;
SGPIO_OUT_MUX_CFG( 9) = // SGPIO: Input: qualifier
SGPIO_OUT_MUX_CFG_P_OE_CFG(0)
| SGPIO_OUT_MUX_CFG_P_OUT_CFG(0)
;
SGPIO_OUT_MUX_CFG(10) = // GPIO: Output: disable
SGPIO_OUT_MUX_CFG_P_OE_CFG(0)
| SGPIO_OUT_MUX_CFG_P_OUT_CFG(4)
;
SGPIO_OUT_MUX_CFG(11) = // GPIO: Output: direction
SGPIO_OUT_MUX_CFG_P_OE_CFG(0)
| SGPIO_OUT_MUX_CFG_P_OUT_CFG(4)
;
const uint_fast8_t output_multiplexing_mode =
multi_slice ? 11 : 9;
for(uint_fast8_t i=0; i<8; i++) {
// SGPIO pin 0 outputs slice A bit "i".
SGPIO_OUT_MUX_CFG(i) =
(0L << 4) | // P_OE_CFG = 0
(9L << 0); // P_OUT_CFG = 9, dout_doutm8a (8-bit mode 8a)
}
// Slice A
SGPIO_MUX_CFG(SGPIO_SLICE_A) =
(0L << 12) | // CONCAT_ORDER = 0 (self-loop)
(1L << 11) | // CONCAT_ENABLE = 1 (concatenate data)
(0L << 9) | // QUALIFIER_SLICE_MODE = X
(1L << 7) | // QUALIFIER_PIN_MODE = 1 (SGPIO9)
(3L << 5) | // QUALIFIER_MODE = 3 (external SGPIO pin)
(0L << 3) | // CLK_SOURCE_SLICE_MODE = X
(0L << 1) | // CLK_SOURCE_PIN_MODE = 0 (SGPIO8)
(1L << 0); // EXT_CLK_ENABLE = 1, external clock signal (slice)
SGPIO_SLICE_MUX_CFG(SGPIO_SLICE_A) =
(0L << 8) | // INV_QUALIFIER = 0 (use normal qualifier)
(3L << 6) | // PARALLEL_MODE = 3 (shift 8 bits per clock)
(0L << 4) | // DATA_CAPTURE_MODE = 0 (detect rising edge)
(0L << 3) | // INV_OUT_CLK = 0 (normal clock)
(1L << 2) | // CLKGEN_MODE = 1 (use external pin clock)
(0L << 1) | // CLK_CAPTURE_MODE = 0 (use rising clock edge)
(0L << 0); // MATCH_MODE = 0 (do not match data)
SGPIO_PRESET(SGPIO_SLICE_A) = 0;
SGPIO_COUNT(SGPIO_SLICE_A) = 0;
SGPIO_POS(SGPIO_SLICE_A) = (0x3L << 8) | (0x3L << 0);
SGPIO_REG(SGPIO_SLICE_A) = 0x80808080; // Primary output data register
SGPIO_REG_SS(SGPIO_SLICE_A) = 0x80808080; // Shadow output data register
// Start SGPIO operation by enabling slice clocks.
SGPIO_CTRL_ENABLE =
(1L << SGPIO_SLICE_A)
;
}
void sgpio_configure_for_rx() {
// Disable all counters during configuration
SGPIO_CTRL_ENABLE = 0;
sgpio_configure_pin_functions();
// Set SGPIO output values.
SGPIO_GPIO_OUTREG =
(0L << 11) | // direction
(1L << 10); // disable
// Enable SGPIO pin outputs.
SGPIO_GPIO_OENREG =
(1L << 11) | // direction: RX: data from CPLD
(1L << 10) | // disable
(0L << 9) | // capture
(0L << 8) | // clock
0x00; // data: input
SGPIO_OUT_MUX_CFG( 8) = 0; // SGPIO: Input: clock
SGPIO_OUT_MUX_CFG( 9) = 0; // SGPIO: Input: qualifier
SGPIO_OUT_MUX_CFG(10) = (0L << 4) | (4L << 0); // GPIO: Output: disable
SGPIO_OUT_MUX_CFG(11) = (0L << 4) | (4L << 0); // GPIO: Output: direction
for(uint_fast8_t i=0; i<8; i++) {
SGPIO_OUT_MUX_CFG(i) =
(0L << 4) | // P_OE_CFG = 0
(9L << 0); // P_OUT_CFG = 9, dout_doutm8a (8-bit mode 8a)
}
// Slice A
SGPIO_MUX_CFG(SGPIO_SLICE_A) =
(0L << 12) | // CONCAT_ORDER = X
(0L << 11) | // CONCAT_ENABLE = 0 (concatenate data)
(0L << 9) | // QUALIFIER_SLICE_MODE = X
(1L << 7) | // QUALIFIER_PIN_MODE = 1 (SGPIO9)
(3L << 5) | // QUALIFIER_MODE = 3 (external SGPIO pin)
(0L << 3) | // CLK_SOURCE_SLICE_MODE = X
(0L << 1) | // CLK_SOURCE_PIN_MODE = 0 (SGPIO8)
(1L << 0); // EXT_CLK_ENABLE = 1, external clock signal (slice)
SGPIO_SLICE_MUX_CFG(SGPIO_SLICE_A) =
(0L << 8) | // INV_QUALIFIER = 0 (use normal qualifier)
(3L << 6) | // PARALLEL_MODE = 3 (shift 8 bits per clock)
(0L << 4) | // DATA_CAPTURE_MODE = 0 (detect rising edge)
(0L << 3) | // INV_OUT_CLK = X
(1L << 2) | // CLKGEN_MODE = 1 (use external pin clock)
(1L << 1) | // CLK_CAPTURE_MODE = 1 (use falling clock edge)
(0L << 0); // MATCH_MODE = 0 (do not match data)
SGPIO_PRESET(SGPIO_SLICE_A) = 0;
SGPIO_COUNT(SGPIO_SLICE_A) = 0;
SGPIO_POS(SGPIO_SLICE_A) = (0 << 8) | (0 << 0);
SGPIO_REG(SGPIO_SLICE_A) = 0xCAFEBABE; // Primary output data register
SGPIO_REG_SS(SGPIO_SLICE_A) = 0xDEADBEEF; // Shadow output data register
// Start SGPIO operation by enabling slice clocks.
SGPIO_CTRL_ENABLE =
(1L << SGPIO_SLICE_A)
;
}
void sgpio_configure_for_rx_deep() {
// Disable all counters during configuration
SGPIO_CTRL_ENABLE = 0;
sgpio_configure_pin_functions();
// Set SGPIO output values.
SGPIO_GPIO_OUTREG =
(0L << 11) | // direction
(1L << 10); // disable
// Enable SGPIO pin outputs.
SGPIO_GPIO_OENREG =
(1L << 11) | // direction: RX: data from CPLD
(1L << 10) | // disable
(0L << 9) | // capture
(0L << 8) | // clock
0x00; // data: input
SGPIO_OUT_MUX_CFG( 8) = 0; // SGPIO: Input: clock
SGPIO_OUT_MUX_CFG( 9) = 0; // SGPIO: Input: qualifier
SGPIO_OUT_MUX_CFG(10) = (0L << 4) | (4L << 0); // GPIO: Output: disable
SGPIO_OUT_MUX_CFG(11) = (0L << 4) | (4L << 0); // GPIO: Output: direction
for(uint_fast8_t i=0; i<8; i++) {
SGPIO_OUT_MUX_CFG(i) =
(0L << 4) | // P_OE_CFG = 0
(9L << 0); // P_OUT_CFG = 9, dout_doutm8a (8-bit mode 8a)
SGPIO_OUT_MUX_CFG_P_OE_CFG(0)
| SGPIO_OUT_MUX_CFG_P_OUT_CFG(output_multiplexing_mode)
;
}
const uint_fast8_t slice_indices[] = {
@ -249,35 +157,46 @@ void sgpio_configure_for_rx_deep() {
SGPIO_SLICE_L,
};
const uint_fast8_t pos = multi_slice ? 0x1f : 0x03;
const bool single_slice = !multi_slice;
const uint_fast8_t slice_count = multi_slice ? 8 : 1;
uint32_t slice_enable_mask = 0;
for(uint_fast8_t i=0; i<8; i++) {
uint_fast8_t slice_index = slice_indices[i];
const uint_fast8_t concat_order = (slice_index == SGPIO_SLICE_A) ? 0 : 3;
const uint_fast8_t concat_enable = (slice_index == SGPIO_SLICE_A) ? 0 : 1;
for(uint_fast8_t i=0; i<slice_count; i++) {
const uint_fast8_t slice_index = slice_indices[i];
const bool input_slice = (i == 0) && (transceiver_mode == TRANSCEIVER_MODE_RX);
const uint_fast8_t concat_order = (input_slice || single_slice) ? 0 : 3;
const uint_fast8_t concat_enable = (input_slice || single_slice) ? 0 : 1;
SGPIO_MUX_CFG(slice_index) =
(concat_order << 12) | // CONCAT_ORDER = 3 (eight slices)
(concat_enable << 11) | // CONCAT_ENABLE = 1 (concatenate data)
(0L << 9) | // QUALIFIER_SLICE_MODE = X
(1L << 7) | // QUALIFIER_PIN_MODE = 1 (SGPIO9)
(3L << 5) | // QUALIFIER_MODE = 3 (external SGPIO pin)
(0L << 3) | // CLK_SOURCE_SLICE_MODE = X
(0L << 1) | // CLK_SOURCE_PIN_MODE = 0 (SGPIO8)
(1L << 0); // EXT_CLK_ENABLE = 1, external clock signal (slice)
SGPIO_MUX_CFG_CONCAT_ORDER(concat_order)
| SGPIO_MUX_CFG_CONCAT_ENABLE(concat_enable)
| SGPIO_MUX_CFG_QUALIFIER_SLICE_MODE(0)
| SGPIO_MUX_CFG_QUALIFIER_PIN_MODE(1)
| SGPIO_MUX_CFG_QUALIFIER_MODE(3)
| SGPIO_MUX_CFG_CLK_SOURCE_SLICE_MODE(0)
| SGPIO_MUX_CFG_CLK_SOURCE_PIN_MODE(0)
| SGPIO_MUX_CFG_EXT_CLK_ENABLE(1)
;
SGPIO_SLICE_MUX_CFG(slice_index) =
(0L << 8) | // INV_QUALIFIER = 0 (use normal qualifier)
(3L << 6) | // PARALLEL_MODE = 3 (shift 8 bits per clock)
(0L << 4) | // DATA_CAPTURE_MODE = 0 (detect rising edge)
(0L << 3) | // INV_OUT_CLK = X
(1L << 2) | // CLKGEN_MODE = 1 (use external pin clock)
(1L << 1) | // CLK_CAPTURE_MODE = 1 (use falling clock edge)
(0L << 0); // MATCH_MODE = 0 (do not match data)
SGPIO_SLICE_MUX_CFG_INV_QUALIFIER(0)
| SGPIO_SLICE_MUX_CFG_PARALLEL_MODE(3)
| SGPIO_SLICE_MUX_CFG_DATA_CAPTURE_MODE(0)
| SGPIO_SLICE_MUX_CFG_INV_OUT_CLK(0)
| SGPIO_SLICE_MUX_CFG_CLKGEN_MODE(1)
| SGPIO_SLICE_MUX_CFG_CLK_CAPTURE_MODE(1)
| SGPIO_SLICE_MUX_CFG_MATCH_MODE(0)
;
SGPIO_PRESET(slice_index) = 0; // External clock, don't care
SGPIO_COUNT(slice_index) = 0; // External clock, don't care
SGPIO_POS(slice_index) = (0x1f << 8) | (0x1f << 0);
SGPIO_REG(slice_index) = 0xFFFFFFFF; // Primary output data register
SGPIO_REG_SS(slice_index) = 0xFFFFFFFF; // Shadow output data register
SGPIO_POS(slice_index) =
SGPIO_POS_POS_RESET(pos)
| SGPIO_POS_POS(pos)
;
SGPIO_REG(slice_index) = 0x80808080; // Primary output data register
SGPIO_REG_SS(slice_index) = 0x80808080; // Shadow output data register
slice_enable_mask |= (1 << slice_index);
}
@ -298,4 +217,4 @@ void sgpio_cpld_stream_disable() {
bool sgpio_cpld_stream_is_enabled() {
return (SGPIO_GPIO_OUTREG & (1L << 10)) == 0;
}
}

View File

@ -22,11 +22,14 @@
#ifndef __SGPIO_H__
#define __SGPIO_H__
#include <hackrf_core.h>
void sgpio_configure_pin_functions();
void sgpio_test_interface();
void sgpio_configure_for_tx();
void sgpio_configure_for_rx();
void sgpio_configure_for_rx_deep();
void sgpio_configure(
const transceiver_mode_t transceiver_mode,
const bool multi_slice
);
void sgpio_cpld_stream_enable();
void sgpio_cpld_stream_disable();
bool sgpio_cpld_stream_is_enabled();

View File

@ -33,7 +33,7 @@
#include <sgpio.h>
void tx_test() {
sgpio_configure_for_tx();
sgpio_configure(TRANSCEIVER_MODE_TX, false);
// LSB goes out first, samples are 0x<Q1><I1><Q0><I0>
volatile uint32_t buffer[] = {
@ -54,7 +54,7 @@ void tx_test() {
}
void rx_test() {
sgpio_configure_for_rx();
sgpio_configure(TRANSCEIVER_MODE_RX, false);
volatile uint32_t buffer[4096];
uint32_t i = 0;

View File

@ -31,7 +31,7 @@
#include <sgpio.h>
void tx_test() {
sgpio_configure_for_tx();
sgpio_configure(TRANSCEIVER_MODE_TX, false);
// LSB goes out first, samples are 0x<Q1><I1><Q0><I0>
volatile uint32_t buffer[] = {
@ -52,7 +52,7 @@ void tx_test() {
}
void rx_test() {
sgpio_configure_for_rx();
sgpio_configure(TRANSCEIVER_MODE_RX, false);
volatile uint32_t buffer[4096];
uint32_t i = 0;

View File

@ -38,6 +38,8 @@
#include "usb_descriptor.h"
#include "usb_standard_request.h"
static volatile transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_TX;
uint8_t* const usb_bulk_buffer = (uint8_t*)0x20004000;
static volatile uint32_t usb_bulk_buffer_offset = 0;
static const uint32_t usb_bulk_buffer_mask = 32768 - 1;
@ -202,12 +204,15 @@ bool usb_set_configuration(
// hard-coding, this whole function can move into a shared/reusable
// library.
if( device->configuration && (device->configuration->number == 1) ) {
usb_endpoint_init(&usb_endpoint_bulk_in);
usb_endpoint_init(&usb_endpoint_bulk_out);
if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
sgpio_configure(transceiver_mode, true);
usb_endpoint_init(&usb_endpoint_bulk_in);
} else {
sgpio_configure(transceiver_mode, true);
usb_endpoint_init(&usb_endpoint_bulk_out);
}
usb_init_buffers_bulk();
sgpio_configure_for_rx_deep();
nvic_set_priority(NVIC_M4_SGPIO_IRQ, 0);
nvic_enable_irq(NVIC_M4_SGPIO_IRQ);
@ -237,15 +242,26 @@ void sgpio_irqhandler() {
SGPIO_CLR_STATUS_1 = 0xFFFFFFFF;
uint32_t* const p = (uint32_t*)&usb_bulk_buffer[usb_bulk_buffer_offset];
p[7] = SGPIO_REG_SS(SGPIO_SLICE_A);
p[6] = SGPIO_REG_SS(SGPIO_SLICE_I);
p[5] = SGPIO_REG_SS(SGPIO_SLICE_E);
p[4] = SGPIO_REG_SS(SGPIO_SLICE_J);
p[3] = SGPIO_REG_SS(SGPIO_SLICE_C);
p[2] = SGPIO_REG_SS(SGPIO_SLICE_K);
p[1] = SGPIO_REG_SS(SGPIO_SLICE_F);
p[0] = SGPIO_REG_SS(SGPIO_SLICE_L);
if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
p[7] = SGPIO_REG_SS(SGPIO_SLICE_A);
p[6] = SGPIO_REG_SS(SGPIO_SLICE_I);
p[5] = SGPIO_REG_SS(SGPIO_SLICE_E);
p[4] = SGPIO_REG_SS(SGPIO_SLICE_J);
p[3] = SGPIO_REG_SS(SGPIO_SLICE_C);
p[2] = SGPIO_REG_SS(SGPIO_SLICE_K);
p[1] = SGPIO_REG_SS(SGPIO_SLICE_F);
p[0] = SGPIO_REG_SS(SGPIO_SLICE_L);
} else {
SGPIO_REG_SS(SGPIO_SLICE_A) = p[7];
SGPIO_REG_SS(SGPIO_SLICE_I) = p[6];
SGPIO_REG_SS(SGPIO_SLICE_E) = p[5];
SGPIO_REG_SS(SGPIO_SLICE_J) = p[4];
SGPIO_REG_SS(SGPIO_SLICE_C) = p[3];
SGPIO_REG_SS(SGPIO_SLICE_K) = p[2];
SGPIO_REG_SS(SGPIO_SLICE_F) = p[1];
SGPIO_REG_SS(SGPIO_SLICE_L) = p[0];
}
usb_bulk_buffer_offset = (usb_bulk_buffer_offset + 32) & usb_bulk_buffer_mask;
}
@ -290,14 +306,28 @@ int main(void) {
max2837_rx();
ssp1_set_mode_max5864();
max5864_xcvr();
while(true) {
while( usb_bulk_buffer_offset < 16384 );
usb_endpoint_schedule_no_int(&usb_endpoint_bulk_in, &usb_td_bulk[0]);
while( usb_bulk_buffer_offset >= 16384 );
usb_endpoint_schedule_no_int(&usb_endpoint_bulk_in, &usb_td_bulk[1]);
}
while(true) {
// Wait until buffer 0 is transmitted/received.
while( usb_bulk_buffer_offset < 16384 );
// Set up IN transfer of buffer 0.
usb_endpoint_schedule_no_int(
(transceiver_mode == TRANSCEIVER_MODE_RX)
? &usb_endpoint_bulk_in : &usb_endpoint_bulk_out,
&usb_td_bulk[0]
);
// Wait until buffer 1 is transmitted/received.
while( usb_bulk_buffer_offset >= 16384 );
// Set up IN transfer of buffer 1.
usb_endpoint_schedule_no_int(
(transceiver_mode == TRANSCEIVER_MODE_RX)
? &usb_endpoint_bulk_in : &usb_endpoint_bulk_out,
&usb_td_bulk[1]
);
}
return 0;
}

View File

@ -21,13 +21,25 @@
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <getopt.h>
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>
#include <libusb-1.0/libusb.h>
const uint16_t hackrf_usb_pid = 0x1d50;
const uint16_t hackrf_usb_vid = 0x604b;
typedef enum {
TRANSCEIVER_MODE_RX,
TRANSCEIVER_MODE_TX,
} transceiver_mode_t;
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX;
static float
TimevalDiff(const struct timeval *a, const struct timeval *b)
{
@ -48,31 +60,27 @@ void write_callback(struct libusb_transfer* transfer) {
}
}
int main(int argc, char** argv) {
if( argc != 2 ) {
printf("Usage: usb_test <file to capture to>\n");
return -1;
}
const uint32_t buffer_size = 16384;
fd = open(argv[1], O_RDWR | O_CREAT | O_TRUNC, S_IRWXU | S_IRWXG | S_IRWXO);
if( fd == -1 ) {
printf("Failed to open file for write\n");
return -2;
void read_callback(struct libusb_transfer* transfer) {
if( transfer->status == LIBUSB_TRANSFER_COMPLETED ) {
byte_count += transfer->actual_length;
read(fd, transfer->buffer, transfer->actual_length);
libusb_submit_transfer(transfer);
} else {
printf("transfer status was not 'completed'\n");
}
}
libusb_context* context = NULL;
libusb_device_handle* open_device(libusb_context* const context) {
int result = libusb_init(NULL);
if( result != 0 ) {
printf("libusb_init() failed: %d\n", result);
return -4;
return NULL;
}
libusb_device_handle* device = libusb_open_device_with_vid_pid(context, 0x1d50, 0x604b);
libusb_device_handle* device = libusb_open_device_with_vid_pid(context, hackrf_usb_pid, hackrf_usb_vid);
if( device == NULL ) {
printf("libusb_open_device_with_vid_pid() failed\n");
return -5;
return NULL;
}
//int speed = libusb_get_device_speed(device);
@ -80,26 +88,46 @@ int main(int argc, char** argv) {
result = libusb_set_configuration(device, 1);
if( result != 0 ) {
libusb_close(device);
printf("libusb_set_configuration() failed: %d\n", result);
return -6;
return NULL;
}
result = libusb_claim_interface(device, 0);
if( result != 0 ) {
libusb_close(device);
printf("libusb_claim_interface() failed: %d\n", result);
return -7;
return NULL;
}
unsigned char endpoint_address = 0x81;
//unsigned char endpoint_address = 0x02;
const uint32_t transfer_count = 1024;
struct libusb_transfer* transfers[transfer_count];
return device;
}
void free_transfers(struct libusb_transfer** const transfers, const uint32_t transfer_count) {
for(uint32_t transfer_index=0; transfer_index<transfer_count; transfer_index++) {
libusb_free_transfer(transfers[transfer_index]);
}
free(transfers);
}
struct libusb_transfer** prepare_transfers(
libusb_device_handle* const device,
const uint_fast8_t endpoint_address,
const uint32_t transfer_count,
const uint32_t buffer_size,
libusb_transfer_cb_fn callback
) {
struct libusb_transfer** const transfers = calloc(transfer_count, sizeof(struct libusb_transfer));
if( transfers == NULL ) {
return NULL;
}
for(uint32_t transfer_index=0; transfer_index<transfer_count; transfer_index++) {
transfers[transfer_index] = libusb_alloc_transfer(0);
if( transfers[transfer_index] == 0 ) {
if( transfers[transfer_index] == NULL ) {
free_transfers(transfers, transfer_count);
printf("libusb_alloc_transfer() failed\n");
return -6;
return NULL;
}
libusb_fill_bulk_transfer(
@ -108,23 +136,113 @@ int main(int argc, char** argv) {
endpoint_address,
(unsigned char*)malloc(buffer_size),
buffer_size,
&write_callback,
callback,
NULL,
0
);
if( transfers[transfer_index]->buffer == 0 ) {
if( transfers[transfer_index]->buffer == NULL ) {
free_transfers(transfers, transfer_count);
printf("malloc() failed\n");
return -7;
return NULL;
}
int error = libusb_submit_transfer(transfers[transfer_index]);
if( error != 0 ) {
free_transfers(transfers, transfer_count);
printf("libusb_submit_transfer() failed: %d\n", error);
return -8;
return NULL;
}
}
return transfers;
}
static void usage() {
printf("Usage:\n");
printf("\tGo fish.\n");
}
int main(int argc, char** argv) {
int opt;
bool receive = false;
bool transmit = false;
const char* path = NULL;
while( (opt = getopt(argc, argv, "r:t:")) != EOF ) {
switch( opt ) {
case 'r':
receive = true;
path = optarg;
break;
case 't':
transmit = true;
path = optarg;
break;
default:
usage();
return 1;
}
}
if( transmit == receive ) {
if( transmit == true ) {
fprintf(stderr, "receive and transmit options are mutually exclusive\n");
} else {
fprintf(stderr, "specify either transmit or receive option\n");
}
return 1;
}
if( receive ) {
transceiver_mode = TRANSCEIVER_MODE_RX;
}
if( transmit ) {
transceiver_mode = TRANSCEIVER_MODE_TX;
}
if( path == NULL ) {
fprintf(stderr, "specify a path to a file to transmit/receive\n");
return 1;
}
fd = -1;
uint_fast8_t endpoint_address = 0;
libusb_transfer_cb_fn callback = NULL;
if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
fd = open(path, O_WRONLY | O_CREAT | O_TRUNC, S_IRWXU | S_IRWXG | S_IRWXO);
endpoint_address = 0x81;
callback = &write_callback;
} else {
fd = open(path, O_RDONLY, S_IRWXU | S_IRWXG | S_IRWXO);
endpoint_address = 0x02;
callback = &read_callback;
}
if( fd == -1 ) {
printf("Failed to open file: errno %d\n", errno);
return fd;
}
libusb_context* const context = NULL;
libusb_device_handle* const device = open_device(context);
if( device == NULL ) {
return -3;
}
const uint32_t transfer_count = 1024;
const uint32_t buffer_size = 16384;
struct libusb_transfer** const transfers = prepare_transfers(
device, endpoint_address, transfer_count, buffer_size, callback
);
if( transfers == NULL ) {
return -4;
}
//////////////////////////////////////////////////////////////
struct timeval timeout = { 0, 500000 };
@ -158,7 +276,9 @@ int main(int argc, char** argv) {
call_count += 1;
} while(1);
result = libusb_release_interface(device, 0);
free_transfers(transfers, transfer_count);
int result = libusb_release_interface(device, 0);
if( result != 0 ) {
printf("libusb_release_interface() failed: %d\n", result);
return -2000;