Merge pull request #982 from martinling/bug-180
Firmware sample buffer management overhaul, including safe handling of TX underruns
This commit is contained in:
@ -43,6 +43,7 @@ set(SRC_M4
|
|||||||
usb_endpoint.c
|
usb_endpoint.c
|
||||||
usb_api_board_info.c
|
usb_api_board_info.c
|
||||||
usb_api_cpld.c
|
usb_api_cpld.c
|
||||||
|
usb_api_m0_state.c
|
||||||
usb_api_register.c
|
usb_api_register.c
|
||||||
usb_api_spiflash.c
|
usb_api_spiflash.c
|
||||||
usb_api_transceiver.c
|
usb_api_transceiver.c
|
||||||
|
@ -49,6 +49,7 @@
|
|||||||
#include "usb_api_transceiver.h"
|
#include "usb_api_transceiver.h"
|
||||||
#include "usb_api_ui.h"
|
#include "usb_api_ui.h"
|
||||||
#include "usb_bulk_buffer.h"
|
#include "usb_bulk_buffer.h"
|
||||||
|
#include "usb_api_m0_state.h"
|
||||||
#include "cpld_xc2c.h"
|
#include "cpld_xc2c.h"
|
||||||
#include "portapack.h"
|
#include "portapack.h"
|
||||||
|
|
||||||
@ -114,6 +115,9 @@ static usb_request_handler_fn vendor_request_handler[] = {
|
|||||||
usb_vendor_request_operacake_set_mode,
|
usb_vendor_request_operacake_set_mode,
|
||||||
usb_vendor_request_operacake_get_mode,
|
usb_vendor_request_operacake_get_mode,
|
||||||
usb_vendor_request_operacake_set_dwell_times,
|
usb_vendor_request_operacake_set_dwell_times,
|
||||||
|
usb_vendor_request_get_m0_state,
|
||||||
|
usb_vendor_request_set_tx_underrun_limit,
|
||||||
|
usb_vendor_request_set_rx_overrun_limit,
|
||||||
};
|
};
|
||||||
|
|
||||||
static const uint32_t vendor_request_handler_count =
|
static const uint32_t vendor_request_handler_count =
|
||||||
|
@ -37,6 +37,40 @@ The SGPIO peripheral is set up and enabled by the M4 core. All the M0 needs to
|
|||||||
do is handle the SGPIO exchange interrupt, which indicates that new data can
|
do is handle the SGPIO exchange interrupt, which indicates that new data can
|
||||||
now be read from or written to the SGPIO shadow registers.
|
now be read from or written to the SGPIO shadow registers.
|
||||||
|
|
||||||
|
To implement the different functions of HackRF, the M0 operates in one of
|
||||||
|
five modes, configured by the M4:
|
||||||
|
|
||||||
|
IDLE: Do nothing.
|
||||||
|
WAIT: Do nothing, but increment byte counter for timing purposes.
|
||||||
|
RX: Read data from SGPIO and write it to the buffer.
|
||||||
|
TX_START: Write zeroes to SGPIO until there is data in the buffer.
|
||||||
|
TX_RUN: Read data from the buffer and write it to SGPIO.
|
||||||
|
|
||||||
|
In all modes except IDLE, the M0 advances a byte counter, which increases by
|
||||||
|
32 each time that many bytes are exchanged with the buffer (or skipped over,
|
||||||
|
in WAIT mode).
|
||||||
|
|
||||||
|
As the M4 core produces or consumes these bytes, it advances its own counter.
|
||||||
|
The difference between the two counter values therefore indicates the number
|
||||||
|
of bytes available.
|
||||||
|
|
||||||
|
If the M4 does not advance its count in time, a TX underrun or RX overrun
|
||||||
|
occurs. Collectively, these events are referred to as shortfalls, and the
|
||||||
|
handling is similar for both.
|
||||||
|
|
||||||
|
In an RX shortfall, data is discarded. In TX mode, zeroes are written to
|
||||||
|
SGPIO. When in a shortfall, the byte counter does not advance.
|
||||||
|
|
||||||
|
The M0 maintains statistics on the the number of shortfalls, and the length of
|
||||||
|
the longest shortfall.
|
||||||
|
|
||||||
|
The M0 can be configured to abort TX or RX and return to IDLE mode, if the
|
||||||
|
length of a shortfall exceeds a configured limit.
|
||||||
|
|
||||||
|
The M0 can also be configured to switch modes automatically when its byte
|
||||||
|
counter matches a threshold value. This feature can be used to implement
|
||||||
|
timed operations.
|
||||||
|
|
||||||
Timing
|
Timing
|
||||||
======
|
======
|
||||||
|
|
||||||
@ -64,10 +98,12 @@ These latencies are assumed to apply to all accesses to the SGPIO peripheral's
|
|||||||
address space, which includes its interrupt control registers as well as the
|
address space, which includes its interrupt control registers as well as the
|
||||||
shadow registers.
|
shadow registers.
|
||||||
|
|
||||||
There are two key code paths, with the following worst-case timings:
|
There are four key code paths, with the following worst-case timings:
|
||||||
|
|
||||||
RX: 140 cycles
|
RX, normal: 152 cycles
|
||||||
TX: 125 cycles
|
RX, overrun: 76 cycles
|
||||||
|
TX, normal: 140 cycles
|
||||||
|
TX, underrun: 145 cycles
|
||||||
|
|
||||||
Design
|
Design
|
||||||
======
|
======
|
||||||
@ -87,6 +123,78 @@ used to store values needed in the code, to minimise memory loads and stores.
|
|||||||
There are no function calls. There is no stack usage. All values are in
|
There are no function calls. There is no stack usage. All values are in
|
||||||
registers and fixed memory addresses.
|
registers and fixed memory addresses.
|
||||||
|
|
||||||
|
Structure
|
||||||
|
=========
|
||||||
|
|
||||||
|
Each mode has its own loop routine. TX_START and TX_RUN use a single TX loop.
|
||||||
|
|
||||||
|
Code shared between different modes is implemented in macros and duplicated
|
||||||
|
within each mode's own loop.
|
||||||
|
|
||||||
|
At startup, the main routine sets up registers and memory, then falls through
|
||||||
|
to the idle loop.
|
||||||
|
|
||||||
|
The idle loop waits for a mode to be set, then jumps to that mode's start
|
||||||
|
label.
|
||||||
|
|
||||||
|
Code following the start label is executed only on a transition from IDLE. It
|
||||||
|
is at this point that the buffer statistics are reset.
|
||||||
|
|
||||||
|
Each mode's start code then falls through to its loop label.
|
||||||
|
|
||||||
|
The first step in each loop is to wait for an SGPIO interrupt and clear it,
|
||||||
|
which is implemented by the await_sgpio macro.
|
||||||
|
|
||||||
|
Then, the mode setting is loaded from memory. If the M4 has reset the mode to
|
||||||
|
idle, control jumps back to the idle loop after handling any cleanup needed.
|
||||||
|
|
||||||
|
Next, any SGPIO operations are carried out. For RX and TX, this begins with
|
||||||
|
calculating the buffer margin, and branching if there is a shortfall. Then
|
||||||
|
the pointer within the buffer is updated.
|
||||||
|
|
||||||
|
SGPIO reads and writes are implemented in 16-byte chunks. The four lowest
|
||||||
|
registers, r0-r3, are used to temporarily hold the data for each chunk. Data
|
||||||
|
is stored in-order in the buffer, but out-of-order in the SGPIO shadow
|
||||||
|
registers, due to the SGPIO architecture. A combination of single and
|
||||||
|
multiple load/stores is used to reorder the data in each chunk.
|
||||||
|
|
||||||
|
After completing SGPIO operations, counters are updated and the threshold
|
||||||
|
setting is checked. If the byte count has reached the threshold, the next
|
||||||
|
mode is set and a jump is made directly to the corresponding loop label.
|
||||||
|
Code at the start label of the new mode is not executed, so stats and
|
||||||
|
counters are maintained across a sequence of TX/RX/WAIT operations.
|
||||||
|
|
||||||
|
When a shortfall occurs, a branch is taken to a separate handler routine,
|
||||||
|
which branches back to the mode's normal loop when complete.
|
||||||
|
|
||||||
|
Most of the code for shortfall handling is common to RX and TX, and is
|
||||||
|
implemented in the handle_shortfall macro. This is primarily concerned with
|
||||||
|
updating statistics, but also handles switching back to IDLE mode if a
|
||||||
|
shortfall exceeds the configured limit.
|
||||||
|
|
||||||
|
There is a rollback mechanism implemented in the shortfall handling. This is
|
||||||
|
necessary because it is common for a harmless shortfall to occur during
|
||||||
|
shutdown, which produces misleading statistics. The code detects this case
|
||||||
|
when the mode is changed to IDLE whilst a shortfall is ongoing. If this
|
||||||
|
happens, statistics are rolled back to their values at the beginning of the
|
||||||
|
shortfall.
|
||||||
|
|
||||||
|
The backup of previous values is implemented in handle_shortfall when a new
|
||||||
|
shortfall is detected, and the rollback is implemented by the
|
||||||
|
checked_rollback routine. This routine is executed by the TX and RX loops
|
||||||
|
before returning to the idle loop.
|
||||||
|
|
||||||
|
Organisation
|
||||||
|
============
|
||||||
|
|
||||||
|
The rest of this file is organised as follows:
|
||||||
|
|
||||||
|
- Constant definitions
|
||||||
|
- Fixed register allocations
|
||||||
|
- Macros
|
||||||
|
- Ordering constraints
|
||||||
|
- Finally, the actual code!
|
||||||
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// Constants that point to registers we'll need to modify in the SGPIO block.
|
// Constants that point to registers we'll need to modify in the SGPIO block.
|
||||||
@ -99,14 +207,38 @@ registers and fixed memory addresses.
|
|||||||
|
|
||||||
// Buffer that we're funneling data to/from.
|
// Buffer that we're funneling data to/from.
|
||||||
.equ TARGET_DATA_BUFFER, 0x20008000
|
.equ TARGET_DATA_BUFFER, 0x20008000
|
||||||
|
.equ TARGET_BUFFER_SIZE, 0x8000
|
||||||
.equ TARGET_BUFFER_MASK, 0x7fff
|
.equ TARGET_BUFFER_MASK, 0x7fff
|
||||||
|
|
||||||
// Base address of the state structure.
|
// Base address of the state structure.
|
||||||
.equ STATE_BASE, 0x20007000
|
.equ STATE_BASE, 0x20007000
|
||||||
|
|
||||||
// Offsets into the state structure.
|
// Offsets into the state structure.
|
||||||
.equ OFFSET, 0x00
|
.equ REQUESTED_MODE, 0x00
|
||||||
.equ TX, 0x04
|
.equ ACTIVE_MODE, 0x04
|
||||||
|
.equ M0_COUNT, 0x08
|
||||||
|
.equ M4_COUNT, 0x0C
|
||||||
|
.equ NUM_SHORTFALLS, 0x10
|
||||||
|
.equ LONGEST_SHORTFALL, 0x14
|
||||||
|
.equ SHORTFALL_LIMIT, 0x18
|
||||||
|
.equ THRESHOLD, 0x1C
|
||||||
|
.equ NEXT_MODE, 0x20
|
||||||
|
.equ ERROR, 0x24
|
||||||
|
|
||||||
|
// Private variables stored after state.
|
||||||
|
.equ PREV_LONGEST_SHORTFALL, 0x28
|
||||||
|
|
||||||
|
// Operating modes.
|
||||||
|
.equ MODE_IDLE, 0
|
||||||
|
.equ MODE_WAIT, 1
|
||||||
|
.equ MODE_RX, 2
|
||||||
|
.equ MODE_TX_START, 3
|
||||||
|
.equ MODE_TX_RUN, 4
|
||||||
|
|
||||||
|
// Error codes.
|
||||||
|
.equ ERROR_NONE, 0
|
||||||
|
.equ ERROR_RX_TIMEOUT, 1
|
||||||
|
.equ ERROR_TX_TIMEOUT, 2
|
||||||
|
|
||||||
// Our slice chain is set up as follows (ascending data age; arrows are reversed for flow):
|
// Our slice chain is set up as follows (ascending data age; arrows are reversed for flow):
|
||||||
// L -> F -> K -> C -> J -> E -> I -> A
|
// L -> F -> K -> C -> J -> E -> I -> A
|
||||||
@ -123,38 +255,26 @@ registers and fixed memory addresses.
|
|||||||
|
|
||||||
/* Allocations of single-use registers */
|
/* Allocations of single-use registers */
|
||||||
|
|
||||||
|
buf_size_minus_32 .req r14
|
||||||
state .req r13
|
state .req r13
|
||||||
buf_base .req r12
|
buf_base .req r12
|
||||||
buf_mask .req r11
|
buf_mask .req r11
|
||||||
|
shortfall_length .req r10
|
||||||
|
hi_zero .req r9
|
||||||
sgpio_data .req r7
|
sgpio_data .req r7
|
||||||
sgpio_int .req r6
|
sgpio_int .req r6
|
||||||
buf_ptr .req r5
|
count .req r5
|
||||||
|
buf_ptr .req r4
|
||||||
|
|
||||||
// Entry point. At this point, the libopencm3 startup code has set things up as
|
/* Macros */
|
||||||
// normal; .data and .bss are initialised, the stack is set up, etc. However,
|
|
||||||
// we don't actually use any of that. All the code in this file would work
|
|
||||||
// fine if the M0 jumped straight to main at reset.
|
|
||||||
.global main
|
|
||||||
.thumb_func
|
|
||||||
main: // Cycle counts:
|
|
||||||
// Initialise registers used for constant values.
|
|
||||||
value .req r0
|
|
||||||
ldr sgpio_int, =SGPIO_EXCHANGE_INTERRUPT_BASE // sgpio_int = SGPIO_INT_BASE // 2
|
|
||||||
ldr sgpio_data, =SGPIO_SHADOW_REGISTERS_BASE // sgpio_data = SGPIO_REG_SS // 2
|
|
||||||
ldr value, =TARGET_DATA_BUFFER // value = TARGET_DATA_BUFFER // 2
|
|
||||||
mov buf_base, value // buf_base = value // 1
|
|
||||||
ldr value, =TARGET_BUFFER_MASK // value = TARGET_DATA_MASK // 2
|
|
||||||
mov buf_mask, value // buf_mask = value // 1
|
|
||||||
ldr value, =STATE_BASE // value = STATE_BASE // 2
|
|
||||||
mov state, value // state = value // 1
|
|
||||||
|
|
||||||
// Initialise state.
|
.macro await_sgpio name
|
||||||
zero .req r0
|
// Wait for, then clear, SGPIO exchange interrupt flag.
|
||||||
mov zero, #0 // zero = 0 // 1
|
//
|
||||||
str zero, [state, #OFFSET] // state.offset = zero // 2
|
// Clobbers:
|
||||||
str zero, [state, #TX] // state.tx = zero // 2
|
int_status .req r0
|
||||||
|
scratch .req r1
|
||||||
|
|
||||||
loop:
|
|
||||||
// The worst case timing is assumed to occur when reading the interrupt
|
// The worst case timing is assumed to occur when reading the interrupt
|
||||||
// status register *just* misses the flag being set - so we include the
|
// status register *just* misses the flag being set - so we include the
|
||||||
// cycles required to check it a second time.
|
// cycles required to check it a second time.
|
||||||
@ -169,76 +289,410 @@ loop:
|
|||||||
// relying on any assumptions about the timing details of a read over
|
// relying on any assumptions about the timing details of a read over
|
||||||
// the SGPIO to AHB bridge.
|
// the SGPIO to AHB bridge.
|
||||||
|
|
||||||
int_status .req r0
|
\name\()_int_wait:
|
||||||
scratch .req r1
|
// Spin on the exchange interrupt status, shifting the slice A flag to the carry flag.
|
||||||
|
|
||||||
// Spin until we're ready to handle an SGPIO packet:
|
|
||||||
// Grab the exchange interrupt status...
|
|
||||||
ldr int_status, [sgpio_int, #INT_STATUS] // int_status = SGPIO_STATUS_1 // 10, twice
|
ldr int_status, [sgpio_int, #INT_STATUS] // int_status = SGPIO_STATUS_1 // 10, twice
|
||||||
|
|
||||||
// ... check to see if bit #0 (slice A) was set, by shifting it into the carry bit...
|
|
||||||
lsr scratch, int_status, #1 // scratch = int_status >> 1 // 1, twice
|
lsr scratch, int_status, #1 // scratch = int_status >> 1 // 1, twice
|
||||||
|
bcc \name\()_int_wait // if !carry: goto int_wait // 3, then 1
|
||||||
// ... and if not, jump back to the beginning.
|
|
||||||
bcc loop // if !carry: goto loop // 3, then 1
|
|
||||||
|
|
||||||
// Clear the interrupt pending bits that were set.
|
// Clear the interrupt pending bits that were set.
|
||||||
str int_status, [sgpio_int, #INT_CLEAR] // SGPIO_CLR_STATUS_1 = int_status // 8
|
str int_status, [sgpio_int, #INT_CLEAR] // SGPIO_CLR_STATUS_1 = int_status // 8
|
||||||
|
.endm
|
||||||
|
|
||||||
// ... and grab the address of the buffer segment we want to write to / read from.
|
.macro on_request label
|
||||||
ldr buf_ptr, [state, #OFFSET] // buf_ptr = state.offset // 2
|
// Check if a new mode change request was made, and if so jump to the given label.
|
||||||
|
mode .req r3
|
||||||
|
flag .req r2
|
||||||
|
ldr mode, [state, #REQUESTED_MODE] // mode = state.requested_mode // 2
|
||||||
|
lsr flag, mode, #16 // flag = mode >> 16 // 1
|
||||||
|
bne \label // if flag != 0: goto label // 1 thru, 3 taken
|
||||||
|
.endm
|
||||||
|
|
||||||
|
.macro update_buf_ptr
|
||||||
|
// Update the address of the buffer segment we want to write to / read from.
|
||||||
|
mov buf_ptr, buf_mask // buf_ptr = buf_mask // 1
|
||||||
|
and buf_ptr, count // buf_ptr &= count // 1
|
||||||
add buf_ptr, buf_base // buf_ptr += buf_base // 1
|
add buf_ptr, buf_base // buf_ptr += buf_base // 1
|
||||||
|
.endm
|
||||||
|
|
||||||
tx .req r0
|
.macro update_counts
|
||||||
|
// Update counts after successful SGPIO operation.
|
||||||
|
|
||||||
// Load direction (TX or RX)
|
// Update the byte count and store the new value.
|
||||||
ldr tx, [state, #TX] // tx = state.tx // 2
|
add count, #32 // count += 32 // 1
|
||||||
|
str count, [state, #M0_COUNT] // state.m0_count = count // 2
|
||||||
|
|
||||||
// TX?
|
// We didn't have a shortfall, so the current shortfall length is zero.
|
||||||
lsr tx, #1 // tx >>= 1 // 1
|
mov shortfall_length, hi_zero // shortfall_length = hi_zero // 1
|
||||||
bcc direction_rx // if !carry: goto direction_rx // 1 thru, 3 taken
|
.endm
|
||||||
|
|
||||||
direction_tx:
|
.macro jump_next_mode name
|
||||||
|
// Jump to next mode if the byte count threshold has been reached.
|
||||||
|
//
|
||||||
|
// Clobbers:
|
||||||
|
threshold .req r0
|
||||||
|
new_mode .req r1
|
||||||
|
|
||||||
|
// Check count against threshold. If not a match, return to start of current loop.
|
||||||
|
ldr threshold, [state, #THRESHOLD] // threshold = state.threshold // 2
|
||||||
|
cmp count, threshold // if count != threshold: // 1
|
||||||
|
bne \name\()_loop // goto loop // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// Otherwise, load and set new mode.
|
||||||
|
ldr new_mode, [state, #NEXT_MODE] // new_mode = state.next_mode // 2
|
||||||
|
str new_mode, [state, #ACTIVE_MODE] // state.active_mode = new_mode // 2
|
||||||
|
|
||||||
|
// Branch according to new mode.
|
||||||
|
cmp new_mode, #MODE_RX // if new_mode == RX: // 1
|
||||||
|
beq rx_loop // goto rx_loop // 1 thru, 3 taken
|
||||||
|
bgt tx_loop // elif new_mode > RX: goto tx_loop // 1 thru, 3 taken
|
||||||
|
cmp new_mode, #MODE_WAIT // if new_mode == WAIT: // 1
|
||||||
|
beq wait_loop // goto wait_loop // 1 thru, 3 taken
|
||||||
|
b idle // goto idle // 3
|
||||||
|
.endm
|
||||||
|
|
||||||
|
.macro handle_shortfall name
|
||||||
|
// Handle a shortfall.
|
||||||
|
//
|
||||||
|
// Clobbers:
|
||||||
|
length .req r0
|
||||||
|
num .req r1
|
||||||
|
prev .req r1
|
||||||
|
longest .req r1
|
||||||
|
limit .req r1
|
||||||
|
|
||||||
|
// Get current shortfall length from high register.
|
||||||
|
mov length, shortfall_length // length = shortfall_length // 1
|
||||||
|
|
||||||
|
// Is this a new shortfall?
|
||||||
|
cmp length, #0 // if length > 0: // 1
|
||||||
|
bgt \name\()_extend_shortfall // goto extend_shortfall // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// If so, increase the shortfall count.
|
||||||
|
ldr num, [state, #NUM_SHORTFALLS] // num = state.num_shortfalls // 2
|
||||||
|
add num, #1 // num += 1 // 1
|
||||||
|
str num, [state, #NUM_SHORTFALLS] // state.num_shortfalls = num // 2
|
||||||
|
|
||||||
|
// Back up previous longest shortfall.
|
||||||
|
ldr prev, [state, #LONGEST_SHORTFALL] // prev = state.longest_shortfall // 2
|
||||||
|
str prev, [state, #PREV_LONGEST_SHORTFALL] // prev_longest_shortfall = prev // 2
|
||||||
|
|
||||||
|
\name\()_extend_shortfall:
|
||||||
|
|
||||||
|
// Extend the length of the current shortfall, and store back in high register.
|
||||||
|
add length, #32 // length += 32 // 1
|
||||||
|
mov shortfall_length, length // shortfall_length = length // 1
|
||||||
|
|
||||||
|
// Is this now the longest shortfall?
|
||||||
|
ldr longest, [state, #LONGEST_SHORTFALL] // longest = state.longest_shortfall // 2
|
||||||
|
cmp length, longest // if length <= longest: // 1
|
||||||
|
blt \name\()_loop // goto loop // 1 thru, 3 taken
|
||||||
|
str length, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = length // 2
|
||||||
|
|
||||||
|
// Is this shortfall long enough to trigger a timeout?
|
||||||
|
ldr limit, [state, #SHORTFALL_LIMIT] // limit = state.shortfall_limit // 2
|
||||||
|
cmp limit, #0 // if limit == 0: // 1
|
||||||
|
beq \name\()_loop // goto loop // 1 thru, 3 taken
|
||||||
|
cmp length, limit // if length < limit: // 1
|
||||||
|
blt \name\()_loop // goto loop // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// If so, reset mode to idle and return to idle loop, logging an error.
|
||||||
|
//
|
||||||
|
// Modes are mapped to errors as follows:
|
||||||
|
//
|
||||||
|
// MODE_RX (2) -> ERROR_RX_TIMEOUT (1)
|
||||||
|
// MODE_TX_RUN (4) -> ERROR_TX_TIMEOUT (2)
|
||||||
|
//
|
||||||
|
// As such, the error code can be obtained by shifting the mode right by 1 bit.
|
||||||
|
|
||||||
|
mode .req r3
|
||||||
|
error .req r2
|
||||||
|
ldr mode, [state, #ACTIVE_MODE] // mode = state.active_mode // 2
|
||||||
|
lsr error, mode, #1 // error = mode >> 1 // 1
|
||||||
|
str error, [state, #ERROR] // state.error = error // 2
|
||||||
|
mov mode, #MODE_IDLE // mode = MODE_IDLE // 1
|
||||||
|
str mode, [state, #ACTIVE_MODE] // state.active_mode = mode // 2
|
||||||
|
b idle // goto idle // 3
|
||||||
|
.endm
|
||||||
|
|
||||||
|
/*
|
||||||
|
|
||||||
|
Ordering constraints
|
||||||
|
====================
|
||||||
|
|
||||||
|
The following routines are in an unusual order, to preserve the ability to
|
||||||
|
use PC-relative conditional branches between them ("b<cond> label"). The
|
||||||
|
ordering has been chosen to ensure that all routines are close enough to each
|
||||||
|
other for the limited range of these instructions (−256 bytes to +254 bytes).
|
||||||
|
|
||||||
|
The ordering of routines, and which others each needs to be able to reach, is
|
||||||
|
as follows:
|
||||||
|
|
||||||
|
Routine: Uses conditional branches to:
|
||||||
|
|
||||||
|
idle tx_loop, wait_loop
|
||||||
|
tx_zeros tx_loop
|
||||||
|
checked_rollback idle
|
||||||
|
tx_loop tx_zeros, checked_rollback, rx_loop, wait_loop
|
||||||
|
wait_loop rx_loop, tx_loop
|
||||||
|
rx_loop rx_shortfall, checked_rollback, tx_loop, wait_loop
|
||||||
|
rx_shortfall rx_loop
|
||||||
|
|
||||||
|
If any of these routines are reordered, or made longer, you may get an error
|
||||||
|
from the assembler saying that a branch is out of range.
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Entry point. At this point, the libopencm3 startup code has set things up as
|
||||||
|
// normal; .data and .bss are initialised, the stack is set up, etc. However,
|
||||||
|
// we don't actually use any of that. All the code in this file would work
|
||||||
|
// fine if the M0 jumped straight to main at reset.
|
||||||
|
.global main
|
||||||
|
.thumb_func
|
||||||
|
main: // Cycle counts:
|
||||||
|
// Initialise registers used for constant values.
|
||||||
|
value .req r0
|
||||||
|
ldr sgpio_int, =SGPIO_EXCHANGE_INTERRUPT_BASE // sgpio_int = SGPIO_INT_BASE // 2
|
||||||
|
ldr sgpio_data, =SGPIO_SHADOW_REGISTERS_BASE // sgpio_data = SGPIO_REG_SS // 2
|
||||||
|
ldr value, =(TARGET_BUFFER_SIZE - 32) // value = TARGET_BUFFER_SIZE - 32 // 2
|
||||||
|
mov buf_size_minus_32, value // buf_size_minus_32 = value // 1
|
||||||
|
ldr value, =TARGET_DATA_BUFFER // value = TARGET_DATA_BUFFER // 2
|
||||||
|
mov buf_base, value // buf_base = value // 1
|
||||||
|
ldr value, =TARGET_BUFFER_MASK // value = TARGET_DATA_MASK // 2
|
||||||
|
mov buf_mask, value // buf_mask = value // 1
|
||||||
|
ldr value, =STATE_BASE // value = STATE_BASE // 2
|
||||||
|
mov state, value // state = value // 1
|
||||||
|
zero .req r0
|
||||||
|
mov zero, #0 // zero = 0 // 1
|
||||||
|
mov hi_zero, zero // hi_zero = zero // 1
|
||||||
|
|
||||||
|
// Initialise state.
|
||||||
|
str zero, [state, #REQUESTED_MODE] // state.requested_mode = zero // 2
|
||||||
|
str zero, [state, #ACTIVE_MODE] // state.active_mode = zero // 2
|
||||||
|
str zero, [state, #M0_COUNT] // state.m0_count = zero // 2
|
||||||
|
str zero, [state, #M4_COUNT] // state.m4_count = zero // 2
|
||||||
|
str zero, [state, #NUM_SHORTFALLS] // state.num_shortfalls = zero // 2
|
||||||
|
str zero, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = zero // 2
|
||||||
|
str zero, [state, #SHORTFALL_LIMIT] // state.shortfall_limit = zero // 2
|
||||||
|
str zero, [state, #THRESHOLD] // state.threshold = zero // 2
|
||||||
|
str zero, [state, #NEXT_MODE] // state.next_mode = zero // 2
|
||||||
|
str zero, [state, #ERROR] // state.error = zero // 2
|
||||||
|
|
||||||
|
idle:
|
||||||
|
// Wait for a mode to be requested, then set up the new mode and acknowledge the request.
|
||||||
|
mode .req r3
|
||||||
|
flag .req r2
|
||||||
|
zero .req r0
|
||||||
|
|
||||||
|
// Read the requested mode and check flag to see if this is a new request. If not, ignore.
|
||||||
|
ldr mode, [state, #REQUESTED_MODE] // mode = state.requested_mode // 2
|
||||||
|
lsr flag, mode, #16 // flag = mode >> 16 // 1
|
||||||
|
beq idle // if flag == 0: goto idle // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// Otherwise, this is a new request. The M4 is blocked at this point,
|
||||||
|
// waiting for us to clear the request flag. So we can safely write to
|
||||||
|
// all parts of the state.
|
||||||
|
|
||||||
|
// Set the new mode as both active & next.
|
||||||
|
uxth mode, mode // mode = mode & 0xFFFF // 1
|
||||||
|
str mode, [state, #ACTIVE_MODE] // state.active_mode = mode // 2
|
||||||
|
str mode, [state, #NEXT_MODE] // state.next_mode = mode // 2
|
||||||
|
|
||||||
|
// Don't reset counts on a transition to IDLE.
|
||||||
|
cmp mode, #MODE_IDLE // if mode == IDLE: // 1
|
||||||
|
beq ack_request // goto ack_request // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// For all other transitions, reset counts.
|
||||||
|
mov zero, #0 // zero = 0 // 1
|
||||||
|
str zero, [state, #M0_COUNT] // state.m0_count = zero // 2
|
||||||
|
str zero, [state, #M4_COUNT] // state.m4_count = zero // 2
|
||||||
|
str zero, [state, #NUM_SHORTFALLS] // state.num_shortfalls = zero // 2
|
||||||
|
str zero, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = zero // 2
|
||||||
|
str zero, [state, #THRESHOLD] // state.threshold = zero // 2
|
||||||
|
str zero, [state, #PREV_LONGEST_SHORTFALL] // prev_longest_shortfall = zero // 2
|
||||||
|
str zero, [state, #ERROR] // state.error = zero // 2
|
||||||
|
mov shortfall_length, zero // shortfall_length = zero // 1
|
||||||
|
mov count, zero // count = zero // 1
|
||||||
|
|
||||||
|
ack_request:
|
||||||
|
// Clear SGPIO interrupt flag, which the M4 set to get our attention.
|
||||||
|
str flag, [sgpio_int, #INT_CLEAR] // SGPIO_CLR_STATUS_1 = flag // 8
|
||||||
|
|
||||||
|
// Write back requested mode with the flag cleared to acknowledge the request.
|
||||||
|
str mode, [state, #REQUESTED_MODE] // state.requested_mode = mode // 2
|
||||||
|
|
||||||
|
// Dispatch to appropriate loop.
|
||||||
|
//
|
||||||
|
// This code is arranged such that the branch to rx_loop is the
|
||||||
|
// unconditional one - which is necessary since it's too far away to
|
||||||
|
// use a conditional branch instruction.
|
||||||
|
cmp mode, #MODE_WAIT // if mode < WAIT: // 1
|
||||||
|
blt idle // goto idle // 1 thru, 3 taken
|
||||||
|
beq wait_loop // elif mode == WAIT: goto wait_loop // 1 thru, 3 taken
|
||||||
|
cmp mode, #MODE_RX // if mode > RX: // 1
|
||||||
|
bgt tx_loop // goto tx_loop // 1 thru, 3 taken
|
||||||
|
b rx_loop // goto rx_loop // 3
|
||||||
|
|
||||||
|
tx_zeros:
|
||||||
|
|
||||||
|
// Write zeros to SGPIO.
|
||||||
|
mov zero, #0 // zero = 0 // 1
|
||||||
|
str zero, [sgpio_data, #SLICE0] // SGPIO_REG_SS[SLICE0] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE1] // SGPIO_REG_SS[SLICE1] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE2] // SGPIO_REG_SS[SLICE2] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE3] // SGPIO_REG_SS[SLICE3] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE4] // SGPIO_REG_SS[SLICE4] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE5] // SGPIO_REG_SS[SLICE5] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE6] // SGPIO_REG_SS[SLICE6] = zero // 8
|
||||||
|
str zero, [sgpio_data, #SLICE7] // SGPIO_REG_SS[SLICE7] = zero // 8
|
||||||
|
|
||||||
|
// If in TX start mode, don't count this as a shortfall.
|
||||||
|
ldr mode, [state, #ACTIVE_MODE] // mode = state.active_mode // 2
|
||||||
|
cmp mode, #MODE_TX_START // if mode == TX_START: // 1
|
||||||
|
beq tx_loop // goto tx_loop // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// Run common shortfall handling and jump back to TX loop start.
|
||||||
|
handle_shortfall tx // handle_shortfall() // 24
|
||||||
|
|
||||||
|
checked_rollback:
|
||||||
|
// Checked rollback handler. This code is run when the M0 is in a TX or RX mode, and is
|
||||||
|
// placed back into IDLE mode by the M4. If there is an ongoing shortfall at this point,
|
||||||
|
// it is assumed to be a shutdown artifact and rolled back.
|
||||||
|
|
||||||
|
// If there is no ongoing shortfall, there's nothing to do - jump back to idle loop.
|
||||||
|
length .req r0
|
||||||
|
mov length, shortfall_length // length = shortfall_length // 1
|
||||||
|
cmp length, #0 // if length == 0: // 1
|
||||||
|
beq idle // goto idle // 3
|
||||||
|
|
||||||
|
// Otherwise, roll back the state to ignore the current shortfall, then jump to idle.
|
||||||
|
prev .req r0
|
||||||
|
ldr prev, [state, #PREV_LONGEST_SHORTFALL] // prev = prev_longest_shortfall // 2
|
||||||
|
str prev, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = prev // 2
|
||||||
|
ldr prev, [state, #NUM_SHORTFALLS] // prev = num_shortfalls // 2
|
||||||
|
sub prev, #1 // prev -= 1 // 1
|
||||||
|
str prev, [state, #NUM_SHORTFALLS] // state.num_shortfalls = prev // 2
|
||||||
|
|
||||||
|
b idle // goto idle // 3
|
||||||
|
|
||||||
|
tx_loop:
|
||||||
|
|
||||||
|
// Wait for and clear SGPIO interrupt.
|
||||||
|
await_sgpio tx // await_sgpio() // 34
|
||||||
|
|
||||||
|
// Check if there is a mode change request.
|
||||||
|
// If so, we may need to roll back shortfall stats.
|
||||||
|
on_request checked_rollback // 4
|
||||||
|
|
||||||
|
// Check if there is enough data in the buffer.
|
||||||
|
//
|
||||||
|
// The number of bytes in the buffer is given by (m4_count - m0_count).
|
||||||
|
// We need 32 bytes available to proceed. So our margin, which we want
|
||||||
|
// to be positive or zero, is:
|
||||||
|
//
|
||||||
|
// buf_margin = m4_count - m0_count - 32
|
||||||
|
//
|
||||||
|
// If there is insufficient data, transmit zeros instead.
|
||||||
|
buf_margin .req r0
|
||||||
|
ldr buf_margin, [state, #M4_COUNT] // buf_margin = m4_count // 2
|
||||||
|
sub buf_margin, count // buf_margin -= count // 1
|
||||||
|
sub buf_margin, #32 // buf_margin -= 32 // 1
|
||||||
|
bmi tx_zeros // if buf_margin < 0: goto tx_zeros // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// Update buffer pointer.
|
||||||
|
update_buf_ptr // update_buf_ptr() // 3
|
||||||
|
|
||||||
|
// At this point we know there is TX data available.
|
||||||
|
// Set active mode to TX_RUN (it might still be TX_START).
|
||||||
|
mov mode, #MODE_TX_RUN // mode = TX_RUN // 1
|
||||||
|
str mode, [state, #ACTIVE_MODE] // state.active_mode = mode // 2
|
||||||
|
|
||||||
|
// Write data to SGPIO.
|
||||||
ldm buf_ptr!, {r0-r3} // r0-r3 = buf_ptr[0:16]; buf_ptr += 16 // 5
|
ldm buf_ptr!, {r0-r3} // r0-r3 = buf_ptr[0:16]; buf_ptr += 16 // 5
|
||||||
str r0, [sgpio_data, #SLICE0] // SGPIO_REG_SS[SLICE0] = r0 // 8
|
str r0, [sgpio_data, #SLICE0] // SGPIO_REG_SS[SLICE0] = r0 // 8
|
||||||
str r1, [sgpio_data, #SLICE1] // SGPIO_REG_SS[SLICE1] = r1 // 8
|
str r1, [sgpio_data, #SLICE1] // SGPIO_REG_SS[SLICE1] = r1 // 8
|
||||||
str r2, [sgpio_data, #SLICE2] // SGPIO_REG_SS[SLICE2] = r2 // 8
|
str r2, [sgpio_data, #SLICE2] // SGPIO_REG_SS[SLICE2] = r2 // 8
|
||||||
str r3, [sgpio_data, #SLICE3] // SGPIO_REG_SS[SLICE3] = r3 // 8
|
str r3, [sgpio_data, #SLICE3] // SGPIO_REG_SS[SLICE3] = r3 // 8
|
||||||
|
|
||||||
ldm buf_ptr!, {r0-r3} // r0-r3 = buf_ptr[0:16]; buf_ptr += 16 // 5
|
ldm buf_ptr!, {r0-r3} // r0-r3 = buf_ptr[0:16]; buf_ptr += 16 // 5
|
||||||
str r0, [sgpio_data, #SLICE4] // SGPIO_REG_SS[SLICE4] = r0 // 8
|
str r0, [sgpio_data, #SLICE4] // SGPIO_REG_SS[SLICE4] = r0 // 8
|
||||||
str r1, [sgpio_data, #SLICE5] // SGPIO_REG_SS[SLICE5] = r1 // 8
|
str r1, [sgpio_data, #SLICE5] // SGPIO_REG_SS[SLICE5] = r1 // 8
|
||||||
str r2, [sgpio_data, #SLICE6] // SGPIO_REG_SS[SLICE6] = r2 // 8
|
str r2, [sgpio_data, #SLICE6] // SGPIO_REG_SS[SLICE6] = r2 // 8
|
||||||
str r3, [sgpio_data, #SLICE7] // SGPIO_REG_SS[SLICE7] = r3 // 8
|
str r3, [sgpio_data, #SLICE7] // SGPIO_REG_SS[SLICE7] = r3 // 8
|
||||||
|
|
||||||
b done // goto done // 3
|
// Update counts.
|
||||||
|
update_counts // update_counts() // 4
|
||||||
|
|
||||||
direction_rx:
|
// Jump to next mode if threshold reached, or back to TX loop start.
|
||||||
|
jump_next_mode tx // jump_next_mode() // 13
|
||||||
|
|
||||||
|
wait_loop:
|
||||||
|
|
||||||
|
// Wait for and clear SGPIO interrupt.
|
||||||
|
await_sgpio wait // await_sgpio() // 34
|
||||||
|
|
||||||
|
// Check if there is a mode change request.
|
||||||
|
// If so, return to idle.
|
||||||
|
on_request idle // 4
|
||||||
|
|
||||||
|
// Update counts.
|
||||||
|
update_counts // update_counts() // 4
|
||||||
|
|
||||||
|
// Jump to next mode if threshold reached, or back to wait loop start.
|
||||||
|
jump_next_mode wait // jump_next_mode() // 15
|
||||||
|
|
||||||
|
rx_loop:
|
||||||
|
|
||||||
|
// Wait for and clear SGPIO interrupt.
|
||||||
|
await_sgpio rx // await_sgpio() // 34
|
||||||
|
|
||||||
|
// Check if there is a mode change request.
|
||||||
|
// If so, we may need to roll back shortfall stats.
|
||||||
|
on_request checked_rollback // 4
|
||||||
|
|
||||||
|
// Check if there is enough space in the buffer.
|
||||||
|
//
|
||||||
|
// The number of bytes in the buffer is given by (m0_count - m4_count).
|
||||||
|
// We need space for another 32 bytes to proceed. So our margin, which
|
||||||
|
// we want to be positive or zero, is:
|
||||||
|
//
|
||||||
|
// buf_margin = buf_size - (m0_count - state.m4_count) - 32
|
||||||
|
//
|
||||||
|
// which can be rearranged for efficiency as:
|
||||||
|
//
|
||||||
|
// buf_margin = m4_count + (buf_size - 32) - m0_count
|
||||||
|
//
|
||||||
|
// If there is insufficient space, jump to shortfall handling.
|
||||||
|
buf_margin .req r0
|
||||||
|
ldr buf_margin, [state, #M4_COUNT] // buf_margin = state.m4_count // 2
|
||||||
|
add buf_margin, buf_size_minus_32 // buf_margin += buf_size_minus_32 // 1
|
||||||
|
sub buf_margin, count // buf_margin -= count // 1
|
||||||
|
bmi rx_shortfall // if buf_margin < 0: goto rx_shortfall // 1 thru, 3 taken
|
||||||
|
|
||||||
|
// Update buffer pointer.
|
||||||
|
update_buf_ptr // update_buf_ptr() // 3
|
||||||
|
|
||||||
|
// Read data from SGPIO.
|
||||||
ldr r0, [sgpio_data, #SLICE0] // r0 = SGPIO_REG_SS[SLICE0] // 10
|
ldr r0, [sgpio_data, #SLICE0] // r0 = SGPIO_REG_SS[SLICE0] // 10
|
||||||
ldr r1, [sgpio_data, #SLICE1] // r1 = SGPIO_REG_SS[SLICE1] // 10
|
ldr r1, [sgpio_data, #SLICE1] // r1 = SGPIO_REG_SS[SLICE1] // 10
|
||||||
ldr r2, [sgpio_data, #SLICE2] // r2 = SGPIO_REG_SS[SLICE2] // 10
|
ldr r2, [sgpio_data, #SLICE2] // r2 = SGPIO_REG_SS[SLICE2] // 10
|
||||||
ldr r3, [sgpio_data, #SLICE3] // r3 = SGPIO_REG_SS[SLICE3] // 10
|
ldr r3, [sgpio_data, #SLICE3] // r3 = SGPIO_REG_SS[SLICE3] // 10
|
||||||
stm buf_ptr!, {r0-r3} // buf_ptr[0:16] = r0-r3; buf_ptr += 16 // 5
|
stm buf_ptr!, {r0-r3} // buf_ptr[0:16] = r0-r3; buf_ptr += 16 // 5
|
||||||
|
|
||||||
ldr r0, [sgpio_data, #SLICE4] // r0 = SGPIO_REG_SS[SLICE4] // 10
|
ldr r0, [sgpio_data, #SLICE4] // r0 = SGPIO_REG_SS[SLICE4] // 10
|
||||||
ldr r1, [sgpio_data, #SLICE5] // r1 = SGPIO_REG_SS[SLICE5] // 10
|
ldr r1, [sgpio_data, #SLICE5] // r1 = SGPIO_REG_SS[SLICE5] // 10
|
||||||
ldr r2, [sgpio_data, #SLICE6] // r2 = SGPIO_REG_SS[SLICE6] // 10
|
ldr r2, [sgpio_data, #SLICE6] // r2 = SGPIO_REG_SS[SLICE6] // 10
|
||||||
ldr r3, [sgpio_data, #SLICE7] // r3 = SGPIO_REG_SS[SLICE7] // 10
|
ldr r3, [sgpio_data, #SLICE7] // r3 = SGPIO_REG_SS[SLICE7] // 10
|
||||||
stm buf_ptr!, {r0-r3} // buf_ptr[0:16] = r0-r3; buf_ptr += 16 // 5
|
stm buf_ptr!, {r0-r3} // buf_ptr[0:16] = r0-r3; buf_ptr += 16 // 5
|
||||||
|
|
||||||
done:
|
// Update counts.
|
||||||
offset .req r0
|
update_counts // update_counts() // 4
|
||||||
|
|
||||||
// Finally, update the buffer location...
|
// Jump to next mode if threshold reached, or back to RX loop start.
|
||||||
mov offset, buf_mask // offset = buf_mask // 1
|
jump_next_mode rx // jump_next_mode() // 12
|
||||||
and offset, buf_ptr // offset &= buf_ptr // 1
|
|
||||||
|
|
||||||
// ... and store the new position.
|
rx_shortfall:
|
||||||
str offset, [state, #OFFSET] // state.offset = offset // 2
|
|
||||||
|
|
||||||
b loop // goto loop // 3
|
// Run common shortfall handling and jump back to RX loop.
|
||||||
|
handle_shortfall rx // handle_shortfall() // 24
|
||||||
|
|
||||||
// The linker will put a literal pool here, so add a label for clearer objdump output:
|
// The linker will put a literal pool here, so add a label for clearer objdump output:
|
||||||
constants:
|
constants:
|
||||||
|
60
firmware/hackrf_usb/usb_api_m0_state.c
Normal file
60
firmware/hackrf_usb/usb_api_m0_state.c
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
/*
|
||||||
|
* Copyright 2022 Great Scott Gadgets
|
||||||
|
*
|
||||||
|
* This file is part of HackRF.
|
||||||
|
*
|
||||||
|
* This program is free software; you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation; either version 2, or (at your option)
|
||||||
|
* any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program; see the file COPYING. If not, write to
|
||||||
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
||||||
|
* Boston, MA 02110-1301, USA.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "usb_api_m0_state.h"
|
||||||
|
|
||||||
|
#include <libopencm3/lpc43xx/sgpio.h>
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <usb_request.h>
|
||||||
|
#include <usb_queue.h>
|
||||||
|
|
||||||
|
void m0_set_mode(enum m0_mode mode)
|
||||||
|
{
|
||||||
|
// Set requested mode and flag bit.
|
||||||
|
m0_state.requested_mode = M0_REQUEST_FLAG | mode;
|
||||||
|
|
||||||
|
// The M0 may be blocked waiting for the next SGPIO interrupt.
|
||||||
|
// In order to ensure that it sees our request, we need to set
|
||||||
|
// the interrupt flag here. The M0 will clear the flag again
|
||||||
|
// before acknowledging our request.
|
||||||
|
SGPIO_SET_STATUS_1 = (1 << SGPIO_SLICE_A);
|
||||||
|
|
||||||
|
// Wait for M0 to acknowledge by clearing the flag.
|
||||||
|
while (m0_state.requested_mode & M0_REQUEST_FLAG);
|
||||||
|
}
|
||||||
|
|
||||||
|
usb_request_status_t usb_vendor_request_get_m0_state(
|
||||||
|
usb_endpoint_t* const endpoint,
|
||||||
|
const usb_transfer_stage_t stage
|
||||||
|
) {
|
||||||
|
if( stage == USB_TRANSFER_STAGE_SETUP )
|
||||||
|
{
|
||||||
|
usb_transfer_schedule_block(
|
||||||
|
endpoint->in,
|
||||||
|
(void*) &m0_state,
|
||||||
|
sizeof(m0_state),
|
||||||
|
NULL, NULL);
|
||||||
|
usb_transfer_schedule_ack(endpoint->out);
|
||||||
|
return USB_REQUEST_STATUS_OK;
|
||||||
|
} else {
|
||||||
|
return USB_REQUEST_STATUS_OK;
|
||||||
|
}
|
||||||
|
}
|
@ -22,9 +22,36 @@
|
|||||||
#ifndef __M0_STATE_H__
|
#ifndef __M0_STATE_H__
|
||||||
#define __M0_STATE_H__
|
#define __M0_STATE_H__
|
||||||
|
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <usb_request.h>
|
||||||
|
|
||||||
|
#define M0_REQUEST_FLAG (1 << 16)
|
||||||
|
|
||||||
struct m0_state {
|
struct m0_state {
|
||||||
uint32_t offset;
|
uint32_t requested_mode;
|
||||||
uint32_t tx;
|
uint32_t active_mode;
|
||||||
|
uint32_t m0_count;
|
||||||
|
uint32_t m4_count;
|
||||||
|
uint32_t num_shortfalls;
|
||||||
|
uint32_t longest_shortfall;
|
||||||
|
uint32_t shortfall_limit;
|
||||||
|
uint32_t threshold;
|
||||||
|
uint32_t next_mode;
|
||||||
|
uint32_t error;
|
||||||
|
};
|
||||||
|
|
||||||
|
enum m0_mode {
|
||||||
|
M0_MODE_IDLE = 0,
|
||||||
|
M0_MODE_WAIT = 1,
|
||||||
|
M0_MODE_RX = 2,
|
||||||
|
M0_MODE_TX_START = 3,
|
||||||
|
M0_MODE_TX_RUN = 4,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum m0_error {
|
||||||
|
M0_ERROR_NONE = 0,
|
||||||
|
M0_ERROR_RX_TIMEOUT = 1,
|
||||||
|
M0_ERROR_TX_TIMEOUT = 2,
|
||||||
};
|
};
|
||||||
|
|
||||||
/* Address of m0_state is set in ldscripts. If you change the name of this
|
/* Address of m0_state is set in ldscripts. If you change the name of this
|
||||||
@ -33,4 +60,9 @@ struct m0_state {
|
|||||||
*/
|
*/
|
||||||
extern volatile struct m0_state m0_state;
|
extern volatile struct m0_state m0_state;
|
||||||
|
|
||||||
|
void m0_set_mode(enum m0_mode mode);
|
||||||
|
|
||||||
|
usb_request_status_t usb_vendor_request_get_m0_state(
|
||||||
|
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||||
|
|
||||||
#endif/*__M0_STATE_H__*/
|
#endif/*__M0_STATE_H__*/
|
@ -25,7 +25,7 @@
|
|||||||
#include <hackrf_core.h>
|
#include <hackrf_core.h>
|
||||||
#include "usb_api_transceiver.h"
|
#include "usb_api_transceiver.h"
|
||||||
#include "usb_bulk_buffer.h"
|
#include "usb_bulk_buffer.h"
|
||||||
#include "m0_state.h"
|
#include "usb_api_m0_state.h"
|
||||||
#include "tuning.h"
|
#include "tuning.h"
|
||||||
#include "usb_endpoint.h"
|
#include "usb_endpoint.h"
|
||||||
#include "streaming.h"
|
#include "streaming.h"
|
||||||
@ -87,37 +87,67 @@ usb_request_status_t usb_vendor_request_init_sweep(
|
|||||||
return USB_REQUEST_STATUS_OK;
|
return USB_REQUEST_STATUS_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void sweep_bulk_transfer_complete(void *user_data, unsigned int bytes_transferred)
|
||||||
|
{
|
||||||
|
(void) user_data;
|
||||||
|
(void) bytes_transferred;
|
||||||
|
|
||||||
|
// For each buffer transferred, we need to bump the count by three buffers
|
||||||
|
// worth of data, to allow for the discarded buffers.
|
||||||
|
m0_state.m4_count += 3 * 0x4000;
|
||||||
|
}
|
||||||
|
|
||||||
void sweep_mode(uint32_t seq) {
|
void sweep_mode(uint32_t seq) {
|
||||||
unsigned int blocks_queued = 0;
|
// Sweep mode is implemented using timed M0 operations, as follows:
|
||||||
unsigned int phase = 1;
|
//
|
||||||
|
// 0. M4 initially puts the M0 into RX mode, with an m0_count threshold
|
||||||
|
// of 16K and a next mode of WAIT.
|
||||||
|
//
|
||||||
|
// 1. M4 spins until the M0 switches to WAIT mode.
|
||||||
|
//
|
||||||
|
// 2. M0 captures one 16K block of samples, and switches to WAIT mode.
|
||||||
|
//
|
||||||
|
// 3. M4 sees the mode change, advances the m0_count target by 32K, and
|
||||||
|
// sets next mode to RX.
|
||||||
|
//
|
||||||
|
// 4. M4 adds the sweep metadata at the start of the block and
|
||||||
|
// schedules a bulk transfer for the block.
|
||||||
|
//
|
||||||
|
// 5. M4 retunes - this takes about 760us worst-case, so should be
|
||||||
|
// complete before the M0 goes back to RX.
|
||||||
|
//
|
||||||
|
// 6. M4 spins until the M0 mode changes to RX, then advances the
|
||||||
|
// m0_count limit by 16K and sets the next mode to WAIT.
|
||||||
|
//
|
||||||
|
// 7. Process repeats from step 1.
|
||||||
|
|
||||||
|
unsigned int phase = 0;
|
||||||
bool odd = true;
|
bool odd = true;
|
||||||
uint16_t range = 0;
|
uint16_t range = 0;
|
||||||
|
|
||||||
uint8_t *buffer;
|
uint8_t *buffer;
|
||||||
bool transfer = false;
|
|
||||||
|
|
||||||
transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP);
|
transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP);
|
||||||
|
|
||||||
|
// Set M0 to RX first buffer, then wait.
|
||||||
|
m0_state.threshold = 0x4000;
|
||||||
|
m0_state.next_mode = M0_MODE_WAIT;
|
||||||
|
|
||||||
baseband_streaming_enable(&sgpio_config);
|
baseband_streaming_enable(&sgpio_config);
|
||||||
|
|
||||||
while (transceiver_request.seq == seq) {
|
while (transceiver_request.seq == seq) {
|
||||||
// Set up IN transfer of buffer 0.
|
|
||||||
if ( m0_state.offset >= 16384 && phase == 1) {
|
|
||||||
transfer = true;
|
|
||||||
buffer = &usb_bulk_buffer[0x0000];
|
|
||||||
phase = 0;
|
|
||||||
blocks_queued++;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Set up IN transfer of buffer 1.
|
// Wait for M0 to finish receiving a buffer.
|
||||||
if ( m0_state.offset < 16384 && phase == 0) {
|
while (m0_state.active_mode != M0_MODE_WAIT)
|
||||||
transfer = true;
|
if (transceiver_request.seq != seq)
|
||||||
buffer = &usb_bulk_buffer[0x4000];
|
goto end;
|
||||||
phase = 1;
|
|
||||||
blocks_queued++;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (transfer) {
|
// Set M0 to switch back to RX after two more buffers.
|
||||||
|
m0_state.threshold += 0x8000;
|
||||||
|
m0_state.next_mode = M0_MODE_RX;
|
||||||
|
|
||||||
|
// Write metadata to buffer.
|
||||||
|
buffer = &usb_bulk_buffer[phase * 0x4000];
|
||||||
*buffer = 0x7f;
|
*buffer = 0x7f;
|
||||||
*(buffer+1) = 0x7f;
|
*(buffer+1) = 0x7f;
|
||||||
*(buffer+2) = sweep_freq & 0xff;
|
*(buffer+2) = sweep_freq & 0xff;
|
||||||
@ -128,18 +158,19 @@ void sweep_mode(uint32_t seq) {
|
|||||||
*(buffer+7) = (sweep_freq >> 40) & 0xff;
|
*(buffer+7) = (sweep_freq >> 40) & 0xff;
|
||||||
*(buffer+8) = (sweep_freq >> 48) & 0xff;
|
*(buffer+8) = (sweep_freq >> 48) & 0xff;
|
||||||
*(buffer+9) = (sweep_freq >> 56) & 0xff;
|
*(buffer+9) = (sweep_freq >> 56) & 0xff;
|
||||||
if (blocks_queued > THROWAWAY_BUFFERS) {
|
|
||||||
|
// Set up IN transfer of buffer.
|
||||||
usb_transfer_schedule_block(
|
usb_transfer_schedule_block(
|
||||||
&usb_endpoint_bulk_in,
|
&usb_endpoint_bulk_in,
|
||||||
buffer,
|
buffer,
|
||||||
0x4000,
|
0x4000,
|
||||||
NULL, NULL
|
sweep_bulk_transfer_complete, NULL
|
||||||
);
|
);
|
||||||
}
|
|
||||||
transfer = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((dwell_blocks + THROWAWAY_BUFFERS) <= blocks_queued) {
|
// Use other buffer next time.
|
||||||
|
phase = (phase + 1) % 2;
|
||||||
|
|
||||||
|
// Calculate next sweep frequency.
|
||||||
if(INTERLEAVED == style) {
|
if(INTERLEAVED == style) {
|
||||||
if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) {
|
if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) {
|
||||||
range = (range + 1) % num_ranges;
|
range = (range + 1) % num_ranges;
|
||||||
@ -160,13 +191,20 @@ void sweep_mode(uint32_t seq) {
|
|||||||
sweep_freq += step_width;
|
sweep_freq += step_width;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
// Retune to new frequency.
|
||||||
nvic_disable_irq(NVIC_USB0_IRQ);
|
nvic_disable_irq(NVIC_USB0_IRQ);
|
||||||
set_freq(sweep_freq + offset);
|
set_freq(sweep_freq + offset);
|
||||||
nvic_enable_irq(NVIC_USB0_IRQ);
|
nvic_enable_irq(NVIC_USB0_IRQ);
|
||||||
blocks_queued = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
// Wait for M0 to resume RX.
|
||||||
|
while (m0_state.active_mode != M0_MODE_RX)
|
||||||
|
if (transceiver_request.seq != seq)
|
||||||
|
goto end;
|
||||||
|
|
||||||
|
// Set M0 to switch back to WAIT after filling next buffer.
|
||||||
|
m0_state.threshold += 0x4000;
|
||||||
|
m0_state.next_mode = M0_MODE_WAIT;
|
||||||
|
}
|
||||||
|
end:
|
||||||
transceiver_shutdown();
|
transceiver_shutdown();
|
||||||
}
|
}
|
||||||
|
@ -27,7 +27,7 @@
|
|||||||
|
|
||||||
#include <libopencm3/cm3/vector.h>
|
#include <libopencm3/cm3/vector.h>
|
||||||
#include "usb_bulk_buffer.h"
|
#include "usb_bulk_buffer.h"
|
||||||
#include "m0_state.h"
|
#include "usb_api_m0_state.h"
|
||||||
|
|
||||||
#include "usb_api_cpld.h" // Remove when CPLD update is handled elsewhere
|
#include "usb_api_cpld.h" // Remove when CPLD update is handled elsewhere
|
||||||
|
|
||||||
@ -238,6 +238,8 @@ usb_request_status_t usb_vendor_request_set_freq_explicit(
|
|||||||
}
|
}
|
||||||
|
|
||||||
static volatile hw_sync_mode_t _hw_sync_mode = HW_SYNC_MODE_OFF;
|
static volatile hw_sync_mode_t _hw_sync_mode = HW_SYNC_MODE_OFF;
|
||||||
|
static volatile uint32_t _tx_underrun_limit;
|
||||||
|
static volatile uint32_t _rx_overrun_limit;
|
||||||
|
|
||||||
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode) {
|
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode) {
|
||||||
_hw_sync_mode = new_hw_sync_mode;
|
_hw_sync_mode = new_hw_sync_mode;
|
||||||
@ -269,7 +271,7 @@ void transceiver_shutdown(void)
|
|||||||
led_off(LED2);
|
led_off(LED2);
|
||||||
led_off(LED3);
|
led_off(LED3);
|
||||||
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_OFF);
|
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_OFF);
|
||||||
m0_state.tx = false;
|
m0_set_mode(M0_MODE_IDLE);
|
||||||
}
|
}
|
||||||
|
|
||||||
void transceiver_startup(const transceiver_mode_t mode) {
|
void transceiver_startup(const transceiver_mode_t mode) {
|
||||||
@ -282,13 +284,15 @@ void transceiver_startup(const transceiver_mode_t mode) {
|
|||||||
led_off(LED3);
|
led_off(LED3);
|
||||||
led_on(LED2);
|
led_on(LED2);
|
||||||
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_RX);
|
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_RX);
|
||||||
m0_state.tx = false;
|
m0_set_mode(M0_MODE_RX);
|
||||||
|
m0_state.shortfall_limit = _rx_overrun_limit;
|
||||||
break;
|
break;
|
||||||
case TRANSCEIVER_MODE_TX:
|
case TRANSCEIVER_MODE_TX:
|
||||||
led_off(LED2);
|
led_off(LED2);
|
||||||
led_on(LED3);
|
led_on(LED3);
|
||||||
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_TX);
|
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_TX);
|
||||||
m0_state.tx = true;
|
m0_set_mode(M0_MODE_TX_START);
|
||||||
|
m0_state.shortfall_limit = _tx_underrun_limit;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
break;
|
break;
|
||||||
@ -296,7 +300,6 @@ void transceiver_startup(const transceiver_mode_t mode) {
|
|||||||
|
|
||||||
activate_best_clock_source();
|
activate_best_clock_source();
|
||||||
hw_sync_enable(_hw_sync_mode);
|
hw_sync_enable(_hw_sync_mode);
|
||||||
m0_state.offset = 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
usb_request_status_t usb_vendor_request_set_transceiver_mode(
|
usb_request_status_t usb_vendor_request_set_transceiver_mode(
|
||||||
@ -334,6 +337,36 @@ usb_request_status_t usb_vendor_request_set_hw_sync_mode(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
|
||||||
|
usb_endpoint_t* const endpoint,
|
||||||
|
const usb_transfer_stage_t stage
|
||||||
|
) {
|
||||||
|
if( stage == USB_TRANSFER_STAGE_SETUP ) {
|
||||||
|
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
|
||||||
|
_tx_underrun_limit = value;
|
||||||
|
usb_transfer_schedule_ack(endpoint->in);
|
||||||
|
}
|
||||||
|
return USB_REQUEST_STATUS_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
|
||||||
|
usb_endpoint_t* const endpoint,
|
||||||
|
const usb_transfer_stage_t stage
|
||||||
|
) {
|
||||||
|
if( stage == USB_TRANSFER_STAGE_SETUP ) {
|
||||||
|
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
|
||||||
|
_rx_overrun_limit = value;
|
||||||
|
usb_transfer_schedule_ack(endpoint->in);
|
||||||
|
}
|
||||||
|
return USB_REQUEST_STATUS_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
void transceiver_bulk_transfer_complete(void *user_data, unsigned int bytes_transferred)
|
||||||
|
{
|
||||||
|
(void) user_data;
|
||||||
|
m0_state.m4_count += bytes_transferred;
|
||||||
|
}
|
||||||
|
|
||||||
void rx_mode(uint32_t seq) {
|
void rx_mode(uint32_t seq) {
|
||||||
unsigned int phase = 1;
|
unsigned int phase = 1;
|
||||||
|
|
||||||
@ -342,23 +375,26 @@ void rx_mode(uint32_t seq) {
|
|||||||
baseband_streaming_enable(&sgpio_config);
|
baseband_streaming_enable(&sgpio_config);
|
||||||
|
|
||||||
while (transceiver_request.seq == seq) {
|
while (transceiver_request.seq == seq) {
|
||||||
|
uint32_t m0_offset = m0_state.m0_count & USB_BULK_BUFFER_MASK;
|
||||||
// Set up IN transfer of buffer 0.
|
// Set up IN transfer of buffer 0.
|
||||||
if (16384 <= m0_state.offset && 1 == phase) {
|
if (16384 <= m0_offset && 1 == phase) {
|
||||||
usb_transfer_schedule_block(
|
usb_transfer_schedule_block(
|
||||||
&usb_endpoint_bulk_in,
|
&usb_endpoint_bulk_in,
|
||||||
&usb_bulk_buffer[0x0000],
|
&usb_bulk_buffer[0x0000],
|
||||||
0x4000,
|
0x4000,
|
||||||
NULL, NULL
|
transceiver_bulk_transfer_complete,
|
||||||
|
NULL
|
||||||
);
|
);
|
||||||
phase = 0;
|
phase = 0;
|
||||||
}
|
}
|
||||||
// Set up IN transfer of buffer 1.
|
// Set up IN transfer of buffer 1.
|
||||||
if (16384 > m0_state.offset && 0 == phase) {
|
if (16384 > m0_offset && 0 == phase) {
|
||||||
usb_transfer_schedule_block(
|
usb_transfer_schedule_block(
|
||||||
&usb_endpoint_bulk_in,
|
&usb_endpoint_bulk_in,
|
||||||
&usb_bulk_buffer[0x4000],
|
&usb_bulk_buffer[0x4000],
|
||||||
0x4000,
|
0x4000,
|
||||||
NULL, NULL
|
transceiver_bulk_transfer_complete,
|
||||||
|
NULL
|
||||||
);
|
);
|
||||||
phase = 1;
|
phase = 1;
|
||||||
}
|
}
|
||||||
@ -368,39 +404,46 @@ void rx_mode(uint32_t seq) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void tx_mode(uint32_t seq) {
|
void tx_mode(uint32_t seq) {
|
||||||
unsigned int phase = 1;
|
unsigned int phase = 0;
|
||||||
|
|
||||||
transceiver_startup(TRANSCEIVER_MODE_TX);
|
transceiver_startup(TRANSCEIVER_MODE_TX);
|
||||||
|
|
||||||
memset(&usb_bulk_buffer[0x0000], 0, 0x8000);
|
|
||||||
// Set up OUT transfer of buffer 1.
|
|
||||||
usb_transfer_schedule_block(
|
|
||||||
&usb_endpoint_bulk_out,
|
|
||||||
&usb_bulk_buffer[0x4000],
|
|
||||||
0x4000,
|
|
||||||
NULL, NULL
|
|
||||||
);
|
|
||||||
// Start transmitting zeros while the host fills buffer 1.
|
|
||||||
baseband_streaming_enable(&sgpio_config);
|
|
||||||
|
|
||||||
while (transceiver_request.seq == seq) {
|
|
||||||
// Set up OUT transfer of buffer 0.
|
// Set up OUT transfer of buffer 0.
|
||||||
if (16384 <= m0_state.offset && 1 == phase) {
|
|
||||||
usb_transfer_schedule_block(
|
usb_transfer_schedule_block(
|
||||||
&usb_endpoint_bulk_out,
|
&usb_endpoint_bulk_out,
|
||||||
&usb_bulk_buffer[0x0000],
|
&usb_bulk_buffer[0x0000],
|
||||||
0x4000,
|
0x4000,
|
||||||
NULL, NULL
|
transceiver_bulk_transfer_complete,
|
||||||
|
NULL
|
||||||
|
);
|
||||||
|
|
||||||
|
// Enable streaming. The M0 is in TX_START mode, and will automatically
|
||||||
|
// send zeroes until the host fills buffer 0. Once that buffer is filled,
|
||||||
|
// the bulk transfer completion handler will increase the M4 count, and
|
||||||
|
// the M0 will switch to TX_RUN mode and transmit the first data.
|
||||||
|
baseband_streaming_enable(&sgpio_config);
|
||||||
|
|
||||||
|
while (transceiver_request.seq == seq) {
|
||||||
|
uint32_t m0_offset = m0_state.m0_count & USB_BULK_BUFFER_MASK;
|
||||||
|
// Set up OUT transfer of buffer 0.
|
||||||
|
if (16384 <= m0_offset && 1 == phase) {
|
||||||
|
usb_transfer_schedule_block(
|
||||||
|
&usb_endpoint_bulk_out,
|
||||||
|
&usb_bulk_buffer[0x0000],
|
||||||
|
0x4000,
|
||||||
|
transceiver_bulk_transfer_complete,
|
||||||
|
NULL
|
||||||
);
|
);
|
||||||
phase = 0;
|
phase = 0;
|
||||||
}
|
}
|
||||||
// Set up OUT transfer of buffer 1.
|
// Set up OUT transfer of buffer 1.
|
||||||
if (16384 > m0_state.offset && 0 == phase) {
|
if (16384 > m0_offset && 0 == phase) {
|
||||||
usb_transfer_schedule_block(
|
usb_transfer_schedule_block(
|
||||||
&usb_endpoint_bulk_out,
|
&usb_endpoint_bulk_out,
|
||||||
&usb_bulk_buffer[0x4000],
|
&usb_bulk_buffer[0x4000],
|
||||||
0x4000,
|
0x4000,
|
||||||
NULL, NULL
|
transceiver_bulk_transfer_complete,
|
||||||
|
NULL
|
||||||
);
|
);
|
||||||
phase = 1;
|
phase = 1;
|
||||||
}
|
}
|
||||||
|
@ -62,6 +62,10 @@ usb_request_status_t usb_vendor_request_set_freq_explicit(
|
|||||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||||
usb_request_status_t usb_vendor_request_set_hw_sync_mode(
|
usb_request_status_t usb_vendor_request_set_hw_sync_mode(
|
||||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||||
|
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
|
||||||
|
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||||
|
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
|
||||||
|
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||||
|
|
||||||
void request_transceiver_mode(transceiver_mode_t mode);
|
void request_transceiver_mode(transceiver_mode_t mode);
|
||||||
void transceiver_startup(transceiver_mode_t mode);
|
void transceiver_startup(transceiver_mode_t mode);
|
||||||
|
@ -26,10 +26,13 @@
|
|||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
|
|
||||||
|
#define USB_BULK_BUFFER_SIZE 0x8000
|
||||||
|
#define USB_BULK_BUFFER_MASK 0x7FFF
|
||||||
|
|
||||||
/* Address of usb_bulk_buffer is set in ldscripts. If you change the name of this
|
/* Address of usb_bulk_buffer is set in ldscripts. If you change the name of this
|
||||||
* variable, it won't be where it needs to be in the processor's address space,
|
* variable, it won't be where it needs to be in the processor's address space,
|
||||||
* unless you also adjust the ldscripts.
|
* unless you also adjust the ldscripts.
|
||||||
*/
|
*/
|
||||||
extern uint8_t usb_bulk_buffer[32768];
|
extern uint8_t usb_bulk_buffer[USB_BULK_BUFFER_SIZE];
|
||||||
|
|
||||||
#endif/*__USB_BULK_BUFFER_H__*/
|
#endif/*__USB_BULK_BUFFER_H__*/
|
||||||
|
@ -36,7 +36,7 @@
|
|||||||
#define USB_PRODUCT_ID (0xFFFF)
|
#define USB_PRODUCT_ID (0xFFFF)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define USB_API_VERSION (0x0105)
|
#define USB_API_VERSION (0x0106)
|
||||||
|
|
||||||
#define USB_WORD(x) (x & 0xFF), ((x >> 8) & 0xFF)
|
#define USB_WORD(x) (x & 0xFF), ((x >> 8) & 0xFF)
|
||||||
|
|
||||||
|
@ -36,7 +36,7 @@ typedef int bool;
|
|||||||
|
|
||||||
#define REGISTER_INVALID 32767
|
#define REGISTER_INVALID 32767
|
||||||
|
|
||||||
int parse_int(char* s, uint16_t* const value) {
|
int parse_int(char* s, uint32_t* const value) {
|
||||||
uint_fast8_t base = 10;
|
uint_fast8_t base = 10;
|
||||||
char* s_end;
|
char* s_end;
|
||||||
long long_value;
|
long long_value;
|
||||||
@ -56,7 +56,7 @@ int parse_int(char* s, uint16_t* const value) {
|
|||||||
s_end = s;
|
s_end = s;
|
||||||
long_value = strtol(s, &s_end, base);
|
long_value = strtol(s, &s_end, base);
|
||||||
if( (s != s_end) && (*s_end == 0) ) {
|
if( (s != s_end) && (*s_end == 0) ) {
|
||||||
*value = (uint16_t)long_value;
|
*value = (uint32_t)long_value;
|
||||||
return HACKRF_SUCCESS;
|
return HACKRF_SUCCESS;
|
||||||
} else {
|
} else {
|
||||||
return HACKRF_ERROR_INVALID_PARAM;
|
return HACKRF_ERROR_INVALID_PARAM;
|
||||||
@ -377,6 +377,40 @@ int write_register(hackrf_device* device, uint8_t part,
|
|||||||
return HACKRF_ERROR_INVALID_PARAM;
|
return HACKRF_ERROR_INVALID_PARAM;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static const char * mode_name(uint32_t mode) {
|
||||||
|
const char *mode_names[] = {"IDLE", "WAIT", "RX", "TX_START", "TX_RUN"};
|
||||||
|
const uint32_t num_modes = sizeof(mode_names) / sizeof(mode_names[0]);
|
||||||
|
if (mode < num_modes)
|
||||||
|
return mode_names[mode];
|
||||||
|
else
|
||||||
|
return "UNKNOWN";
|
||||||
|
}
|
||||||
|
|
||||||
|
static const char * error_name(uint32_t error) {
|
||||||
|
const char *error_names[] = {"NONE", "RX_TIMEOUT", "TX_TIMEOUT"};
|
||||||
|
const uint32_t num_errors = sizeof(error_names) / sizeof(error_names[0]);
|
||||||
|
if (error < num_errors)
|
||||||
|
return error_names[error];
|
||||||
|
else
|
||||||
|
return "UNKNOWN";
|
||||||
|
}
|
||||||
|
|
||||||
|
static void print_state(hackrf_m0_state *state) {
|
||||||
|
printf("M0 state:\n");
|
||||||
|
printf("Requested mode: %u (%s) [%s]\n",
|
||||||
|
state->requested_mode, mode_name(state->requested_mode),
|
||||||
|
state->request_flag ? "pending" : "complete");
|
||||||
|
printf("Active mode: %u (%s)\n", state->active_mode, mode_name(state->active_mode));
|
||||||
|
printf("M0 count: %u bytes\n", state->m0_count);
|
||||||
|
printf("M4 count: %u bytes\n", state->m4_count);
|
||||||
|
printf("Number of shortfalls: %u\n", state->num_shortfalls);
|
||||||
|
printf("Longest shortfall: %u bytes\n", state->longest_shortfall);
|
||||||
|
printf("Shortfall limit: %u bytes\n", state->shortfall_limit);
|
||||||
|
printf("Mode change threshold: %u bytes\n", state->threshold);
|
||||||
|
printf("Next mode: %u (%s)\n", state->next_mode, mode_name(state->next_mode));
|
||||||
|
printf("Error: %u (%s)\n", state->error, error_name(state->error));
|
||||||
|
}
|
||||||
|
|
||||||
static void usage() {
|
static void usage() {
|
||||||
printf("\nUsage:\n");
|
printf("\nUsage:\n");
|
||||||
printf("\t-h, --help: this help\n");
|
printf("\t-h, --help: this help\n");
|
||||||
@ -388,12 +422,16 @@ static void usage() {
|
|||||||
printf("\t-m, --max2837: target MAX2837\n");
|
printf("\t-m, --max2837: target MAX2837\n");
|
||||||
printf("\t-s, --si5351c: target SI5351C\n");
|
printf("\t-s, --si5351c: target SI5351C\n");
|
||||||
printf("\t-f, --rffc5072: target RFFC5072\n");
|
printf("\t-f, --rffc5072: target RFFC5072\n");
|
||||||
|
printf("\t-S, --state: display M0 state\n");
|
||||||
|
printf("\t-T, --tx-underrun-limit <n>: set TX underrun limit in bytes (0 for no limit)\n");
|
||||||
|
printf("\t-R, --rx-overrun-limit <n>: set RX overrun limit in bytes (0 for no limit)\n");
|
||||||
printf("\t-u, --ui <1/0>: enable/disable UI\n");
|
printf("\t-u, --ui <1/0>: enable/disable UI\n");
|
||||||
printf("\nExamples:\n");
|
printf("\nExamples:\n");
|
||||||
printf("\thackrf_debug --si5351c -n 0 -r # reads from si5351c register 0\n");
|
printf("\thackrf_debug --si5351c -n 0 -r # reads from si5351c register 0\n");
|
||||||
printf("\thackrf_debug --si5351c -c # displays si5351c multisynth configuration\n");
|
printf("\thackrf_debug --si5351c -c # displays si5351c multisynth configuration\n");
|
||||||
printf("\thackrf_debug --rffc5072 -r # reads all rffc5072 registers\n");
|
printf("\thackrf_debug --rffc5072 -r # reads all rffc5072 registers\n");
|
||||||
printf("\thackrf_debug --max2837 -n 10 -w 22 # writes max2837 register 10 with 22 decimal\n");
|
printf("\thackrf_debug --max2837 -n 10 -w 22 # writes max2837 register 10 with 22 decimal\n");
|
||||||
|
printf("\thackrf_debug --state # displays M0 state\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static struct option long_options[] = {
|
static struct option long_options[] = {
|
||||||
@ -406,23 +444,31 @@ static struct option long_options[] = {
|
|||||||
{ "max2837", no_argument, 0, 'm' },
|
{ "max2837", no_argument, 0, 'm' },
|
||||||
{ "si5351c", no_argument, 0, 's' },
|
{ "si5351c", no_argument, 0, 's' },
|
||||||
{ "rffc5072", no_argument, 0, 'f' },
|
{ "rffc5072", no_argument, 0, 'f' },
|
||||||
|
{ "state", no_argument, 0, 'S' },
|
||||||
|
{ "tx-underrun-limit", required_argument, 0, 'T' },
|
||||||
|
{ "rx-overrun-limit", required_argument, 0, 'R' },
|
||||||
{ "ui", required_argument, 0, 'u' },
|
{ "ui", required_argument, 0, 'u' },
|
||||||
{ 0, 0, 0, 0 },
|
{ 0, 0, 0, 0 },
|
||||||
};
|
};
|
||||||
|
|
||||||
int main(int argc, char** argv) {
|
int main(int argc, char** argv) {
|
||||||
int opt;
|
int opt;
|
||||||
uint16_t register_number = REGISTER_INVALID;
|
uint32_t register_number = REGISTER_INVALID;
|
||||||
uint16_t register_value;
|
uint32_t register_value;
|
||||||
hackrf_device* device = NULL;
|
hackrf_device* device = NULL;
|
||||||
int option_index = 0;
|
int option_index = 0;
|
||||||
bool read = false;
|
bool read = false;
|
||||||
bool write = false;
|
bool write = false;
|
||||||
bool dump_config = false;
|
bool dump_config = false;
|
||||||
|
bool dump_state = false;
|
||||||
uint8_t part = PART_NONE;
|
uint8_t part = PART_NONE;
|
||||||
const char* serial_number = NULL;
|
const char* serial_number = NULL;
|
||||||
bool set_ui = false;
|
bool set_ui = false;
|
||||||
uint16_t ui_enable;
|
uint32_t ui_enable;
|
||||||
|
uint32_t tx_limit;
|
||||||
|
uint32_t rx_limit;
|
||||||
|
bool set_tx_limit = false;
|
||||||
|
bool set_rx_limit = false;
|
||||||
|
|
||||||
int result = hackrf_init();
|
int result = hackrf_init();
|
||||||
if(result) {
|
if(result) {
|
||||||
@ -430,7 +476,7 @@ int main(int argc, char** argv) {
|
|||||||
return EXIT_FAILURE;
|
return EXIT_FAILURE;
|
||||||
}
|
}
|
||||||
|
|
||||||
while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfh?u:", long_options, &option_index)) != EOF ) {
|
while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfST:R:h?u:", long_options, &option_index)) != EOF ) {
|
||||||
switch( opt ) {
|
switch( opt ) {
|
||||||
case 'n':
|
case 'n':
|
||||||
result = parse_int(optarg, ®ister_number);
|
result = parse_int(optarg, ®ister_number);
|
||||||
@ -449,6 +495,19 @@ int main(int argc, char** argv) {
|
|||||||
dump_config = true;
|
dump_config = true;
|
||||||
break;
|
break;
|
||||||
|
|
||||||
|
case 'S':
|
||||||
|
dump_state = true;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 'T':
|
||||||
|
set_tx_limit = true;
|
||||||
|
result = parse_int(optarg, &tx_limit);
|
||||||
|
break;
|
||||||
|
case 'R':
|
||||||
|
set_rx_limit = true;
|
||||||
|
result = parse_int(optarg, &rx_limit);
|
||||||
|
break;
|
||||||
|
|
||||||
case 'd':
|
case 'd':
|
||||||
serial_number = optarg;
|
serial_number = optarg;
|
||||||
break;
|
break;
|
||||||
@ -517,13 +576,13 @@ int main(int argc, char** argv) {
|
|||||||
return EXIT_FAILURE;
|
return EXIT_FAILURE;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(!(write || read || dump_config || set_ui)) {
|
if(!(write || read || dump_config || dump_state || set_tx_limit || set_rx_limit || set_ui)) {
|
||||||
fprintf(stderr, "Specify read, write, or config option.\n");
|
fprintf(stderr, "Specify read, write, or config option.\n");
|
||||||
usage();
|
usage();
|
||||||
return EXIT_FAILURE;
|
return EXIT_FAILURE;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(part == PART_NONE && !set_ui) {
|
if(part == PART_NONE && !set_ui && !dump_state && !set_tx_limit && !set_rx_limit) {
|
||||||
fprintf(stderr, "Specify a part to read, write, or print config from.\n");
|
fprintf(stderr, "Specify a part to read, write, or print config from.\n");
|
||||||
usage();
|
usage();
|
||||||
return EXIT_FAILURE;
|
return EXIT_FAILURE;
|
||||||
@ -551,6 +610,32 @@ int main(int argc, char** argv) {
|
|||||||
si5351c_read_configuration(device);
|
si5351c_read_configuration(device);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (set_tx_limit) {
|
||||||
|
result = hackrf_set_tx_underrun_limit(device, tx_limit);
|
||||||
|
if(result != HACKRF_SUCCESS) {
|
||||||
|
printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||||
|
return EXIT_FAILURE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (set_rx_limit) {
|
||||||
|
result = hackrf_set_rx_overrun_limit(device, rx_limit);
|
||||||
|
if(result != HACKRF_SUCCESS) {
|
||||||
|
printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||||
|
return EXIT_FAILURE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if(dump_state) {
|
||||||
|
hackrf_m0_state state;
|
||||||
|
result = hackrf_get_m0_state(device, &state);
|
||||||
|
if(result != HACKRF_SUCCESS) {
|
||||||
|
printf("hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||||
|
return EXIT_FAILURE;
|
||||||
|
}
|
||||||
|
print_state(&state);
|
||||||
|
}
|
||||||
|
|
||||||
if(set_ui) {
|
if(set_ui) {
|
||||||
result = hackrf_set_ui_enable(device, ui_enable);
|
result = hackrf_set_ui_enable(device, ui_enable);
|
||||||
}
|
}
|
||||||
|
@ -121,6 +121,11 @@ typedef enum {
|
|||||||
HW_SYNC_MODE_ON = 1,
|
HW_SYNC_MODE_ON = 1,
|
||||||
} hw_sync_mode_t;
|
} hw_sync_mode_t;
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
uint64_t m0_total;
|
||||||
|
uint64_t m4_total;
|
||||||
|
} stats_t;
|
||||||
|
|
||||||
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
|
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
|
||||||
typedef struct
|
typedef struct
|
||||||
{
|
{
|
||||||
@ -377,6 +382,8 @@ bool limit_num_samples = false;
|
|||||||
uint64_t samples_to_xfer = 0;
|
uint64_t samples_to_xfer = 0;
|
||||||
size_t bytes_to_xfer = 0;
|
size_t bytes_to_xfer = 0;
|
||||||
|
|
||||||
|
bool display_stats = false;
|
||||||
|
|
||||||
bool baseband_filter_bw = false;
|
bool baseband_filter_bw = false;
|
||||||
uint32_t baseband_filter_bw_hz = 0;
|
uint32_t baseband_filter_bw_hz = 0;
|
||||||
|
|
||||||
@ -503,6 +510,42 @@ int tx_callback(hackrf_transfer* transfer) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static int update_stats(hackrf_device *device, hackrf_m0_state *state, stats_t *stats)
|
||||||
|
{
|
||||||
|
int result = hackrf_get_m0_state(device, state);
|
||||||
|
|
||||||
|
if (result == HACKRF_SUCCESS) {
|
||||||
|
/*
|
||||||
|
* Update 64-bit running totals, to handle wrapping of the 32-bit fields
|
||||||
|
* for M0 and M4 byte counts.
|
||||||
|
*
|
||||||
|
* The logic for handling wrapping works as follows:
|
||||||
|
*
|
||||||
|
* If a 32-bit count read from the HackRF is less than the lower 32 bits of
|
||||||
|
* the previous 64-bit running total, this indicates the 32-bit counter has
|
||||||
|
* wrapped since it was last read. Add 2^32 to the 64-bit total to account
|
||||||
|
* for this.
|
||||||
|
*
|
||||||
|
* Then, having accounted for the possible wrap, mask off the bottom 32
|
||||||
|
* bits of the 64-bit total, and replace them with the new 32-bit count.
|
||||||
|
*
|
||||||
|
* This should result in correct results as long as the 32-bit counter
|
||||||
|
* cannot wrap more than once between reads.
|
||||||
|
*
|
||||||
|
* We read the M0 state every second, and the counters will wrap every 107
|
||||||
|
* seconds at 20Msps, so this should be a safe assumption.
|
||||||
|
*/
|
||||||
|
if (state->m0_count < (stats->m0_total & 0xFFFFFFFF))
|
||||||
|
stats->m0_total += 0x100000000;
|
||||||
|
if (state->m4_count < (stats->m4_total & 0xFFFFFFFF))
|
||||||
|
stats->m4_total += 0x100000000;
|
||||||
|
stats->m0_total = (stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
|
||||||
|
stats->m4_total = (stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
static void usage() {
|
static void usage() {
|
||||||
printf("Usage:\n");
|
printf("Usage:\n");
|
||||||
printf("\t-h # this help\n");
|
printf("\t-h # this help\n");
|
||||||
@ -533,6 +576,7 @@ static void usage() {
|
|||||||
/* The required atomic load/store functions aren't available when using C with MSVC */
|
/* The required atomic load/store functions aren't available when using C with MSVC */
|
||||||
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
|
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
|
||||||
#endif
|
#endif
|
||||||
|
printf("\t[-B] # Print buffer statistics during transfer\n");
|
||||||
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n");
|
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n");
|
||||||
printf("\t[-R] # Repeat TX mode (default is off) \n");
|
printf("\t[-R] # Repeat TX mode (default is off) \n");
|
||||||
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n" );
|
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n" );
|
||||||
@ -579,8 +623,10 @@ int main(int argc, char** argv) {
|
|||||||
struct timeval t_end;
|
struct timeval t_end;
|
||||||
float time_diff;
|
float time_diff;
|
||||||
unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
|
unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
|
||||||
|
hackrf_m0_state state;
|
||||||
|
stats_t stats = {0, 0};
|
||||||
|
|
||||||
while( (opt = getopt(argc, argv, "H:wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:h?")) != EOF )
|
while( (opt = getopt(argc, argv, "H:wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:Bh?")) != EOF )
|
||||||
{
|
{
|
||||||
result = HACKRF_SUCCESS;
|
result = HACKRF_SUCCESS;
|
||||||
switch( opt )
|
switch( opt )
|
||||||
@ -668,6 +714,10 @@ int main(int argc, char** argv) {
|
|||||||
bytes_to_xfer = samples_to_xfer * 2ull;
|
bytes_to_xfer = samples_to_xfer * 2ull;
|
||||||
break;
|
break;
|
||||||
|
|
||||||
|
case 'B':
|
||||||
|
display_stats = true;
|
||||||
|
break;
|
||||||
|
|
||||||
case 'b':
|
case 'b':
|
||||||
result = parse_frequency_u32(optarg, endptr, &baseband_filter_bw_hz);
|
result = parse_frequency_u32(optarg, endptr, &baseband_filter_bw_hz);
|
||||||
baseband_filter_bw = true;
|
baseband_filter_bw = true;
|
||||||
@ -1097,12 +1147,27 @@ int main(int argc, char** argv) {
|
|||||||
double dB_full_scale_ratio = 10*log10(full_scale_ratio);
|
double dB_full_scale_ratio = 10*log10(full_scale_ratio);
|
||||||
if (dB_full_scale_ratio > 1)
|
if (dB_full_scale_ratio > 1)
|
||||||
dB_full_scale_ratio = NAN; // Guard against ridiculous reports
|
dB_full_scale_ratio = NAN; // Guard against ridiculous reports
|
||||||
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs\n",
|
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs",
|
||||||
(byte_count_now / 1e6f),
|
(byte_count_now / 1e6f),
|
||||||
time_difference,
|
time_difference,
|
||||||
(rate / 1e6f),
|
(rate / 1e6f),
|
||||||
dB_full_scale_ratio
|
dB_full_scale_ratio
|
||||||
);
|
);
|
||||||
|
if (display_stats) {
|
||||||
|
bool tx = transmit || signalsource;
|
||||||
|
result = update_stats(device, &state, &stats);
|
||||||
|
if (result != HACKRF_SUCCESS)
|
||||||
|
fprintf(stderr, "\nhackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||||
|
else
|
||||||
|
fprintf(stderr, ", %d bytes %s in buffer, %u %s, longest %u bytes\n",
|
||||||
|
tx ? state.m4_count - state.m0_count : state.m0_count - state.m4_count,
|
||||||
|
tx ? "filled" : "free",
|
||||||
|
state.num_shortfalls,
|
||||||
|
tx ? "underruns" : "overruns",
|
||||||
|
state.longest_shortfall);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
time_start = time_now;
|
time_start = time_now;
|
||||||
@ -1146,6 +1211,24 @@ int main(int argc, char** argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (display_stats) {
|
||||||
|
result = update_stats(device, &state, &stats);
|
||||||
|
if (result != HACKRF_SUCCESS) {
|
||||||
|
fprintf(stderr, "hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr,
|
||||||
|
"Transfer statistics:\n"
|
||||||
|
"%lu bytes transferred by M0\n"
|
||||||
|
"%lu bytes transferred by M4\n"
|
||||||
|
"%u %s, longest %u bytes\n",
|
||||||
|
stats.m0_total,
|
||||||
|
stats.m4_total,
|
||||||
|
state.num_shortfalls,
|
||||||
|
(transmit || signalsource) ? "underruns" : "overruns",
|
||||||
|
state.longest_shortfall);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
result = hackrf_close(device);
|
result = hackrf_close(device);
|
||||||
if(result != HACKRF_SUCCESS) {
|
if(result != HACKRF_SUCCESS) {
|
||||||
fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
|
fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||||
|
@ -24,7 +24,7 @@
|
|||||||
cmake_minimum_required(VERSION 2.8)
|
cmake_minimum_required(VERSION 2.8)
|
||||||
project(libhackrf C)
|
project(libhackrf C)
|
||||||
set(MAJOR_VERSION 0)
|
set(MAJOR_VERSION 0)
|
||||||
set(MINOR_VERSION 6)
|
set(MINOR_VERSION 7)
|
||||||
set(PACKAGE libhackrf)
|
set(PACKAGE libhackrf)
|
||||||
set(VERSION_STRING ${MAJOR_VERSION}.${MINOR_VERSION})
|
set(VERSION_STRING ${MAJOR_VERSION}.${MINOR_VERSION})
|
||||||
set(VERSION ${VERSION_STRING})
|
set(VERSION ${VERSION_STRING})
|
||||||
|
@ -46,9 +46,13 @@ typedef int bool;
|
|||||||
#ifdef HACKRF_BIG_ENDIAN
|
#ifdef HACKRF_BIG_ENDIAN
|
||||||
#define TO_LE(x) __builtin_bswap32(x)
|
#define TO_LE(x) __builtin_bswap32(x)
|
||||||
#define TO_LE64(x) __builtin_bswap64(x)
|
#define TO_LE64(x) __builtin_bswap64(x)
|
||||||
|
#define FROM_LE16(x) __builtin_bswap16(x)
|
||||||
|
#define FROM_LE32(x) __builtin_bswap32(x)
|
||||||
#else
|
#else
|
||||||
#define TO_LE(x) x
|
#define TO_LE(x) x
|
||||||
#define TO_LE64(x) x
|
#define TO_LE64(x) x
|
||||||
|
#define FROM_LE16(x) x
|
||||||
|
#define FROM_LE32(x) x
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// TODO: Factor this into a shared #include so that firmware can use
|
// TODO: Factor this into a shared #include so that firmware can use
|
||||||
@ -92,6 +96,9 @@ typedef enum {
|
|||||||
HACKRF_VENDOR_REQUEST_OPERACAKE_SET_MODE = 38,
|
HACKRF_VENDOR_REQUEST_OPERACAKE_SET_MODE = 38,
|
||||||
HACKRF_VENDOR_REQUEST_OPERACAKE_GET_MODE = 39,
|
HACKRF_VENDOR_REQUEST_OPERACAKE_GET_MODE = 39,
|
||||||
HACKRF_VENDOR_REQUEST_OPERACAKE_SET_DWELL_TIMES = 40,
|
HACKRF_VENDOR_REQUEST_OPERACAKE_SET_DWELL_TIMES = 40,
|
||||||
|
HACKRF_VENDOR_REQUEST_GET_M0_STATE = 41,
|
||||||
|
HACKRF_VENDOR_REQUEST_SET_TX_UNDERRUN_LIMIT = 42,
|
||||||
|
HACKRF_VENDOR_REQUEST_SET_RX_OVERRUN_LIMIT = 43,
|
||||||
} hackrf_vendor_request;
|
} hackrf_vendor_request;
|
||||||
|
|
||||||
#define USB_CONFIG_STANDARD 0x1
|
#define USB_CONFIG_STANDARD 0x1
|
||||||
@ -1007,6 +1014,92 @@ int ADDCALL hackrf_rffc5071_write(hackrf_device* device, uint8_t register_number
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int ADDCALL hackrf_get_m0_state(hackrf_device* device, hackrf_m0_state* state)
|
||||||
|
{
|
||||||
|
USB_API_REQUIRED(device, 0x0106)
|
||||||
|
int result;
|
||||||
|
|
||||||
|
result = libusb_control_transfer(
|
||||||
|
device->usb_device,
|
||||||
|
LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
|
||||||
|
HACKRF_VENDOR_REQUEST_GET_M0_STATE,
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
(unsigned char*)state,
|
||||||
|
sizeof(hackrf_m0_state),
|
||||||
|
0
|
||||||
|
);
|
||||||
|
|
||||||
|
if( result < sizeof(hackrf_m0_state) )
|
||||||
|
{
|
||||||
|
last_libusb_error = result;
|
||||||
|
return HACKRF_ERROR_LIBUSB;
|
||||||
|
} else {
|
||||||
|
state->request_flag = FROM_LE16(state->request_flag);
|
||||||
|
state->requested_mode = FROM_LE16(state->requested_mode);
|
||||||
|
state->active_mode = FROM_LE32(state->active_mode);
|
||||||
|
state->m0_count = FROM_LE32(state->m0_count);
|
||||||
|
state->m4_count = FROM_LE32(state->m4_count);
|
||||||
|
state->num_shortfalls = FROM_LE32(state->num_shortfalls);
|
||||||
|
state->longest_shortfall = FROM_LE32(state->longest_shortfall);
|
||||||
|
state->shortfall_limit = FROM_LE32(state->shortfall_limit);
|
||||||
|
state->threshold = FROM_LE32(state->threshold);
|
||||||
|
state->next_mode = FROM_LE32(state->next_mode);
|
||||||
|
state->error = FROM_LE32(state->error);
|
||||||
|
return HACKRF_SUCCESS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int ADDCALL hackrf_set_tx_underrun_limit(hackrf_device* device, uint32_t value)
|
||||||
|
{
|
||||||
|
USB_API_REQUIRED(device, 0x0106)
|
||||||
|
int result;
|
||||||
|
|
||||||
|
result = libusb_control_transfer(
|
||||||
|
device->usb_device,
|
||||||
|
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
|
||||||
|
HACKRF_VENDOR_REQUEST_SET_TX_UNDERRUN_LIMIT,
|
||||||
|
value & 0xffff,
|
||||||
|
value >> 16,
|
||||||
|
NULL,
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
);
|
||||||
|
|
||||||
|
if( result != 0 )
|
||||||
|
{
|
||||||
|
last_libusb_error = result;
|
||||||
|
return HACKRF_ERROR_LIBUSB;
|
||||||
|
} else {
|
||||||
|
return HACKRF_SUCCESS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int ADDCALL hackrf_set_rx_overrun_limit(hackrf_device* device, uint32_t value)
|
||||||
|
{
|
||||||
|
USB_API_REQUIRED(device, 0x0106)
|
||||||
|
int result;
|
||||||
|
|
||||||
|
result = libusb_control_transfer(
|
||||||
|
device->usb_device,
|
||||||
|
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
|
||||||
|
HACKRF_VENDOR_REQUEST_SET_RX_OVERRUN_LIMIT,
|
||||||
|
value & 0xffff,
|
||||||
|
value >> 16,
|
||||||
|
NULL,
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
);
|
||||||
|
|
||||||
|
if( result != 0 )
|
||||||
|
{
|
||||||
|
last_libusb_error = result;
|
||||||
|
return HACKRF_ERROR_LIBUSB;
|
||||||
|
} else {
|
||||||
|
return HACKRF_SUCCESS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
int ADDCALL hackrf_spiflash_erase(hackrf_device* device)
|
int ADDCALL hackrf_spiflash_erase(hackrf_device* device)
|
||||||
{
|
{
|
||||||
int result;
|
int result;
|
||||||
|
@ -155,6 +155,32 @@ typedef struct {
|
|||||||
uint8_t port;
|
uint8_t port;
|
||||||
} hackrf_operacake_freq_range;
|
} hackrf_operacake_freq_range;
|
||||||
|
|
||||||
|
/** State of the SGPIO loop running on the M0 core. */
|
||||||
|
typedef struct {
|
||||||
|
/** Requested mode. */
|
||||||
|
uint16_t requested_mode;
|
||||||
|
/** Request flag. */
|
||||||
|
uint16_t request_flag;
|
||||||
|
/** Active mode. */
|
||||||
|
uint32_t active_mode;
|
||||||
|
/** Number of bytes transferred by the M0. */
|
||||||
|
uint32_t m0_count;
|
||||||
|
/** Number of bytes transferred by the M4. */
|
||||||
|
uint32_t m4_count;
|
||||||
|
/** Number of shortfalls. */
|
||||||
|
uint32_t num_shortfalls;
|
||||||
|
/** Longest shortfall. */
|
||||||
|
uint32_t longest_shortfall;
|
||||||
|
/** Shortfall limit in bytes. */
|
||||||
|
uint32_t shortfall_limit;
|
||||||
|
/** Threshold m0_count value for next mode change. */
|
||||||
|
uint32_t threshold;
|
||||||
|
/** Mode which will be switched to when threshold is reached. */
|
||||||
|
uint32_t next_mode;
|
||||||
|
/** Error, if any, that caused the M0 to revert to IDLE mode. */
|
||||||
|
uint32_t error;
|
||||||
|
} hackrf_m0_state;
|
||||||
|
|
||||||
struct hackrf_device_list {
|
struct hackrf_device_list {
|
||||||
char **serial_numbers;
|
char **serial_numbers;
|
||||||
enum hackrf_usb_board_id *usb_board_ids;
|
enum hackrf_usb_board_id *usb_board_ids;
|
||||||
@ -193,6 +219,10 @@ extern ADDAPI int ADDCALL hackrf_stop_rx(hackrf_device* device);
|
|||||||
extern ADDAPI int ADDCALL hackrf_start_tx(hackrf_device* device, hackrf_sample_block_cb_fn callback, void* tx_ctx);
|
extern ADDAPI int ADDCALL hackrf_start_tx(hackrf_device* device, hackrf_sample_block_cb_fn callback, void* tx_ctx);
|
||||||
extern ADDAPI int ADDCALL hackrf_stop_tx(hackrf_device* device);
|
extern ADDAPI int ADDCALL hackrf_stop_tx(hackrf_device* device);
|
||||||
|
|
||||||
|
extern ADDAPI int ADDCALL hackrf_get_m0_state(hackrf_device* device, hackrf_m0_state* value);
|
||||||
|
extern ADDAPI int ADDCALL hackrf_set_tx_underrun_limit(hackrf_device* device, uint32_t value);
|
||||||
|
extern ADDAPI int ADDCALL hackrf_set_rx_overrun_limit(hackrf_device* device, uint32_t value);
|
||||||
|
|
||||||
/* return HACKRF_TRUE if success */
|
/* return HACKRF_TRUE if success */
|
||||||
extern ADDAPI int ADDCALL hackrf_is_streaming(hackrf_device* device);
|
extern ADDAPI int ADDCALL hackrf_is_streaming(hackrf_device* device);
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user