Merge pull request #982 from martinling/bug-180
Firmware sample buffer management overhaul, including safe handling of TX underruns
This commit is contained in:
@ -43,6 +43,7 @@ set(SRC_M4
|
||||
usb_endpoint.c
|
||||
usb_api_board_info.c
|
||||
usb_api_cpld.c
|
||||
usb_api_m0_state.c
|
||||
usb_api_register.c
|
||||
usb_api_spiflash.c
|
||||
usb_api_transceiver.c
|
||||
|
@ -49,6 +49,7 @@
|
||||
#include "usb_api_transceiver.h"
|
||||
#include "usb_api_ui.h"
|
||||
#include "usb_bulk_buffer.h"
|
||||
#include "usb_api_m0_state.h"
|
||||
#include "cpld_xc2c.h"
|
||||
#include "portapack.h"
|
||||
|
||||
@ -114,6 +115,9 @@ static usb_request_handler_fn vendor_request_handler[] = {
|
||||
usb_vendor_request_operacake_set_mode,
|
||||
usb_vendor_request_operacake_get_mode,
|
||||
usb_vendor_request_operacake_set_dwell_times,
|
||||
usb_vendor_request_get_m0_state,
|
||||
usb_vendor_request_set_tx_underrun_limit,
|
||||
usb_vendor_request_set_rx_overrun_limit,
|
||||
};
|
||||
|
||||
static const uint32_t vendor_request_handler_count =
|
||||
|
@ -37,6 +37,40 @@ The SGPIO peripheral is set up and enabled by the M4 core. All the M0 needs to
|
||||
do is handle the SGPIO exchange interrupt, which indicates that new data can
|
||||
now be read from or written to the SGPIO shadow registers.
|
||||
|
||||
To implement the different functions of HackRF, the M0 operates in one of
|
||||
five modes, configured by the M4:
|
||||
|
||||
IDLE: Do nothing.
|
||||
WAIT: Do nothing, but increment byte counter for timing purposes.
|
||||
RX: Read data from SGPIO and write it to the buffer.
|
||||
TX_START: Write zeroes to SGPIO until there is data in the buffer.
|
||||
TX_RUN: Read data from the buffer and write it to SGPIO.
|
||||
|
||||
In all modes except IDLE, the M0 advances a byte counter, which increases by
|
||||
32 each time that many bytes are exchanged with the buffer (or skipped over,
|
||||
in WAIT mode).
|
||||
|
||||
As the M4 core produces or consumes these bytes, it advances its own counter.
|
||||
The difference between the two counter values therefore indicates the number
|
||||
of bytes available.
|
||||
|
||||
If the M4 does not advance its count in time, a TX underrun or RX overrun
|
||||
occurs. Collectively, these events are referred to as shortfalls, and the
|
||||
handling is similar for both.
|
||||
|
||||
In an RX shortfall, data is discarded. In TX mode, zeroes are written to
|
||||
SGPIO. When in a shortfall, the byte counter does not advance.
|
||||
|
||||
The M0 maintains statistics on the the number of shortfalls, and the length of
|
||||
the longest shortfall.
|
||||
|
||||
The M0 can be configured to abort TX or RX and return to IDLE mode, if the
|
||||
length of a shortfall exceeds a configured limit.
|
||||
|
||||
The M0 can also be configured to switch modes automatically when its byte
|
||||
counter matches a threshold value. This feature can be used to implement
|
||||
timed operations.
|
||||
|
||||
Timing
|
||||
======
|
||||
|
||||
@ -64,10 +98,12 @@ These latencies are assumed to apply to all accesses to the SGPIO peripheral's
|
||||
address space, which includes its interrupt control registers as well as the
|
||||
shadow registers.
|
||||
|
||||
There are two key code paths, with the following worst-case timings:
|
||||
There are four key code paths, with the following worst-case timings:
|
||||
|
||||
RX: 140 cycles
|
||||
TX: 125 cycles
|
||||
RX, normal: 152 cycles
|
||||
RX, overrun: 76 cycles
|
||||
TX, normal: 140 cycles
|
||||
TX, underrun: 145 cycles
|
||||
|
||||
Design
|
||||
======
|
||||
@ -87,6 +123,78 @@ used to store values needed in the code, to minimise memory loads and stores.
|
||||
There are no function calls. There is no stack usage. All values are in
|
||||
registers and fixed memory addresses.
|
||||
|
||||
Structure
|
||||
=========
|
||||
|
||||
Each mode has its own loop routine. TX_START and TX_RUN use a single TX loop.
|
||||
|
||||
Code shared between different modes is implemented in macros and duplicated
|
||||
within each mode's own loop.
|
||||
|
||||
At startup, the main routine sets up registers and memory, then falls through
|
||||
to the idle loop.
|
||||
|
||||
The idle loop waits for a mode to be set, then jumps to that mode's start
|
||||
label.
|
||||
|
||||
Code following the start label is executed only on a transition from IDLE. It
|
||||
is at this point that the buffer statistics are reset.
|
||||
|
||||
Each mode's start code then falls through to its loop label.
|
||||
|
||||
The first step in each loop is to wait for an SGPIO interrupt and clear it,
|
||||
which is implemented by the await_sgpio macro.
|
||||
|
||||
Then, the mode setting is loaded from memory. If the M4 has reset the mode to
|
||||
idle, control jumps back to the idle loop after handling any cleanup needed.
|
||||
|
||||
Next, any SGPIO operations are carried out. For RX and TX, this begins with
|
||||
calculating the buffer margin, and branching if there is a shortfall. Then
|
||||
the pointer within the buffer is updated.
|
||||
|
||||
SGPIO reads and writes are implemented in 16-byte chunks. The four lowest
|
||||
registers, r0-r3, are used to temporarily hold the data for each chunk. Data
|
||||
is stored in-order in the buffer, but out-of-order in the SGPIO shadow
|
||||
registers, due to the SGPIO architecture. A combination of single and
|
||||
multiple load/stores is used to reorder the data in each chunk.
|
||||
|
||||
After completing SGPIO operations, counters are updated and the threshold
|
||||
setting is checked. If the byte count has reached the threshold, the next
|
||||
mode is set and a jump is made directly to the corresponding loop label.
|
||||
Code at the start label of the new mode is not executed, so stats and
|
||||
counters are maintained across a sequence of TX/RX/WAIT operations.
|
||||
|
||||
When a shortfall occurs, a branch is taken to a separate handler routine,
|
||||
which branches back to the mode's normal loop when complete.
|
||||
|
||||
Most of the code for shortfall handling is common to RX and TX, and is
|
||||
implemented in the handle_shortfall macro. This is primarily concerned with
|
||||
updating statistics, but also handles switching back to IDLE mode if a
|
||||
shortfall exceeds the configured limit.
|
||||
|
||||
There is a rollback mechanism implemented in the shortfall handling. This is
|
||||
necessary because it is common for a harmless shortfall to occur during
|
||||
shutdown, which produces misleading statistics. The code detects this case
|
||||
when the mode is changed to IDLE whilst a shortfall is ongoing. If this
|
||||
happens, statistics are rolled back to their values at the beginning of the
|
||||
shortfall.
|
||||
|
||||
The backup of previous values is implemented in handle_shortfall when a new
|
||||
shortfall is detected, and the rollback is implemented by the
|
||||
checked_rollback routine. This routine is executed by the TX and RX loops
|
||||
before returning to the idle loop.
|
||||
|
||||
Organisation
|
||||
============
|
||||
|
||||
The rest of this file is organised as follows:
|
||||
|
||||
- Constant definitions
|
||||
- Fixed register allocations
|
||||
- Macros
|
||||
- Ordering constraints
|
||||
- Finally, the actual code!
|
||||
|
||||
*/
|
||||
|
||||
// Constants that point to registers we'll need to modify in the SGPIO block.
|
||||
@ -99,14 +207,38 @@ registers and fixed memory addresses.
|
||||
|
||||
// Buffer that we're funneling data to/from.
|
||||
.equ TARGET_DATA_BUFFER, 0x20008000
|
||||
.equ TARGET_BUFFER_SIZE, 0x8000
|
||||
.equ TARGET_BUFFER_MASK, 0x7fff
|
||||
|
||||
// Base address of the state structure.
|
||||
.equ STATE_BASE, 0x20007000
|
||||
|
||||
// Offsets into the state structure.
|
||||
.equ OFFSET, 0x00
|
||||
.equ TX, 0x04
|
||||
.equ REQUESTED_MODE, 0x00
|
||||
.equ ACTIVE_MODE, 0x04
|
||||
.equ M0_COUNT, 0x08
|
||||
.equ M4_COUNT, 0x0C
|
||||
.equ NUM_SHORTFALLS, 0x10
|
||||
.equ LONGEST_SHORTFALL, 0x14
|
||||
.equ SHORTFALL_LIMIT, 0x18
|
||||
.equ THRESHOLD, 0x1C
|
||||
.equ NEXT_MODE, 0x20
|
||||
.equ ERROR, 0x24
|
||||
|
||||
// Private variables stored after state.
|
||||
.equ PREV_LONGEST_SHORTFALL, 0x28
|
||||
|
||||
// Operating modes.
|
||||
.equ MODE_IDLE, 0
|
||||
.equ MODE_WAIT, 1
|
||||
.equ MODE_RX, 2
|
||||
.equ MODE_TX_START, 3
|
||||
.equ MODE_TX_RUN, 4
|
||||
|
||||
// Error codes.
|
||||
.equ ERROR_NONE, 0
|
||||
.equ ERROR_RX_TIMEOUT, 1
|
||||
.equ ERROR_TX_TIMEOUT, 2
|
||||
|
||||
// Our slice chain is set up as follows (ascending data age; arrows are reversed for flow):
|
||||
// L -> F -> K -> C -> J -> E -> I -> A
|
||||
@ -123,38 +255,26 @@ registers and fixed memory addresses.
|
||||
|
||||
/* Allocations of single-use registers */
|
||||
|
||||
buf_size_minus_32 .req r14
|
||||
state .req r13
|
||||
buf_base .req r12
|
||||
buf_mask .req r11
|
||||
shortfall_length .req r10
|
||||
hi_zero .req r9
|
||||
sgpio_data .req r7
|
||||
sgpio_int .req r6
|
||||
buf_ptr .req r5
|
||||
count .req r5
|
||||
buf_ptr .req r4
|
||||
|
||||
// Entry point. At this point, the libopencm3 startup code has set things up as
|
||||
// normal; .data and .bss are initialised, the stack is set up, etc. However,
|
||||
// we don't actually use any of that. All the code in this file would work
|
||||
// fine if the M0 jumped straight to main at reset.
|
||||
.global main
|
||||
.thumb_func
|
||||
main: // Cycle counts:
|
||||
// Initialise registers used for constant values.
|
||||
value .req r0
|
||||
ldr sgpio_int, =SGPIO_EXCHANGE_INTERRUPT_BASE // sgpio_int = SGPIO_INT_BASE // 2
|
||||
ldr sgpio_data, =SGPIO_SHADOW_REGISTERS_BASE // sgpio_data = SGPIO_REG_SS // 2
|
||||
ldr value, =TARGET_DATA_BUFFER // value = TARGET_DATA_BUFFER // 2
|
||||
mov buf_base, value // buf_base = value // 1
|
||||
ldr value, =TARGET_BUFFER_MASK // value = TARGET_DATA_MASK // 2
|
||||
mov buf_mask, value // buf_mask = value // 1
|
||||
ldr value, =STATE_BASE // value = STATE_BASE // 2
|
||||
mov state, value // state = value // 1
|
||||
/* Macros */
|
||||
|
||||
// Initialise state.
|
||||
zero .req r0
|
||||
mov zero, #0 // zero = 0 // 1
|
||||
str zero, [state, #OFFSET] // state.offset = zero // 2
|
||||
str zero, [state, #TX] // state.tx = zero // 2
|
||||
.macro await_sgpio name
|
||||
// Wait for, then clear, SGPIO exchange interrupt flag.
|
||||
//
|
||||
// Clobbers:
|
||||
int_status .req r0
|
||||
scratch .req r1
|
||||
|
||||
loop:
|
||||
// The worst case timing is assumed to occur when reading the interrupt
|
||||
// status register *just* misses the flag being set - so we include the
|
||||
// cycles required to check it a second time.
|
||||
@ -169,76 +289,410 @@ loop:
|
||||
// relying on any assumptions about the timing details of a read over
|
||||
// the SGPIO to AHB bridge.
|
||||
|
||||
int_status .req r0
|
||||
scratch .req r1
|
||||
|
||||
// Spin until we're ready to handle an SGPIO packet:
|
||||
// Grab the exchange interrupt status...
|
||||
\name\()_int_wait:
|
||||
// Spin on the exchange interrupt status, shifting the slice A flag to the carry flag.
|
||||
ldr int_status, [sgpio_int, #INT_STATUS] // int_status = SGPIO_STATUS_1 // 10, twice
|
||||
|
||||
// ... check to see if bit #0 (slice A) was set, by shifting it into the carry bit...
|
||||
lsr scratch, int_status, #1 // scratch = int_status >> 1 // 1, twice
|
||||
|
||||
// ... and if not, jump back to the beginning.
|
||||
bcc loop // if !carry: goto loop // 3, then 1
|
||||
bcc \name\()_int_wait // if !carry: goto int_wait // 3, then 1
|
||||
|
||||
// Clear the interrupt pending bits that were set.
|
||||
str int_status, [sgpio_int, #INT_CLEAR] // SGPIO_CLR_STATUS_1 = int_status // 8
|
||||
.endm
|
||||
|
||||
// ... and grab the address of the buffer segment we want to write to / read from.
|
||||
ldr buf_ptr, [state, #OFFSET] // buf_ptr = state.offset // 2
|
||||
.macro on_request label
|
||||
// Check if a new mode change request was made, and if so jump to the given label.
|
||||
mode .req r3
|
||||
flag .req r2
|
||||
ldr mode, [state, #REQUESTED_MODE] // mode = state.requested_mode // 2
|
||||
lsr flag, mode, #16 // flag = mode >> 16 // 1
|
||||
bne \label // if flag != 0: goto label // 1 thru, 3 taken
|
||||
.endm
|
||||
|
||||
.macro update_buf_ptr
|
||||
// Update the address of the buffer segment we want to write to / read from.
|
||||
mov buf_ptr, buf_mask // buf_ptr = buf_mask // 1
|
||||
and buf_ptr, count // buf_ptr &= count // 1
|
||||
add buf_ptr, buf_base // buf_ptr += buf_base // 1
|
||||
.endm
|
||||
|
||||
tx .req r0
|
||||
.macro update_counts
|
||||
// Update counts after successful SGPIO operation.
|
||||
|
||||
// Load direction (TX or RX)
|
||||
ldr tx, [state, #TX] // tx = state.tx // 2
|
||||
// Update the byte count and store the new value.
|
||||
add count, #32 // count += 32 // 1
|
||||
str count, [state, #M0_COUNT] // state.m0_count = count // 2
|
||||
|
||||
// TX?
|
||||
lsr tx, #1 // tx >>= 1 // 1
|
||||
bcc direction_rx // if !carry: goto direction_rx // 1 thru, 3 taken
|
||||
// We didn't have a shortfall, so the current shortfall length is zero.
|
||||
mov shortfall_length, hi_zero // shortfall_length = hi_zero // 1
|
||||
.endm
|
||||
|
||||
direction_tx:
|
||||
.macro jump_next_mode name
|
||||
// Jump to next mode if the byte count threshold has been reached.
|
||||
//
|
||||
// Clobbers:
|
||||
threshold .req r0
|
||||
new_mode .req r1
|
||||
|
||||
// Check count against threshold. If not a match, return to start of current loop.
|
||||
ldr threshold, [state, #THRESHOLD] // threshold = state.threshold // 2
|
||||
cmp count, threshold // if count != threshold: // 1
|
||||
bne \name\()_loop // goto loop // 1 thru, 3 taken
|
||||
|
||||
// Otherwise, load and set new mode.
|
||||
ldr new_mode, [state, #NEXT_MODE] // new_mode = state.next_mode // 2
|
||||
str new_mode, [state, #ACTIVE_MODE] // state.active_mode = new_mode // 2
|
||||
|
||||
// Branch according to new mode.
|
||||
cmp new_mode, #MODE_RX // if new_mode == RX: // 1
|
||||
beq rx_loop // goto rx_loop // 1 thru, 3 taken
|
||||
bgt tx_loop // elif new_mode > RX: goto tx_loop // 1 thru, 3 taken
|
||||
cmp new_mode, #MODE_WAIT // if new_mode == WAIT: // 1
|
||||
beq wait_loop // goto wait_loop // 1 thru, 3 taken
|
||||
b idle // goto idle // 3
|
||||
.endm
|
||||
|
||||
.macro handle_shortfall name
|
||||
// Handle a shortfall.
|
||||
//
|
||||
// Clobbers:
|
||||
length .req r0
|
||||
num .req r1
|
||||
prev .req r1
|
||||
longest .req r1
|
||||
limit .req r1
|
||||
|
||||
// Get current shortfall length from high register.
|
||||
mov length, shortfall_length // length = shortfall_length // 1
|
||||
|
||||
// Is this a new shortfall?
|
||||
cmp length, #0 // if length > 0: // 1
|
||||
bgt \name\()_extend_shortfall // goto extend_shortfall // 1 thru, 3 taken
|
||||
|
||||
// If so, increase the shortfall count.
|
||||
ldr num, [state, #NUM_SHORTFALLS] // num = state.num_shortfalls // 2
|
||||
add num, #1 // num += 1 // 1
|
||||
str num, [state, #NUM_SHORTFALLS] // state.num_shortfalls = num // 2
|
||||
|
||||
// Back up previous longest shortfall.
|
||||
ldr prev, [state, #LONGEST_SHORTFALL] // prev = state.longest_shortfall // 2
|
||||
str prev, [state, #PREV_LONGEST_SHORTFALL] // prev_longest_shortfall = prev // 2
|
||||
|
||||
\name\()_extend_shortfall:
|
||||
|
||||
// Extend the length of the current shortfall, and store back in high register.
|
||||
add length, #32 // length += 32 // 1
|
||||
mov shortfall_length, length // shortfall_length = length // 1
|
||||
|
||||
// Is this now the longest shortfall?
|
||||
ldr longest, [state, #LONGEST_SHORTFALL] // longest = state.longest_shortfall // 2
|
||||
cmp length, longest // if length <= longest: // 1
|
||||
blt \name\()_loop // goto loop // 1 thru, 3 taken
|
||||
str length, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = length // 2
|
||||
|
||||
// Is this shortfall long enough to trigger a timeout?
|
||||
ldr limit, [state, #SHORTFALL_LIMIT] // limit = state.shortfall_limit // 2
|
||||
cmp limit, #0 // if limit == 0: // 1
|
||||
beq \name\()_loop // goto loop // 1 thru, 3 taken
|
||||
cmp length, limit // if length < limit: // 1
|
||||
blt \name\()_loop // goto loop // 1 thru, 3 taken
|
||||
|
||||
// If so, reset mode to idle and return to idle loop, logging an error.
|
||||
//
|
||||
// Modes are mapped to errors as follows:
|
||||
//
|
||||
// MODE_RX (2) -> ERROR_RX_TIMEOUT (1)
|
||||
// MODE_TX_RUN (4) -> ERROR_TX_TIMEOUT (2)
|
||||
//
|
||||
// As such, the error code can be obtained by shifting the mode right by 1 bit.
|
||||
|
||||
mode .req r3
|
||||
error .req r2
|
||||
ldr mode, [state, #ACTIVE_MODE] // mode = state.active_mode // 2
|
||||
lsr error, mode, #1 // error = mode >> 1 // 1
|
||||
str error, [state, #ERROR] // state.error = error // 2
|
||||
mov mode, #MODE_IDLE // mode = MODE_IDLE // 1
|
||||
str mode, [state, #ACTIVE_MODE] // state.active_mode = mode // 2
|
||||
b idle // goto idle // 3
|
||||
.endm
|
||||
|
||||
/*
|
||||
|
||||
Ordering constraints
|
||||
====================
|
||||
|
||||
The following routines are in an unusual order, to preserve the ability to
|
||||
use PC-relative conditional branches between them ("b<cond> label"). The
|
||||
ordering has been chosen to ensure that all routines are close enough to each
|
||||
other for the limited range of these instructions (−256 bytes to +254 bytes).
|
||||
|
||||
The ordering of routines, and which others each needs to be able to reach, is
|
||||
as follows:
|
||||
|
||||
Routine: Uses conditional branches to:
|
||||
|
||||
idle tx_loop, wait_loop
|
||||
tx_zeros tx_loop
|
||||
checked_rollback idle
|
||||
tx_loop tx_zeros, checked_rollback, rx_loop, wait_loop
|
||||
wait_loop rx_loop, tx_loop
|
||||
rx_loop rx_shortfall, checked_rollback, tx_loop, wait_loop
|
||||
rx_shortfall rx_loop
|
||||
|
||||
If any of these routines are reordered, or made longer, you may get an error
|
||||
from the assembler saying that a branch is out of range.
|
||||
|
||||
*/
|
||||
|
||||
// Entry point. At this point, the libopencm3 startup code has set things up as
|
||||
// normal; .data and .bss are initialised, the stack is set up, etc. However,
|
||||
// we don't actually use any of that. All the code in this file would work
|
||||
// fine if the M0 jumped straight to main at reset.
|
||||
.global main
|
||||
.thumb_func
|
||||
main: // Cycle counts:
|
||||
// Initialise registers used for constant values.
|
||||
value .req r0
|
||||
ldr sgpio_int, =SGPIO_EXCHANGE_INTERRUPT_BASE // sgpio_int = SGPIO_INT_BASE // 2
|
||||
ldr sgpio_data, =SGPIO_SHADOW_REGISTERS_BASE // sgpio_data = SGPIO_REG_SS // 2
|
||||
ldr value, =(TARGET_BUFFER_SIZE - 32) // value = TARGET_BUFFER_SIZE - 32 // 2
|
||||
mov buf_size_minus_32, value // buf_size_minus_32 = value // 1
|
||||
ldr value, =TARGET_DATA_BUFFER // value = TARGET_DATA_BUFFER // 2
|
||||
mov buf_base, value // buf_base = value // 1
|
||||
ldr value, =TARGET_BUFFER_MASK // value = TARGET_DATA_MASK // 2
|
||||
mov buf_mask, value // buf_mask = value // 1
|
||||
ldr value, =STATE_BASE // value = STATE_BASE // 2
|
||||
mov state, value // state = value // 1
|
||||
zero .req r0
|
||||
mov zero, #0 // zero = 0 // 1
|
||||
mov hi_zero, zero // hi_zero = zero // 1
|
||||
|
||||
// Initialise state.
|
||||
str zero, [state, #REQUESTED_MODE] // state.requested_mode = zero // 2
|
||||
str zero, [state, #ACTIVE_MODE] // state.active_mode = zero // 2
|
||||
str zero, [state, #M0_COUNT] // state.m0_count = zero // 2
|
||||
str zero, [state, #M4_COUNT] // state.m4_count = zero // 2
|
||||
str zero, [state, #NUM_SHORTFALLS] // state.num_shortfalls = zero // 2
|
||||
str zero, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = zero // 2
|
||||
str zero, [state, #SHORTFALL_LIMIT] // state.shortfall_limit = zero // 2
|
||||
str zero, [state, #THRESHOLD] // state.threshold = zero // 2
|
||||
str zero, [state, #NEXT_MODE] // state.next_mode = zero // 2
|
||||
str zero, [state, #ERROR] // state.error = zero // 2
|
||||
|
||||
idle:
|
||||
// Wait for a mode to be requested, then set up the new mode and acknowledge the request.
|
||||
mode .req r3
|
||||
flag .req r2
|
||||
zero .req r0
|
||||
|
||||
// Read the requested mode and check flag to see if this is a new request. If not, ignore.
|
||||
ldr mode, [state, #REQUESTED_MODE] // mode = state.requested_mode // 2
|
||||
lsr flag, mode, #16 // flag = mode >> 16 // 1
|
||||
beq idle // if flag == 0: goto idle // 1 thru, 3 taken
|
||||
|
||||
// Otherwise, this is a new request. The M4 is blocked at this point,
|
||||
// waiting for us to clear the request flag. So we can safely write to
|
||||
// all parts of the state.
|
||||
|
||||
// Set the new mode as both active & next.
|
||||
uxth mode, mode // mode = mode & 0xFFFF // 1
|
||||
str mode, [state, #ACTIVE_MODE] // state.active_mode = mode // 2
|
||||
str mode, [state, #NEXT_MODE] // state.next_mode = mode // 2
|
||||
|
||||
// Don't reset counts on a transition to IDLE.
|
||||
cmp mode, #MODE_IDLE // if mode == IDLE: // 1
|
||||
beq ack_request // goto ack_request // 1 thru, 3 taken
|
||||
|
||||
// For all other transitions, reset counts.
|
||||
mov zero, #0 // zero = 0 // 1
|
||||
str zero, [state, #M0_COUNT] // state.m0_count = zero // 2
|
||||
str zero, [state, #M4_COUNT] // state.m4_count = zero // 2
|
||||
str zero, [state, #NUM_SHORTFALLS] // state.num_shortfalls = zero // 2
|
||||
str zero, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = zero // 2
|
||||
str zero, [state, #THRESHOLD] // state.threshold = zero // 2
|
||||
str zero, [state, #PREV_LONGEST_SHORTFALL] // prev_longest_shortfall = zero // 2
|
||||
str zero, [state, #ERROR] // state.error = zero // 2
|
||||
mov shortfall_length, zero // shortfall_length = zero // 1
|
||||
mov count, zero // count = zero // 1
|
||||
|
||||
ack_request:
|
||||
// Clear SGPIO interrupt flag, which the M4 set to get our attention.
|
||||
str flag, [sgpio_int, #INT_CLEAR] // SGPIO_CLR_STATUS_1 = flag // 8
|
||||
|
||||
// Write back requested mode with the flag cleared to acknowledge the request.
|
||||
str mode, [state, #REQUESTED_MODE] // state.requested_mode = mode // 2
|
||||
|
||||
// Dispatch to appropriate loop.
|
||||
//
|
||||
// This code is arranged such that the branch to rx_loop is the
|
||||
// unconditional one - which is necessary since it's too far away to
|
||||
// use a conditional branch instruction.
|
||||
cmp mode, #MODE_WAIT // if mode < WAIT: // 1
|
||||
blt idle // goto idle // 1 thru, 3 taken
|
||||
beq wait_loop // elif mode == WAIT: goto wait_loop // 1 thru, 3 taken
|
||||
cmp mode, #MODE_RX // if mode > RX: // 1
|
||||
bgt tx_loop // goto tx_loop // 1 thru, 3 taken
|
||||
b rx_loop // goto rx_loop // 3
|
||||
|
||||
tx_zeros:
|
||||
|
||||
// Write zeros to SGPIO.
|
||||
mov zero, #0 // zero = 0 // 1
|
||||
str zero, [sgpio_data, #SLICE0] // SGPIO_REG_SS[SLICE0] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE1] // SGPIO_REG_SS[SLICE1] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE2] // SGPIO_REG_SS[SLICE2] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE3] // SGPIO_REG_SS[SLICE3] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE4] // SGPIO_REG_SS[SLICE4] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE5] // SGPIO_REG_SS[SLICE5] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE6] // SGPIO_REG_SS[SLICE6] = zero // 8
|
||||
str zero, [sgpio_data, #SLICE7] // SGPIO_REG_SS[SLICE7] = zero // 8
|
||||
|
||||
// If in TX start mode, don't count this as a shortfall.
|
||||
ldr mode, [state, #ACTIVE_MODE] // mode = state.active_mode // 2
|
||||
cmp mode, #MODE_TX_START // if mode == TX_START: // 1
|
||||
beq tx_loop // goto tx_loop // 1 thru, 3 taken
|
||||
|
||||
// Run common shortfall handling and jump back to TX loop start.
|
||||
handle_shortfall tx // handle_shortfall() // 24
|
||||
|
||||
checked_rollback:
|
||||
// Checked rollback handler. This code is run when the M0 is in a TX or RX mode, and is
|
||||
// placed back into IDLE mode by the M4. If there is an ongoing shortfall at this point,
|
||||
// it is assumed to be a shutdown artifact and rolled back.
|
||||
|
||||
// If there is no ongoing shortfall, there's nothing to do - jump back to idle loop.
|
||||
length .req r0
|
||||
mov length, shortfall_length // length = shortfall_length // 1
|
||||
cmp length, #0 // if length == 0: // 1
|
||||
beq idle // goto idle // 3
|
||||
|
||||
// Otherwise, roll back the state to ignore the current shortfall, then jump to idle.
|
||||
prev .req r0
|
||||
ldr prev, [state, #PREV_LONGEST_SHORTFALL] // prev = prev_longest_shortfall // 2
|
||||
str prev, [state, #LONGEST_SHORTFALL] // state.longest_shortfall = prev // 2
|
||||
ldr prev, [state, #NUM_SHORTFALLS] // prev = num_shortfalls // 2
|
||||
sub prev, #1 // prev -= 1 // 1
|
||||
str prev, [state, #NUM_SHORTFALLS] // state.num_shortfalls = prev // 2
|
||||
|
||||
b idle // goto idle // 3
|
||||
|
||||
tx_loop:
|
||||
|
||||
// Wait for and clear SGPIO interrupt.
|
||||
await_sgpio tx // await_sgpio() // 34
|
||||
|
||||
// Check if there is a mode change request.
|
||||
// If so, we may need to roll back shortfall stats.
|
||||
on_request checked_rollback // 4
|
||||
|
||||
// Check if there is enough data in the buffer.
|
||||
//
|
||||
// The number of bytes in the buffer is given by (m4_count - m0_count).
|
||||
// We need 32 bytes available to proceed. So our margin, which we want
|
||||
// to be positive or zero, is:
|
||||
//
|
||||
// buf_margin = m4_count - m0_count - 32
|
||||
//
|
||||
// If there is insufficient data, transmit zeros instead.
|
||||
buf_margin .req r0
|
||||
ldr buf_margin, [state, #M4_COUNT] // buf_margin = m4_count // 2
|
||||
sub buf_margin, count // buf_margin -= count // 1
|
||||
sub buf_margin, #32 // buf_margin -= 32 // 1
|
||||
bmi tx_zeros // if buf_margin < 0: goto tx_zeros // 1 thru, 3 taken
|
||||
|
||||
// Update buffer pointer.
|
||||
update_buf_ptr // update_buf_ptr() // 3
|
||||
|
||||
// At this point we know there is TX data available.
|
||||
// Set active mode to TX_RUN (it might still be TX_START).
|
||||
mov mode, #MODE_TX_RUN // mode = TX_RUN // 1
|
||||
str mode, [state, #ACTIVE_MODE] // state.active_mode = mode // 2
|
||||
|
||||
// Write data to SGPIO.
|
||||
ldm buf_ptr!, {r0-r3} // r0-r3 = buf_ptr[0:16]; buf_ptr += 16 // 5
|
||||
str r0, [sgpio_data, #SLICE0] // SGPIO_REG_SS[SLICE0] = r0 // 8
|
||||
str r1, [sgpio_data, #SLICE1] // SGPIO_REG_SS[SLICE1] = r1 // 8
|
||||
str r2, [sgpio_data, #SLICE2] // SGPIO_REG_SS[SLICE2] = r2 // 8
|
||||
str r3, [sgpio_data, #SLICE3] // SGPIO_REG_SS[SLICE3] = r3 // 8
|
||||
|
||||
ldm buf_ptr!, {r0-r3} // r0-r3 = buf_ptr[0:16]; buf_ptr += 16 // 5
|
||||
str r0, [sgpio_data, #SLICE4] // SGPIO_REG_SS[SLICE4] = r0 // 8
|
||||
str r1, [sgpio_data, #SLICE5] // SGPIO_REG_SS[SLICE5] = r1 // 8
|
||||
str r2, [sgpio_data, #SLICE6] // SGPIO_REG_SS[SLICE6] = r2 // 8
|
||||
str r3, [sgpio_data, #SLICE7] // SGPIO_REG_SS[SLICE7] = r3 // 8
|
||||
|
||||
b done // goto done // 3
|
||||
// Update counts.
|
||||
update_counts // update_counts() // 4
|
||||
|
||||
direction_rx:
|
||||
// Jump to next mode if threshold reached, or back to TX loop start.
|
||||
jump_next_mode tx // jump_next_mode() // 13
|
||||
|
||||
wait_loop:
|
||||
|
||||
// Wait for and clear SGPIO interrupt.
|
||||
await_sgpio wait // await_sgpio() // 34
|
||||
|
||||
// Check if there is a mode change request.
|
||||
// If so, return to idle.
|
||||
on_request idle // 4
|
||||
|
||||
// Update counts.
|
||||
update_counts // update_counts() // 4
|
||||
|
||||
// Jump to next mode if threshold reached, or back to wait loop start.
|
||||
jump_next_mode wait // jump_next_mode() // 15
|
||||
|
||||
rx_loop:
|
||||
|
||||
// Wait for and clear SGPIO interrupt.
|
||||
await_sgpio rx // await_sgpio() // 34
|
||||
|
||||
// Check if there is a mode change request.
|
||||
// If so, we may need to roll back shortfall stats.
|
||||
on_request checked_rollback // 4
|
||||
|
||||
// Check if there is enough space in the buffer.
|
||||
//
|
||||
// The number of bytes in the buffer is given by (m0_count - m4_count).
|
||||
// We need space for another 32 bytes to proceed. So our margin, which
|
||||
// we want to be positive or zero, is:
|
||||
//
|
||||
// buf_margin = buf_size - (m0_count - state.m4_count) - 32
|
||||
//
|
||||
// which can be rearranged for efficiency as:
|
||||
//
|
||||
// buf_margin = m4_count + (buf_size - 32) - m0_count
|
||||
//
|
||||
// If there is insufficient space, jump to shortfall handling.
|
||||
buf_margin .req r0
|
||||
ldr buf_margin, [state, #M4_COUNT] // buf_margin = state.m4_count // 2
|
||||
add buf_margin, buf_size_minus_32 // buf_margin += buf_size_minus_32 // 1
|
||||
sub buf_margin, count // buf_margin -= count // 1
|
||||
bmi rx_shortfall // if buf_margin < 0: goto rx_shortfall // 1 thru, 3 taken
|
||||
|
||||
// Update buffer pointer.
|
||||
update_buf_ptr // update_buf_ptr() // 3
|
||||
|
||||
// Read data from SGPIO.
|
||||
ldr r0, [sgpio_data, #SLICE0] // r0 = SGPIO_REG_SS[SLICE0] // 10
|
||||
ldr r1, [sgpio_data, #SLICE1] // r1 = SGPIO_REG_SS[SLICE1] // 10
|
||||
ldr r2, [sgpio_data, #SLICE2] // r2 = SGPIO_REG_SS[SLICE2] // 10
|
||||
ldr r3, [sgpio_data, #SLICE3] // r3 = SGPIO_REG_SS[SLICE3] // 10
|
||||
stm buf_ptr!, {r0-r3} // buf_ptr[0:16] = r0-r3; buf_ptr += 16 // 5
|
||||
|
||||
ldr r0, [sgpio_data, #SLICE4] // r0 = SGPIO_REG_SS[SLICE4] // 10
|
||||
ldr r1, [sgpio_data, #SLICE5] // r1 = SGPIO_REG_SS[SLICE5] // 10
|
||||
ldr r2, [sgpio_data, #SLICE6] // r2 = SGPIO_REG_SS[SLICE6] // 10
|
||||
ldr r3, [sgpio_data, #SLICE7] // r3 = SGPIO_REG_SS[SLICE7] // 10
|
||||
stm buf_ptr!, {r0-r3} // buf_ptr[0:16] = r0-r3; buf_ptr += 16 // 5
|
||||
|
||||
done:
|
||||
offset .req r0
|
||||
// Update counts.
|
||||
update_counts // update_counts() // 4
|
||||
|
||||
// Finally, update the buffer location...
|
||||
mov offset, buf_mask // offset = buf_mask // 1
|
||||
and offset, buf_ptr // offset &= buf_ptr // 1
|
||||
// Jump to next mode if threshold reached, or back to RX loop start.
|
||||
jump_next_mode rx // jump_next_mode() // 12
|
||||
|
||||
// ... and store the new position.
|
||||
str offset, [state, #OFFSET] // state.offset = offset // 2
|
||||
rx_shortfall:
|
||||
|
||||
b loop // goto loop // 3
|
||||
// Run common shortfall handling and jump back to RX loop.
|
||||
handle_shortfall rx // handle_shortfall() // 24
|
||||
|
||||
// The linker will put a literal pool here, so add a label for clearer objdump output:
|
||||
constants:
|
||||
|
60
firmware/hackrf_usb/usb_api_m0_state.c
Normal file
60
firmware/hackrf_usb/usb_api_m0_state.c
Normal file
@ -0,0 +1,60 @@
|
||||
/*
|
||||
* Copyright 2022 Great Scott Gadgets
|
||||
*
|
||||
* This file is part of HackRF.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2, or (at your option)
|
||||
* any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; see the file COPYING. If not, write to
|
||||
* the Free Software Foundation, Inc., 51 Franklin Street,
|
||||
* Boston, MA 02110-1301, USA.
|
||||
*/
|
||||
|
||||
#include "usb_api_m0_state.h"
|
||||
|
||||
#include <libopencm3/lpc43xx/sgpio.h>
|
||||
#include <stddef.h>
|
||||
#include <usb_request.h>
|
||||
#include <usb_queue.h>
|
||||
|
||||
void m0_set_mode(enum m0_mode mode)
|
||||
{
|
||||
// Set requested mode and flag bit.
|
||||
m0_state.requested_mode = M0_REQUEST_FLAG | mode;
|
||||
|
||||
// The M0 may be blocked waiting for the next SGPIO interrupt.
|
||||
// In order to ensure that it sees our request, we need to set
|
||||
// the interrupt flag here. The M0 will clear the flag again
|
||||
// before acknowledging our request.
|
||||
SGPIO_SET_STATUS_1 = (1 << SGPIO_SLICE_A);
|
||||
|
||||
// Wait for M0 to acknowledge by clearing the flag.
|
||||
while (m0_state.requested_mode & M0_REQUEST_FLAG);
|
||||
}
|
||||
|
||||
usb_request_status_t usb_vendor_request_get_m0_state(
|
||||
usb_endpoint_t* const endpoint,
|
||||
const usb_transfer_stage_t stage
|
||||
) {
|
||||
if( stage == USB_TRANSFER_STAGE_SETUP )
|
||||
{
|
||||
usb_transfer_schedule_block(
|
||||
endpoint->in,
|
||||
(void*) &m0_state,
|
||||
sizeof(m0_state),
|
||||
NULL, NULL);
|
||||
usb_transfer_schedule_ack(endpoint->out);
|
||||
return USB_REQUEST_STATUS_OK;
|
||||
} else {
|
||||
return USB_REQUEST_STATUS_OK;
|
||||
}
|
||||
}
|
@ -22,9 +22,36 @@
|
||||
#ifndef __M0_STATE_H__
|
||||
#define __M0_STATE_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <usb_request.h>
|
||||
|
||||
#define M0_REQUEST_FLAG (1 << 16)
|
||||
|
||||
struct m0_state {
|
||||
uint32_t offset;
|
||||
uint32_t tx;
|
||||
uint32_t requested_mode;
|
||||
uint32_t active_mode;
|
||||
uint32_t m0_count;
|
||||
uint32_t m4_count;
|
||||
uint32_t num_shortfalls;
|
||||
uint32_t longest_shortfall;
|
||||
uint32_t shortfall_limit;
|
||||
uint32_t threshold;
|
||||
uint32_t next_mode;
|
||||
uint32_t error;
|
||||
};
|
||||
|
||||
enum m0_mode {
|
||||
M0_MODE_IDLE = 0,
|
||||
M0_MODE_WAIT = 1,
|
||||
M0_MODE_RX = 2,
|
||||
M0_MODE_TX_START = 3,
|
||||
M0_MODE_TX_RUN = 4,
|
||||
};
|
||||
|
||||
enum m0_error {
|
||||
M0_ERROR_NONE = 0,
|
||||
M0_ERROR_RX_TIMEOUT = 1,
|
||||
M0_ERROR_TX_TIMEOUT = 2,
|
||||
};
|
||||
|
||||
/* Address of m0_state is set in ldscripts. If you change the name of this
|
||||
@ -33,4 +60,9 @@ struct m0_state {
|
||||
*/
|
||||
extern volatile struct m0_state m0_state;
|
||||
|
||||
void m0_set_mode(enum m0_mode mode);
|
||||
|
||||
usb_request_status_t usb_vendor_request_get_m0_state(
|
||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||
|
||||
#endif/*__M0_STATE_H__*/
|
@ -25,7 +25,7 @@
|
||||
#include <hackrf_core.h>
|
||||
#include "usb_api_transceiver.h"
|
||||
#include "usb_bulk_buffer.h"
|
||||
#include "m0_state.h"
|
||||
#include "usb_api_m0_state.h"
|
||||
#include "tuning.h"
|
||||
#include "usb_endpoint.h"
|
||||
#include "streaming.h"
|
||||
@ -87,86 +87,124 @@ usb_request_status_t usb_vendor_request_init_sweep(
|
||||
return USB_REQUEST_STATUS_OK;
|
||||
}
|
||||
|
||||
void sweep_bulk_transfer_complete(void *user_data, unsigned int bytes_transferred)
|
||||
{
|
||||
(void) user_data;
|
||||
(void) bytes_transferred;
|
||||
|
||||
// For each buffer transferred, we need to bump the count by three buffers
|
||||
// worth of data, to allow for the discarded buffers.
|
||||
m0_state.m4_count += 3 * 0x4000;
|
||||
}
|
||||
|
||||
void sweep_mode(uint32_t seq) {
|
||||
unsigned int blocks_queued = 0;
|
||||
unsigned int phase = 1;
|
||||
// Sweep mode is implemented using timed M0 operations, as follows:
|
||||
//
|
||||
// 0. M4 initially puts the M0 into RX mode, with an m0_count threshold
|
||||
// of 16K and a next mode of WAIT.
|
||||
//
|
||||
// 1. M4 spins until the M0 switches to WAIT mode.
|
||||
//
|
||||
// 2. M0 captures one 16K block of samples, and switches to WAIT mode.
|
||||
//
|
||||
// 3. M4 sees the mode change, advances the m0_count target by 32K, and
|
||||
// sets next mode to RX.
|
||||
//
|
||||
// 4. M4 adds the sweep metadata at the start of the block and
|
||||
// schedules a bulk transfer for the block.
|
||||
//
|
||||
// 5. M4 retunes - this takes about 760us worst-case, so should be
|
||||
// complete before the M0 goes back to RX.
|
||||
//
|
||||
// 6. M4 spins until the M0 mode changes to RX, then advances the
|
||||
// m0_count limit by 16K and sets the next mode to WAIT.
|
||||
//
|
||||
// 7. Process repeats from step 1.
|
||||
|
||||
unsigned int phase = 0;
|
||||
bool odd = true;
|
||||
uint16_t range = 0;
|
||||
|
||||
uint8_t *buffer;
|
||||
bool transfer = false;
|
||||
|
||||
transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP);
|
||||
|
||||
// Set M0 to RX first buffer, then wait.
|
||||
m0_state.threshold = 0x4000;
|
||||
m0_state.next_mode = M0_MODE_WAIT;
|
||||
|
||||
baseband_streaming_enable(&sgpio_config);
|
||||
|
||||
while (transceiver_request.seq == seq) {
|
||||
// Set up IN transfer of buffer 0.
|
||||
if ( m0_state.offset >= 16384 && phase == 1) {
|
||||
transfer = true;
|
||||
buffer = &usb_bulk_buffer[0x0000];
|
||||
phase = 0;
|
||||
blocks_queued++;
|
||||
}
|
||||
|
||||
// Set up IN transfer of buffer 1.
|
||||
if ( m0_state.offset < 16384 && phase == 0) {
|
||||
transfer = true;
|
||||
buffer = &usb_bulk_buffer[0x4000];
|
||||
phase = 1;
|
||||
blocks_queued++;
|
||||
}
|
||||
// Wait for M0 to finish receiving a buffer.
|
||||
while (m0_state.active_mode != M0_MODE_WAIT)
|
||||
if (transceiver_request.seq != seq)
|
||||
goto end;
|
||||
|
||||
if (transfer) {
|
||||
*buffer = 0x7f;
|
||||
*(buffer+1) = 0x7f;
|
||||
*(buffer+2) = sweep_freq & 0xff;
|
||||
*(buffer+3) = (sweep_freq >> 8) & 0xff;
|
||||
*(buffer+4) = (sweep_freq >> 16) & 0xff;
|
||||
*(buffer+5) = (sweep_freq >> 24) & 0xff;
|
||||
*(buffer+6) = (sweep_freq >> 32) & 0xff;
|
||||
*(buffer+7) = (sweep_freq >> 40) & 0xff;
|
||||
*(buffer+8) = (sweep_freq >> 48) & 0xff;
|
||||
*(buffer+9) = (sweep_freq >> 56) & 0xff;
|
||||
if (blocks_queued > THROWAWAY_BUFFERS) {
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_in,
|
||||
buffer,
|
||||
0x4000,
|
||||
NULL, NULL
|
||||
);
|
||||
}
|
||||
transfer = false;
|
||||
}
|
||||
// Set M0 to switch back to RX after two more buffers.
|
||||
m0_state.threshold += 0x8000;
|
||||
m0_state.next_mode = M0_MODE_RX;
|
||||
|
||||
if ((dwell_blocks + THROWAWAY_BUFFERS) <= blocks_queued) {
|
||||
if(INTERLEAVED == style) {
|
||||
if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) {
|
||||
range = (range + 1) % num_ranges;
|
||||
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
|
||||
} else {
|
||||
if(odd) {
|
||||
sweep_freq += step_width/4;
|
||||
} else {
|
||||
sweep_freq += 3*step_width/4;
|
||||
}
|
||||
}
|
||||
odd = !odd;
|
||||
// Write metadata to buffer.
|
||||
buffer = &usb_bulk_buffer[phase * 0x4000];
|
||||
*buffer = 0x7f;
|
||||
*(buffer+1) = 0x7f;
|
||||
*(buffer+2) = sweep_freq & 0xff;
|
||||
*(buffer+3) = (sweep_freq >> 8) & 0xff;
|
||||
*(buffer+4) = (sweep_freq >> 16) & 0xff;
|
||||
*(buffer+5) = (sweep_freq >> 24) & 0xff;
|
||||
*(buffer+6) = (sweep_freq >> 32) & 0xff;
|
||||
*(buffer+7) = (sweep_freq >> 40) & 0xff;
|
||||
*(buffer+8) = (sweep_freq >> 48) & 0xff;
|
||||
*(buffer+9) = (sweep_freq >> 56) & 0xff;
|
||||
|
||||
// Set up IN transfer of buffer.
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_in,
|
||||
buffer,
|
||||
0x4000,
|
||||
sweep_bulk_transfer_complete, NULL
|
||||
);
|
||||
|
||||
// Use other buffer next time.
|
||||
phase = (phase + 1) % 2;
|
||||
|
||||
// Calculate next sweep frequency.
|
||||
if(INTERLEAVED == style) {
|
||||
if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) {
|
||||
range = (range + 1) % num_ranges;
|
||||
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
|
||||
} else {
|
||||
if((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY)) {
|
||||
range = (range + 1) % num_ranges;
|
||||
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
|
||||
if(odd) {
|
||||
sweep_freq += step_width/4;
|
||||
} else {
|
||||
sweep_freq += step_width;
|
||||
sweep_freq += 3*step_width/4;
|
||||
}
|
||||
}
|
||||
|
||||
nvic_disable_irq(NVIC_USB0_IRQ);
|
||||
set_freq(sweep_freq + offset);
|
||||
nvic_enable_irq(NVIC_USB0_IRQ);
|
||||
blocks_queued = 0;
|
||||
odd = !odd;
|
||||
} else {
|
||||
if((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY)) {
|
||||
range = (range + 1) % num_ranges;
|
||||
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
|
||||
} else {
|
||||
sweep_freq += step_width;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Retune to new frequency.
|
||||
nvic_disable_irq(NVIC_USB0_IRQ);
|
||||
set_freq(sweep_freq + offset);
|
||||
nvic_enable_irq(NVIC_USB0_IRQ);
|
||||
|
||||
// Wait for M0 to resume RX.
|
||||
while (m0_state.active_mode != M0_MODE_RX)
|
||||
if (transceiver_request.seq != seq)
|
||||
goto end;
|
||||
|
||||
// Set M0 to switch back to WAIT after filling next buffer.
|
||||
m0_state.threshold += 0x4000;
|
||||
m0_state.next_mode = M0_MODE_WAIT;
|
||||
}
|
||||
end:
|
||||
transceiver_shutdown();
|
||||
}
|
||||
|
@ -27,7 +27,7 @@
|
||||
|
||||
#include <libopencm3/cm3/vector.h>
|
||||
#include "usb_bulk_buffer.h"
|
||||
#include "m0_state.h"
|
||||
#include "usb_api_m0_state.h"
|
||||
|
||||
#include "usb_api_cpld.h" // Remove when CPLD update is handled elsewhere
|
||||
|
||||
@ -238,6 +238,8 @@ usb_request_status_t usb_vendor_request_set_freq_explicit(
|
||||
}
|
||||
|
||||
static volatile hw_sync_mode_t _hw_sync_mode = HW_SYNC_MODE_OFF;
|
||||
static volatile uint32_t _tx_underrun_limit;
|
||||
static volatile uint32_t _rx_overrun_limit;
|
||||
|
||||
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode) {
|
||||
_hw_sync_mode = new_hw_sync_mode;
|
||||
@ -269,7 +271,7 @@ void transceiver_shutdown(void)
|
||||
led_off(LED2);
|
||||
led_off(LED3);
|
||||
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_OFF);
|
||||
m0_state.tx = false;
|
||||
m0_set_mode(M0_MODE_IDLE);
|
||||
}
|
||||
|
||||
void transceiver_startup(const transceiver_mode_t mode) {
|
||||
@ -282,13 +284,15 @@ void transceiver_startup(const transceiver_mode_t mode) {
|
||||
led_off(LED3);
|
||||
led_on(LED2);
|
||||
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_RX);
|
||||
m0_state.tx = false;
|
||||
m0_set_mode(M0_MODE_RX);
|
||||
m0_state.shortfall_limit = _rx_overrun_limit;
|
||||
break;
|
||||
case TRANSCEIVER_MODE_TX:
|
||||
led_off(LED2);
|
||||
led_on(LED3);
|
||||
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_TX);
|
||||
m0_state.tx = true;
|
||||
m0_set_mode(M0_MODE_TX_START);
|
||||
m0_state.shortfall_limit = _tx_underrun_limit;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
@ -296,7 +300,6 @@ void transceiver_startup(const transceiver_mode_t mode) {
|
||||
|
||||
activate_best_clock_source();
|
||||
hw_sync_enable(_hw_sync_mode);
|
||||
m0_state.offset = 0;
|
||||
}
|
||||
|
||||
usb_request_status_t usb_vendor_request_set_transceiver_mode(
|
||||
@ -334,6 +337,36 @@ usb_request_status_t usb_vendor_request_set_hw_sync_mode(
|
||||
}
|
||||
}
|
||||
|
||||
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
|
||||
usb_endpoint_t* const endpoint,
|
||||
const usb_transfer_stage_t stage
|
||||
) {
|
||||
if( stage == USB_TRANSFER_STAGE_SETUP ) {
|
||||
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
|
||||
_tx_underrun_limit = value;
|
||||
usb_transfer_schedule_ack(endpoint->in);
|
||||
}
|
||||
return USB_REQUEST_STATUS_OK;
|
||||
}
|
||||
|
||||
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
|
||||
usb_endpoint_t* const endpoint,
|
||||
const usb_transfer_stage_t stage
|
||||
) {
|
||||
if( stage == USB_TRANSFER_STAGE_SETUP ) {
|
||||
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
|
||||
_rx_overrun_limit = value;
|
||||
usb_transfer_schedule_ack(endpoint->in);
|
||||
}
|
||||
return USB_REQUEST_STATUS_OK;
|
||||
}
|
||||
|
||||
void transceiver_bulk_transfer_complete(void *user_data, unsigned int bytes_transferred)
|
||||
{
|
||||
(void) user_data;
|
||||
m0_state.m4_count += bytes_transferred;
|
||||
}
|
||||
|
||||
void rx_mode(uint32_t seq) {
|
||||
unsigned int phase = 1;
|
||||
|
||||
@ -342,23 +375,26 @@ void rx_mode(uint32_t seq) {
|
||||
baseband_streaming_enable(&sgpio_config);
|
||||
|
||||
while (transceiver_request.seq == seq) {
|
||||
uint32_t m0_offset = m0_state.m0_count & USB_BULK_BUFFER_MASK;
|
||||
// Set up IN transfer of buffer 0.
|
||||
if (16384 <= m0_state.offset && 1 == phase) {
|
||||
if (16384 <= m0_offset && 1 == phase) {
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_in,
|
||||
&usb_bulk_buffer[0x0000],
|
||||
0x4000,
|
||||
NULL, NULL
|
||||
transceiver_bulk_transfer_complete,
|
||||
NULL
|
||||
);
|
||||
phase = 0;
|
||||
}
|
||||
// Set up IN transfer of buffer 1.
|
||||
if (16384 > m0_state.offset && 0 == phase) {
|
||||
if (16384 > m0_offset && 0 == phase) {
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_in,
|
||||
&usb_bulk_buffer[0x4000],
|
||||
0x4000,
|
||||
NULL, NULL
|
||||
transceiver_bulk_transfer_complete,
|
||||
NULL
|
||||
);
|
||||
phase = 1;
|
||||
}
|
||||
@ -368,39 +404,46 @@ void rx_mode(uint32_t seq) {
|
||||
}
|
||||
|
||||
void tx_mode(uint32_t seq) {
|
||||
unsigned int phase = 1;
|
||||
unsigned int phase = 0;
|
||||
|
||||
transceiver_startup(TRANSCEIVER_MODE_TX);
|
||||
|
||||
memset(&usb_bulk_buffer[0x0000], 0, 0x8000);
|
||||
// Set up OUT transfer of buffer 1.
|
||||
// Set up OUT transfer of buffer 0.
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_out,
|
||||
&usb_bulk_buffer[0x4000],
|
||||
&usb_bulk_buffer[0x0000],
|
||||
0x4000,
|
||||
NULL, NULL
|
||||
transceiver_bulk_transfer_complete,
|
||||
NULL
|
||||
);
|
||||
// Start transmitting zeros while the host fills buffer 1.
|
||||
|
||||
// Enable streaming. The M0 is in TX_START mode, and will automatically
|
||||
// send zeroes until the host fills buffer 0. Once that buffer is filled,
|
||||
// the bulk transfer completion handler will increase the M4 count, and
|
||||
// the M0 will switch to TX_RUN mode and transmit the first data.
|
||||
baseband_streaming_enable(&sgpio_config);
|
||||
|
||||
while (transceiver_request.seq == seq) {
|
||||
uint32_t m0_offset = m0_state.m0_count & USB_BULK_BUFFER_MASK;
|
||||
// Set up OUT transfer of buffer 0.
|
||||
if (16384 <= m0_state.offset && 1 == phase) {
|
||||
if (16384 <= m0_offset && 1 == phase) {
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_out,
|
||||
&usb_bulk_buffer[0x0000],
|
||||
0x4000,
|
||||
NULL, NULL
|
||||
transceiver_bulk_transfer_complete,
|
||||
NULL
|
||||
);
|
||||
phase = 0;
|
||||
}
|
||||
// Set up OUT transfer of buffer 1.
|
||||
if (16384 > m0_state.offset && 0 == phase) {
|
||||
if (16384 > m0_offset && 0 == phase) {
|
||||
usb_transfer_schedule_block(
|
||||
&usb_endpoint_bulk_out,
|
||||
&usb_bulk_buffer[0x4000],
|
||||
0x4000,
|
||||
NULL, NULL
|
||||
transceiver_bulk_transfer_complete,
|
||||
NULL
|
||||
);
|
||||
phase = 1;
|
||||
}
|
||||
|
@ -62,6 +62,10 @@ usb_request_status_t usb_vendor_request_set_freq_explicit(
|
||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||
usb_request_status_t usb_vendor_request_set_hw_sync_mode(
|
||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
|
||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
|
||||
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
|
||||
|
||||
void request_transceiver_mode(transceiver_mode_t mode);
|
||||
void transceiver_startup(transceiver_mode_t mode);
|
||||
|
@ -26,10 +26,13 @@
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#define USB_BULK_BUFFER_SIZE 0x8000
|
||||
#define USB_BULK_BUFFER_MASK 0x7FFF
|
||||
|
||||
/* Address of usb_bulk_buffer is set in ldscripts. If you change the name of this
|
||||
* variable, it won't be where it needs to be in the processor's address space,
|
||||
* unless you also adjust the ldscripts.
|
||||
*/
|
||||
extern uint8_t usb_bulk_buffer[32768];
|
||||
extern uint8_t usb_bulk_buffer[USB_BULK_BUFFER_SIZE];
|
||||
|
||||
#endif/*__USB_BULK_BUFFER_H__*/
|
||||
|
@ -36,7 +36,7 @@
|
||||
#define USB_PRODUCT_ID (0xFFFF)
|
||||
#endif
|
||||
|
||||
#define USB_API_VERSION (0x0105)
|
||||
#define USB_API_VERSION (0x0106)
|
||||
|
||||
#define USB_WORD(x) (x & 0xFF), ((x >> 8) & 0xFF)
|
||||
|
||||
|
@ -36,7 +36,7 @@ typedef int bool;
|
||||
|
||||
#define REGISTER_INVALID 32767
|
||||
|
||||
int parse_int(char* s, uint16_t* const value) {
|
||||
int parse_int(char* s, uint32_t* const value) {
|
||||
uint_fast8_t base = 10;
|
||||
char* s_end;
|
||||
long long_value;
|
||||
@ -56,7 +56,7 @@ int parse_int(char* s, uint16_t* const value) {
|
||||
s_end = s;
|
||||
long_value = strtol(s, &s_end, base);
|
||||
if( (s != s_end) && (*s_end == 0) ) {
|
||||
*value = (uint16_t)long_value;
|
||||
*value = (uint32_t)long_value;
|
||||
return HACKRF_SUCCESS;
|
||||
} else {
|
||||
return HACKRF_ERROR_INVALID_PARAM;
|
||||
@ -377,6 +377,40 @@ int write_register(hackrf_device* device, uint8_t part,
|
||||
return HACKRF_ERROR_INVALID_PARAM;
|
||||
}
|
||||
|
||||
static const char * mode_name(uint32_t mode) {
|
||||
const char *mode_names[] = {"IDLE", "WAIT", "RX", "TX_START", "TX_RUN"};
|
||||
const uint32_t num_modes = sizeof(mode_names) / sizeof(mode_names[0]);
|
||||
if (mode < num_modes)
|
||||
return mode_names[mode];
|
||||
else
|
||||
return "UNKNOWN";
|
||||
}
|
||||
|
||||
static const char * error_name(uint32_t error) {
|
||||
const char *error_names[] = {"NONE", "RX_TIMEOUT", "TX_TIMEOUT"};
|
||||
const uint32_t num_errors = sizeof(error_names) / sizeof(error_names[0]);
|
||||
if (error < num_errors)
|
||||
return error_names[error];
|
||||
else
|
||||
return "UNKNOWN";
|
||||
}
|
||||
|
||||
static void print_state(hackrf_m0_state *state) {
|
||||
printf("M0 state:\n");
|
||||
printf("Requested mode: %u (%s) [%s]\n",
|
||||
state->requested_mode, mode_name(state->requested_mode),
|
||||
state->request_flag ? "pending" : "complete");
|
||||
printf("Active mode: %u (%s)\n", state->active_mode, mode_name(state->active_mode));
|
||||
printf("M0 count: %u bytes\n", state->m0_count);
|
||||
printf("M4 count: %u bytes\n", state->m4_count);
|
||||
printf("Number of shortfalls: %u\n", state->num_shortfalls);
|
||||
printf("Longest shortfall: %u bytes\n", state->longest_shortfall);
|
||||
printf("Shortfall limit: %u bytes\n", state->shortfall_limit);
|
||||
printf("Mode change threshold: %u bytes\n", state->threshold);
|
||||
printf("Next mode: %u (%s)\n", state->next_mode, mode_name(state->next_mode));
|
||||
printf("Error: %u (%s)\n", state->error, error_name(state->error));
|
||||
}
|
||||
|
||||
static void usage() {
|
||||
printf("\nUsage:\n");
|
||||
printf("\t-h, --help: this help\n");
|
||||
@ -388,12 +422,16 @@ static void usage() {
|
||||
printf("\t-m, --max2837: target MAX2837\n");
|
||||
printf("\t-s, --si5351c: target SI5351C\n");
|
||||
printf("\t-f, --rffc5072: target RFFC5072\n");
|
||||
printf("\t-S, --state: display M0 state\n");
|
||||
printf("\t-T, --tx-underrun-limit <n>: set TX underrun limit in bytes (0 for no limit)\n");
|
||||
printf("\t-R, --rx-overrun-limit <n>: set RX overrun limit in bytes (0 for no limit)\n");
|
||||
printf("\t-u, --ui <1/0>: enable/disable UI\n");
|
||||
printf("\nExamples:\n");
|
||||
printf("\thackrf_debug --si5351c -n 0 -r # reads from si5351c register 0\n");
|
||||
printf("\thackrf_debug --si5351c -c # displays si5351c multisynth configuration\n");
|
||||
printf("\thackrf_debug --rffc5072 -r # reads all rffc5072 registers\n");
|
||||
printf("\thackrf_debug --max2837 -n 10 -w 22 # writes max2837 register 10 with 22 decimal\n");
|
||||
printf("\thackrf_debug --state # displays M0 state\n");
|
||||
}
|
||||
|
||||
static struct option long_options[] = {
|
||||
@ -406,23 +444,31 @@ static struct option long_options[] = {
|
||||
{ "max2837", no_argument, 0, 'm' },
|
||||
{ "si5351c", no_argument, 0, 's' },
|
||||
{ "rffc5072", no_argument, 0, 'f' },
|
||||
{ "state", no_argument, 0, 'S' },
|
||||
{ "tx-underrun-limit", required_argument, 0, 'T' },
|
||||
{ "rx-overrun-limit", required_argument, 0, 'R' },
|
||||
{ "ui", required_argument, 0, 'u' },
|
||||
{ 0, 0, 0, 0 },
|
||||
};
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
int opt;
|
||||
uint16_t register_number = REGISTER_INVALID;
|
||||
uint16_t register_value;
|
||||
uint32_t register_number = REGISTER_INVALID;
|
||||
uint32_t register_value;
|
||||
hackrf_device* device = NULL;
|
||||
int option_index = 0;
|
||||
bool read = false;
|
||||
bool write = false;
|
||||
bool dump_config = false;
|
||||
bool dump_state = false;
|
||||
uint8_t part = PART_NONE;
|
||||
const char* serial_number = NULL;
|
||||
bool set_ui = false;
|
||||
uint16_t ui_enable;
|
||||
uint32_t ui_enable;
|
||||
uint32_t tx_limit;
|
||||
uint32_t rx_limit;
|
||||
bool set_tx_limit = false;
|
||||
bool set_rx_limit = false;
|
||||
|
||||
int result = hackrf_init();
|
||||
if(result) {
|
||||
@ -430,7 +476,7 @@ int main(int argc, char** argv) {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfh?u:", long_options, &option_index)) != EOF ) {
|
||||
while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfST:R:h?u:", long_options, &option_index)) != EOF ) {
|
||||
switch( opt ) {
|
||||
case 'n':
|
||||
result = parse_int(optarg, ®ister_number);
|
||||
@ -449,6 +495,19 @@ int main(int argc, char** argv) {
|
||||
dump_config = true;
|
||||
break;
|
||||
|
||||
case 'S':
|
||||
dump_state = true;
|
||||
break;
|
||||
|
||||
case 'T':
|
||||
set_tx_limit = true;
|
||||
result = parse_int(optarg, &tx_limit);
|
||||
break;
|
||||
case 'R':
|
||||
set_rx_limit = true;
|
||||
result = parse_int(optarg, &rx_limit);
|
||||
break;
|
||||
|
||||
case 'd':
|
||||
serial_number = optarg;
|
||||
break;
|
||||
@ -517,13 +576,13 @@ int main(int argc, char** argv) {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
if(!(write || read || dump_config || set_ui)) {
|
||||
if(!(write || read || dump_config || dump_state || set_tx_limit || set_rx_limit || set_ui)) {
|
||||
fprintf(stderr, "Specify read, write, or config option.\n");
|
||||
usage();
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
if(part == PART_NONE && !set_ui) {
|
||||
if(part == PART_NONE && !set_ui && !dump_state && !set_tx_limit && !set_rx_limit) {
|
||||
fprintf(stderr, "Specify a part to read, write, or print config from.\n");
|
||||
usage();
|
||||
return EXIT_FAILURE;
|
||||
@ -551,6 +610,32 @@ int main(int argc, char** argv) {
|
||||
si5351c_read_configuration(device);
|
||||
}
|
||||
|
||||
if (set_tx_limit) {
|
||||
result = hackrf_set_tx_underrun_limit(device, tx_limit);
|
||||
if(result != HACKRF_SUCCESS) {
|
||||
printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
if (set_rx_limit) {
|
||||
result = hackrf_set_rx_overrun_limit(device, rx_limit);
|
||||
if(result != HACKRF_SUCCESS) {
|
||||
printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
if(dump_state) {
|
||||
hackrf_m0_state state;
|
||||
result = hackrf_get_m0_state(device, &state);
|
||||
if(result != HACKRF_SUCCESS) {
|
||||
printf("hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
print_state(&state);
|
||||
}
|
||||
|
||||
if(set_ui) {
|
||||
result = hackrf_set_ui_enable(device, ui_enable);
|
||||
}
|
||||
|
@ -121,6 +121,11 @@ typedef enum {
|
||||
HW_SYNC_MODE_ON = 1,
|
||||
} hw_sync_mode_t;
|
||||
|
||||
typedef struct {
|
||||
uint64_t m0_total;
|
||||
uint64_t m4_total;
|
||||
} stats_t;
|
||||
|
||||
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
|
||||
typedef struct
|
||||
{
|
||||
@ -377,6 +382,8 @@ bool limit_num_samples = false;
|
||||
uint64_t samples_to_xfer = 0;
|
||||
size_t bytes_to_xfer = 0;
|
||||
|
||||
bool display_stats = false;
|
||||
|
||||
bool baseband_filter_bw = false;
|
||||
uint32_t baseband_filter_bw_hz = 0;
|
||||
|
||||
@ -503,6 +510,42 @@ int tx_callback(hackrf_transfer* transfer) {
|
||||
}
|
||||
}
|
||||
|
||||
static int update_stats(hackrf_device *device, hackrf_m0_state *state, stats_t *stats)
|
||||
{
|
||||
int result = hackrf_get_m0_state(device, state);
|
||||
|
||||
if (result == HACKRF_SUCCESS) {
|
||||
/*
|
||||
* Update 64-bit running totals, to handle wrapping of the 32-bit fields
|
||||
* for M0 and M4 byte counts.
|
||||
*
|
||||
* The logic for handling wrapping works as follows:
|
||||
*
|
||||
* If a 32-bit count read from the HackRF is less than the lower 32 bits of
|
||||
* the previous 64-bit running total, this indicates the 32-bit counter has
|
||||
* wrapped since it was last read. Add 2^32 to the 64-bit total to account
|
||||
* for this.
|
||||
*
|
||||
* Then, having accounted for the possible wrap, mask off the bottom 32
|
||||
* bits of the 64-bit total, and replace them with the new 32-bit count.
|
||||
*
|
||||
* This should result in correct results as long as the 32-bit counter
|
||||
* cannot wrap more than once between reads.
|
||||
*
|
||||
* We read the M0 state every second, and the counters will wrap every 107
|
||||
* seconds at 20Msps, so this should be a safe assumption.
|
||||
*/
|
||||
if (state->m0_count < (stats->m0_total & 0xFFFFFFFF))
|
||||
stats->m0_total += 0x100000000;
|
||||
if (state->m4_count < (stats->m4_total & 0xFFFFFFFF))
|
||||
stats->m4_total += 0x100000000;
|
||||
stats->m0_total = (stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
|
||||
stats->m4_total = (stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void usage() {
|
||||
printf("Usage:\n");
|
||||
printf("\t-h # this help\n");
|
||||
@ -533,6 +576,7 @@ static void usage() {
|
||||
/* The required atomic load/store functions aren't available when using C with MSVC */
|
||||
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
|
||||
#endif
|
||||
printf("\t[-B] # Print buffer statistics during transfer\n");
|
||||
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n");
|
||||
printf("\t[-R] # Repeat TX mode (default is off) \n");
|
||||
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n" );
|
||||
@ -579,8 +623,10 @@ int main(int argc, char** argv) {
|
||||
struct timeval t_end;
|
||||
float time_diff;
|
||||
unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
|
||||
hackrf_m0_state state;
|
||||
stats_t stats = {0, 0};
|
||||
|
||||
while( (opt = getopt(argc, argv, "H:wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:h?")) != EOF )
|
||||
while( (opt = getopt(argc, argv, "H:wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:Bh?")) != EOF )
|
||||
{
|
||||
result = HACKRF_SUCCESS;
|
||||
switch( opt )
|
||||
@ -668,6 +714,10 @@ int main(int argc, char** argv) {
|
||||
bytes_to_xfer = samples_to_xfer * 2ull;
|
||||
break;
|
||||
|
||||
case 'B':
|
||||
display_stats = true;
|
||||
break;
|
||||
|
||||
case 'b':
|
||||
result = parse_frequency_u32(optarg, endptr, &baseband_filter_bw_hz);
|
||||
baseband_filter_bw = true;
|
||||
@ -1097,12 +1147,27 @@ int main(int argc, char** argv) {
|
||||
double dB_full_scale_ratio = 10*log10(full_scale_ratio);
|
||||
if (dB_full_scale_ratio > 1)
|
||||
dB_full_scale_ratio = NAN; // Guard against ridiculous reports
|
||||
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs\n",
|
||||
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs",
|
||||
(byte_count_now / 1e6f),
|
||||
time_difference,
|
||||
(rate / 1e6f),
|
||||
dB_full_scale_ratio
|
||||
);
|
||||
if (display_stats) {
|
||||
bool tx = transmit || signalsource;
|
||||
result = update_stats(device, &state, &stats);
|
||||
if (result != HACKRF_SUCCESS)
|
||||
fprintf(stderr, "\nhackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||
else
|
||||
fprintf(stderr, ", %d bytes %s in buffer, %u %s, longest %u bytes\n",
|
||||
tx ? state.m4_count - state.m0_count : state.m0_count - state.m4_count,
|
||||
tx ? "filled" : "free",
|
||||
state.num_shortfalls,
|
||||
tx ? "underruns" : "overruns",
|
||||
state.longest_shortfall);
|
||||
} else {
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
time_start = time_now;
|
||||
@ -1146,6 +1211,24 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (display_stats) {
|
||||
result = update_stats(device, &state, &stats);
|
||||
if (result != HACKRF_SUCCESS) {
|
||||
fprintf(stderr, "hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||
} else {
|
||||
fprintf(stderr,
|
||||
"Transfer statistics:\n"
|
||||
"%lu bytes transferred by M0\n"
|
||||
"%lu bytes transferred by M4\n"
|
||||
"%u %s, longest %u bytes\n",
|
||||
stats.m0_total,
|
||||
stats.m4_total,
|
||||
state.num_shortfalls,
|
||||
(transmit || signalsource) ? "underruns" : "overruns",
|
||||
state.longest_shortfall);
|
||||
}
|
||||
}
|
||||
|
||||
result = hackrf_close(device);
|
||||
if(result != HACKRF_SUCCESS) {
|
||||
fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
|
||||
|
@ -24,7 +24,7 @@
|
||||
cmake_minimum_required(VERSION 2.8)
|
||||
project(libhackrf C)
|
||||
set(MAJOR_VERSION 0)
|
||||
set(MINOR_VERSION 6)
|
||||
set(MINOR_VERSION 7)
|
||||
set(PACKAGE libhackrf)
|
||||
set(VERSION_STRING ${MAJOR_VERSION}.${MINOR_VERSION})
|
||||
set(VERSION ${VERSION_STRING})
|
||||
|
@ -46,9 +46,13 @@ typedef int bool;
|
||||
#ifdef HACKRF_BIG_ENDIAN
|
||||
#define TO_LE(x) __builtin_bswap32(x)
|
||||
#define TO_LE64(x) __builtin_bswap64(x)
|
||||
#define FROM_LE16(x) __builtin_bswap16(x)
|
||||
#define FROM_LE32(x) __builtin_bswap32(x)
|
||||
#else
|
||||
#define TO_LE(x) x
|
||||
#define TO_LE64(x) x
|
||||
#define FROM_LE16(x) x
|
||||
#define FROM_LE32(x) x
|
||||
#endif
|
||||
|
||||
// TODO: Factor this into a shared #include so that firmware can use
|
||||
@ -92,6 +96,9 @@ typedef enum {
|
||||
HACKRF_VENDOR_REQUEST_OPERACAKE_SET_MODE = 38,
|
||||
HACKRF_VENDOR_REQUEST_OPERACAKE_GET_MODE = 39,
|
||||
HACKRF_VENDOR_REQUEST_OPERACAKE_SET_DWELL_TIMES = 40,
|
||||
HACKRF_VENDOR_REQUEST_GET_M0_STATE = 41,
|
||||
HACKRF_VENDOR_REQUEST_SET_TX_UNDERRUN_LIMIT = 42,
|
||||
HACKRF_VENDOR_REQUEST_SET_RX_OVERRUN_LIMIT = 43,
|
||||
} hackrf_vendor_request;
|
||||
|
||||
#define USB_CONFIG_STANDARD 0x1
|
||||
@ -1007,6 +1014,92 @@ int ADDCALL hackrf_rffc5071_write(hackrf_device* device, uint8_t register_number
|
||||
}
|
||||
}
|
||||
|
||||
int ADDCALL hackrf_get_m0_state(hackrf_device* device, hackrf_m0_state* state)
|
||||
{
|
||||
USB_API_REQUIRED(device, 0x0106)
|
||||
int result;
|
||||
|
||||
result = libusb_control_transfer(
|
||||
device->usb_device,
|
||||
LIBUSB_ENDPOINT_IN | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
|
||||
HACKRF_VENDOR_REQUEST_GET_M0_STATE,
|
||||
0,
|
||||
0,
|
||||
(unsigned char*)state,
|
||||
sizeof(hackrf_m0_state),
|
||||
0
|
||||
);
|
||||
|
||||
if( result < sizeof(hackrf_m0_state) )
|
||||
{
|
||||
last_libusb_error = result;
|
||||
return HACKRF_ERROR_LIBUSB;
|
||||
} else {
|
||||
state->request_flag = FROM_LE16(state->request_flag);
|
||||
state->requested_mode = FROM_LE16(state->requested_mode);
|
||||
state->active_mode = FROM_LE32(state->active_mode);
|
||||
state->m0_count = FROM_LE32(state->m0_count);
|
||||
state->m4_count = FROM_LE32(state->m4_count);
|
||||
state->num_shortfalls = FROM_LE32(state->num_shortfalls);
|
||||
state->longest_shortfall = FROM_LE32(state->longest_shortfall);
|
||||
state->shortfall_limit = FROM_LE32(state->shortfall_limit);
|
||||
state->threshold = FROM_LE32(state->threshold);
|
||||
state->next_mode = FROM_LE32(state->next_mode);
|
||||
state->error = FROM_LE32(state->error);
|
||||
return HACKRF_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
int ADDCALL hackrf_set_tx_underrun_limit(hackrf_device* device, uint32_t value)
|
||||
{
|
||||
USB_API_REQUIRED(device, 0x0106)
|
||||
int result;
|
||||
|
||||
result = libusb_control_transfer(
|
||||
device->usb_device,
|
||||
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
|
||||
HACKRF_VENDOR_REQUEST_SET_TX_UNDERRUN_LIMIT,
|
||||
value & 0xffff,
|
||||
value >> 16,
|
||||
NULL,
|
||||
0,
|
||||
0
|
||||
);
|
||||
|
||||
if( result != 0 )
|
||||
{
|
||||
last_libusb_error = result;
|
||||
return HACKRF_ERROR_LIBUSB;
|
||||
} else {
|
||||
return HACKRF_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
int ADDCALL hackrf_set_rx_overrun_limit(hackrf_device* device, uint32_t value)
|
||||
{
|
||||
USB_API_REQUIRED(device, 0x0106)
|
||||
int result;
|
||||
|
||||
result = libusb_control_transfer(
|
||||
device->usb_device,
|
||||
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
|
||||
HACKRF_VENDOR_REQUEST_SET_RX_OVERRUN_LIMIT,
|
||||
value & 0xffff,
|
||||
value >> 16,
|
||||
NULL,
|
||||
0,
|
||||
0
|
||||
);
|
||||
|
||||
if( result != 0 )
|
||||
{
|
||||
last_libusb_error = result;
|
||||
return HACKRF_ERROR_LIBUSB;
|
||||
} else {
|
||||
return HACKRF_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
int ADDCALL hackrf_spiflash_erase(hackrf_device* device)
|
||||
{
|
||||
int result;
|
||||
|
@ -155,6 +155,32 @@ typedef struct {
|
||||
uint8_t port;
|
||||
} hackrf_operacake_freq_range;
|
||||
|
||||
/** State of the SGPIO loop running on the M0 core. */
|
||||
typedef struct {
|
||||
/** Requested mode. */
|
||||
uint16_t requested_mode;
|
||||
/** Request flag. */
|
||||
uint16_t request_flag;
|
||||
/** Active mode. */
|
||||
uint32_t active_mode;
|
||||
/** Number of bytes transferred by the M0. */
|
||||
uint32_t m0_count;
|
||||
/** Number of bytes transferred by the M4. */
|
||||
uint32_t m4_count;
|
||||
/** Number of shortfalls. */
|
||||
uint32_t num_shortfalls;
|
||||
/** Longest shortfall. */
|
||||
uint32_t longest_shortfall;
|
||||
/** Shortfall limit in bytes. */
|
||||
uint32_t shortfall_limit;
|
||||
/** Threshold m0_count value for next mode change. */
|
||||
uint32_t threshold;
|
||||
/** Mode which will be switched to when threshold is reached. */
|
||||
uint32_t next_mode;
|
||||
/** Error, if any, that caused the M0 to revert to IDLE mode. */
|
||||
uint32_t error;
|
||||
} hackrf_m0_state;
|
||||
|
||||
struct hackrf_device_list {
|
||||
char **serial_numbers;
|
||||
enum hackrf_usb_board_id *usb_board_ids;
|
||||
@ -193,6 +219,10 @@ extern ADDAPI int ADDCALL hackrf_stop_rx(hackrf_device* device);
|
||||
extern ADDAPI int ADDCALL hackrf_start_tx(hackrf_device* device, hackrf_sample_block_cb_fn callback, void* tx_ctx);
|
||||
extern ADDAPI int ADDCALL hackrf_stop_tx(hackrf_device* device);
|
||||
|
||||
extern ADDAPI int ADDCALL hackrf_get_m0_state(hackrf_device* device, hackrf_m0_state* value);
|
||||
extern ADDAPI int ADDCALL hackrf_set_tx_underrun_limit(hackrf_device* device, uint32_t value);
|
||||
extern ADDAPI int ADDCALL hackrf_set_rx_overrun_limit(hackrf_device* device, uint32_t value);
|
||||
|
||||
/* return HACKRF_TRUE if success */
|
||||
extern ADDAPI int ADDCALL hackrf_is_streaming(hackrf_device* device);
|
||||
|
||||
|
Reference in New Issue
Block a user