hackrf/firmware/hackrf_usb/hackrf_usb.c

860 lines
24 KiB
C

/*
* Copyright 2012 Jared Boone
* Copyright 2013 Benjamin Vernoux
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <libopencm3/cm3/vector.h>
#include <libopencm3/lpc43xx/cgu.h>
#include <libopencm3/lpc43xx/gpio.h>
#include <libopencm3/lpc43xx/m4/nvic.h>
#include <libopencm3/lpc43xx/sgpio.h>
#include <hackrf_core.h>
#include <si5351c.h>
#include <max5864.h>
#include <max2837.h>
#include <rffc5071.h>
#include <w25q80bv.h>
#include <cpld_jtag.h>
#include <sgpio.h>
#include <rom_iap.h>
#include "usb.h"
#include "usb_type.h"
#include "usb_queue.h"
#include "usb_request.h"
#include "usb_descriptor.h"
#include "usb_standard_request.h"
#include "rf_path.h"
#include "tuning.h"
#include "sgpio_isr.h"
#include "usb_bulk_buffer.h"
static volatile transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_OFF;
static volatile bool start_cpld_update = false;
uint8_t cpld_xsvf_buffer[512];
volatile bool cpld_wait = false;
uint8_t spiflash_buffer[W25Q80BV_PAGE_LEN];
char version_string[] = VERSION_STRING;
typedef struct {
uint32_t freq_mhz;
uint32_t freq_hz;
} set_freq_params_t;
set_freq_params_t set_freq_params;
typedef struct {
uint32_t freq_hz;
uint32_t divider;
} set_sample_r_params_t;
set_sample_r_params_t set_sample_r_params;
usb_configuration_t usb_configuration_high_speed = {
.number = 1,
.speed = USB_SPEED_HIGH,
.descriptor = usb_descriptor_configuration_high_speed,
};
usb_configuration_t usb_configuration_full_speed = {
.number = 1,
.speed = USB_SPEED_FULL,
.descriptor = usb_descriptor_configuration_full_speed,
};
usb_configuration_t usb_configuration_cpld_update_full_speed = {
.number = 2,
.speed = USB_SPEED_FULL,
.descriptor = usb_descriptor_configuration_cpld_update_full_speed,
};
usb_configuration_t usb_configuration_cpld_update_high_speed = {
.number = 2,
.speed = USB_SPEED_HIGH,
.descriptor = usb_descriptor_configuration_cpld_update_high_speed,
};
usb_configuration_t* usb_configurations[] = {
&usb_configuration_high_speed,
&usb_configuration_full_speed,
&usb_configuration_cpld_update_full_speed,
&usb_configuration_cpld_update_high_speed,
0,
};
usb_device_t usb_device = {
.descriptor = usb_descriptor_device,
.descriptor_strings = usb_descriptor_strings,
.qualifier_descriptor = usb_descriptor_device_qualifier,
.configurations = &usb_configurations,
.configuration = 0,
};
usb_endpoint_t usb_endpoint_control_out;
usb_endpoint_t usb_endpoint_control_in;
usb_endpoint_t usb_endpoint_control_out = {
.address = 0x00,
.device = &usb_device,
.in = &usb_endpoint_control_in,
.out = &usb_endpoint_control_out,
.setup_complete = usb_setup_complete,
.transfer_complete = usb_control_out_complete,
};
USB_DEFINE_QUEUE(usb_endpoint_control_out, 4);
usb_endpoint_t usb_endpoint_control_in = {
.address = 0x80,
.device = &usb_device,
.in = &usb_endpoint_control_in,
.out = &usb_endpoint_control_out,
.setup_complete = 0,
.transfer_complete = usb_control_in_complete,
};
static USB_DEFINE_QUEUE(usb_endpoint_control_in, 4);
// NOTE: Endpoint number for IN and OUT are different. I wish I had some
// evidence that having BULK IN and OUT on separate endpoint numbers was
// actually a good idea. Seems like everybody does it that way, but why?
usb_endpoint_t usb_endpoint_bulk_in = {
.address = 0x81,
.device = &usb_device,
.in = &usb_endpoint_bulk_in,
.out = 0,
.setup_complete = 0,
.transfer_complete = usb_queue_transfer_complete
};
static USB_DEFINE_QUEUE(usb_endpoint_bulk_in, 4);
usb_endpoint_t usb_endpoint_bulk_out = {
.address = 0x02,
.device = &usb_device,
.in = 0,
.out = &usb_endpoint_bulk_out,
.setup_complete = 0,
.transfer_complete = usb_queue_transfer_complete
};
static USB_DEFINE_QUEUE(usb_endpoint_bulk_out, 4);
void baseband_streaming_disable() {
sgpio_cpld_stream_disable();
nvic_disable_irq(NVIC_SGPIO_IRQ);
usb_endpoint_disable(&usb_endpoint_bulk_in);
usb_endpoint_disable(&usb_endpoint_bulk_out);
}
void set_transceiver_mode(const transceiver_mode_t new_transceiver_mode) {
baseband_streaming_disable();
transceiver_mode = new_transceiver_mode;
if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
gpio_clear(PORT_LED1_3, PIN_LED3);
gpio_set(PORT_LED1_3, PIN_LED2);
usb_endpoint_init(&usb_endpoint_bulk_in);
rf_path_set_direction(RF_PATH_DIRECTION_RX);
max2837_start();
max2837_rx();
} else if (transceiver_mode == TRANSCEIVER_MODE_TX) {
gpio_clear(PORT_LED1_3, PIN_LED2);
gpio_set(PORT_LED1_3, PIN_LED3);
usb_endpoint_init(&usb_endpoint_bulk_out);
rf_path_set_direction(RF_PATH_DIRECTION_TX);
max2837_start();
max2837_tx();
} else {
gpio_clear(PORT_LED1_3, PIN_LED2);
gpio_clear(PORT_LED1_3, PIN_LED3);
rf_path_set_direction(RF_PATH_DIRECTION_OFF);
max2837_stop();
return;
}
sgpio_configure(transceiver_mode, true);
if( transceiver_mode != TRANSCEIVER_MODE_OFF ) {
vector_table_entry_t sgpio_isr_fn = sgpio_isr_rx;
if( transceiver_mode == TRANSCEIVER_MODE_TX ) {
sgpio_isr_fn = sgpio_isr_tx;
}
vector_table.irq[NVIC_SGPIO_IRQ] = sgpio_isr_fn;
nvic_set_priority(NVIC_SGPIO_IRQ, 0);
nvic_enable_irq(NVIC_SGPIO_IRQ);
SGPIO_SET_EN_1 = (1 << SGPIO_SLICE_A);
sgpio_cpld_stream_enable();
}
}
usb_request_status_t usb_vendor_request_set_transceiver_mode(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
switch( endpoint->setup.value ) {
case TRANSCEIVER_MODE_OFF:
case TRANSCEIVER_MODE_RX:
case TRANSCEIVER_MODE_TX:
set_transceiver_mode(endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_write_max2837(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
if( endpoint->setup.index < MAX2837_NUM_REGS ) {
if( endpoint->setup.value < MAX2837_DATA_REGS_MAX_VALUE ) {
max2837_reg_write(endpoint->setup.index, endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_read_max2837(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
if( endpoint->setup.index < MAX2837_NUM_REGS ) {
const uint16_t value = max2837_reg_read(endpoint->setup.index);
endpoint->buffer[0] = value & 0xff;
endpoint->buffer[1] = value >> 8;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_write_si5351c(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
if( endpoint->setup.index < 256 ) {
if( endpoint->setup.value < 256 ) {
si5351c_write_single(endpoint->setup.index, endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_read_si5351c(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
if( endpoint->setup.index < 256 ) {
const uint8_t value = si5351c_read_single(endpoint->setup.index);
endpoint->buffer[0] = value;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_baseband_filter_bandwidth(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint32_t bandwidth = (endpoint->setup.index << 16) | endpoint->setup.value;
if( baseband_filter_bandwidth_set(bandwidth) ) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_write_rffc5071(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP )
{
if( endpoint->setup.index < RFFC5071_NUM_REGS )
{
rffc5071_reg_write(endpoint->setup.index, endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_read_rffc5071(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
uint16_t value;
if( stage == USB_TRANSFER_STAGE_SETUP )
{
if( endpoint->setup.index < RFFC5071_NUM_REGS )
{
value = rffc5071_reg_read(endpoint->setup.index);
endpoint->buffer[0] = value & 0xff;
endpoint->buffer[1] = value >> 8;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_erase_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
//FIXME This should refuse to run if executing from SPI flash.
if (stage == USB_TRANSFER_STAGE_SETUP) {
w25q80bv_setup();
/* only chip erase is implemented */
w25q80bv_chip_erase();
usb_transfer_schedule_ack(endpoint->in);
//FIXME probably should undo w25q80bv_setup()
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_write_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
uint32_t addr = 0;
uint16_t len = 0;
//FIXME This should refuse to run if executing from SPI flash.
if (stage == USB_TRANSFER_STAGE_SETUP) {
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
if ((len > W25Q80BV_PAGE_LEN) || (addr > W25Q80BV_NUM_BYTES)
|| ((addr + len) > W25Q80BV_NUM_BYTES)) {
return USB_REQUEST_STATUS_STALL;
} else {
usb_transfer_schedule_block(endpoint->out, &spiflash_buffer[0], len,
NULL, NULL);
w25q80bv_setup();
return USB_REQUEST_STATUS_OK;
}
} else if (stage == USB_TRANSFER_STAGE_DATA) {
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
/* This check is redundant but makes me feel better. */
if ((len > W25Q80BV_PAGE_LEN) || (addr > W25Q80BV_NUM_BYTES)
|| ((addr + len) > W25Q80BV_NUM_BYTES)) {
return USB_REQUEST_STATUS_STALL;
} else {
w25q80bv_program(addr, len, &spiflash_buffer[0]);
usb_transfer_schedule_ack(endpoint->in);
//FIXME probably should undo w25q80bv_setup()
return USB_REQUEST_STATUS_OK;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_read_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
uint32_t i;
uint32_t addr;
uint16_t len;
uint8_t* u8_addr_pt;
if (stage == USB_TRANSFER_STAGE_SETUP)
{
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
if ((len > W25Q80BV_PAGE_LEN) || (addr > W25Q80BV_NUM_BYTES)
|| ((addr + len) > W25Q80BV_NUM_BYTES)) {
return USB_REQUEST_STATUS_STALL;
} else {
/* TODO flush SPIFI "cache" before to read the SPIFI memory */
u8_addr_pt = (uint8_t*)(addr + SPIFI_DATA_UNCACHED_BASE);
for(i=0; i<len; i++)
{
spiflash_buffer[i] = u8_addr_pt[i];
}
usb_transfer_schedule_block(endpoint->in, &spiflash_buffer[0], len,
NULL, NULL);
return USB_REQUEST_STATUS_OK;
}
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
/* This check is redundant but makes me feel better. */
if ((len > W25Q80BV_PAGE_LEN) || (addr > W25Q80BV_NUM_BYTES)
|| ((addr + len) > W25Q80BV_NUM_BYTES))
{
return USB_REQUEST_STATUS_STALL;
} else
{
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
} else
{
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_read_board_id(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
endpoint->buffer[0] = BOARD_ID;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1, NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_read_version_string(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
uint8_t length;
if (stage == USB_TRANSFER_STAGE_SETUP) {
length = (uint8_t)strlen(version_string);
usb_transfer_schedule_block(endpoint->in, version_string, length, NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_freq(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP)
{
usb_transfer_schedule_block(endpoint->out, &set_freq_params, sizeof(set_freq_params_t),
NULL, NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
if( set_freq(set_freq_params.freq_mhz, set_freq_params.freq_hz) )
{
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else
{
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_sample_rate_frac(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP)
{
usb_transfer_schedule_block(endpoint->out, &set_sample_r_params, sizeof(set_sample_r_params_t),
NULL, NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
if( sample_rate_frac_set(set_sample_r_params.freq_hz * 2, set_sample_r_params.divider ) )
{
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else
{
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_amp_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
case 0:
rf_path_set_lna(0);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
case 1:
rf_path_set_lna(1);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
typedef struct {
uint32_t part_id[2];
uint32_t serial_no[4];
} read_partid_serialno_t;
usb_request_status_t usb_vendor_request_read_partid_serialno(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
uint8_t length;
read_partid_serialno_t read_partid_serialno;
iap_cmd_res_t iap_cmd_res;
if (stage == USB_TRANSFER_STAGE_SETUP)
{
/* Read IAP Part Number Identification */
iap_cmd_res.cmd_param.command_code = IAP_CMD_READ_PART_ID_NO;
iap_cmd_call(&iap_cmd_res);
if(iap_cmd_res.status_res.status_ret != CMD_SUCCESS)
return USB_REQUEST_STATUS_STALL;
read_partid_serialno.part_id[0] = iap_cmd_res.status_res.iap_result[0];
read_partid_serialno.part_id[1] = iap_cmd_res.status_res.iap_result[1];
/* Read IAP Serial Number Identification */
iap_cmd_res.cmd_param.command_code = IAP_CMD_READ_SERIAL_NO;
iap_cmd_call(&iap_cmd_res);
if(iap_cmd_res.status_res.status_ret != CMD_SUCCESS)
return USB_REQUEST_STATUS_STALL;
read_partid_serialno.serial_no[0] = iap_cmd_res.status_res.iap_result[0];
read_partid_serialno.serial_no[1] = iap_cmd_res.status_res.iap_result[1];
read_partid_serialno.serial_no[2] = iap_cmd_res.status_res.iap_result[2];
read_partid_serialno.serial_no[3] = iap_cmd_res.status_res.iap_result[3];
length = (uint8_t)sizeof(read_partid_serialno_t);
usb_transfer_schedule_block(endpoint->in, &read_partid_serialno, length,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_lna_gain(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint8_t value = max2837_set_lna_gain(endpoint->setup.index);
endpoint->buffer[0] = value;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_vga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint8_t value = max2837_set_vga_gain(endpoint->setup.index);
endpoint->buffer[0] = value;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_txvga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint8_t value = max2837_set_txvga_gain(endpoint->setup.index);
endpoint->buffer[0] = value;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_if_freq(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
if( set_freq_if((uint32_t)endpoint->setup.index * 1000 * 1000) ) {
usb_transfer_schedule_ack(endpoint->in);
} else {
return USB_REQUEST_STATUS_STALL;
}
}
return USB_REQUEST_STATUS_OK;
}
static const usb_request_handler_fn vendor_request_handler[] = {
NULL,
usb_vendor_request_set_transceiver_mode,
usb_vendor_request_write_max2837,
usb_vendor_request_read_max2837,
usb_vendor_request_write_si5351c,
usb_vendor_request_read_si5351c,
usb_vendor_request_set_sample_rate_frac,
usb_vendor_request_set_baseband_filter_bandwidth,
usb_vendor_request_write_rffc5071,
usb_vendor_request_read_rffc5071,
usb_vendor_request_erase_spiflash,
usb_vendor_request_write_spiflash,
usb_vendor_request_read_spiflash,
NULL, // used to be write_cpld
usb_vendor_request_read_board_id,
usb_vendor_request_read_version_string,
usb_vendor_request_set_freq,
usb_vendor_request_set_amp_enable,
usb_vendor_request_read_partid_serialno,
usb_vendor_request_set_lna_gain,
usb_vendor_request_set_vga_gain,
usb_vendor_request_set_txvga_gain,
usb_vendor_request_set_if_freq,
};
static const uint32_t vendor_request_handler_count =
sizeof(vendor_request_handler) / sizeof(vendor_request_handler[0]);
usb_request_status_t usb_vendor_request(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
usb_request_status_t status = USB_REQUEST_STATUS_STALL;
if( endpoint->setup.request < vendor_request_handler_count ) {
usb_request_handler_fn handler = vendor_request_handler[endpoint->setup.request];
if( handler ) {
status = handler(endpoint, stage);
}
}
return status;
}
const usb_request_handlers_t usb_request_handlers = {
.standard = usb_standard_request,
.class = 0,
.vendor = usb_vendor_request,
.reserved = 0,
};
static void cpld_buffer_refilled(void* user_data, unsigned int length)
{
cpld_wait = false;
}
static void refill_cpld_buffer(void)
{
cpld_wait = true;
usb_transfer_schedule(
&usb_endpoint_bulk_out,
cpld_xsvf_buffer,
sizeof(cpld_xsvf_buffer),
cpld_buffer_refilled,
NULL
);
// Wait until transfer finishes
while (cpld_wait);
}
static void cpld_update(void)
{
#define WAIT_LOOP_DELAY (6000000)
#define ALL_LEDS (PIN_LED1|PIN_LED2|PIN_LED3)
int i;
int error;
usb_queue_flush_endpoint(&usb_endpoint_bulk_in);
usb_queue_flush_endpoint(&usb_endpoint_bulk_out);
refill_cpld_buffer();
error = cpld_jtag_program(sizeof(cpld_xsvf_buffer),
cpld_xsvf_buffer,
refill_cpld_buffer);
if(error == 0)
{
/* blink LED1, LED2, and LED3 on success */
while (1)
{
gpio_set(PORT_LED1_3, ALL_LEDS); /* LEDs on */
for (i = 0; i < WAIT_LOOP_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_clear(PORT_LED1_3, ALL_LEDS); /* LEDs off */
for (i = 0; i < WAIT_LOOP_DELAY; i++) /* Wait a bit. */
__asm__("nop");
}
}else
{
/* LED3 (Red) steady on error */
gpio_set(PORT_LED1_3, PIN_LED3); /* LEDs on */
while (1);
}
}
void usb_configuration_changed(
usb_device_t* const device
) {
/* Reset transceiver to idle state until other commands are received */
set_transceiver_mode(TRANSCEIVER_MODE_OFF);
if( device->configuration->number == 1 ) {
// transceiver configuration
cpu_clock_pll1_max_speed();
gpio_set(PORT_LED1_3, PIN_LED1);
} else if( device->configuration->number == 2 ) {
// CPLD update configuration
cpu_clock_pll1_max_speed();
usb_endpoint_init(&usb_endpoint_bulk_out);
start_cpld_update = true;
} else {
/* Configuration number equal 0 means usb bus reset. */
cpu_clock_pll1_low_speed();
gpio_clear(PORT_LED1_3, PIN_LED1);
}
}
int main(void) {
const uint32_t ifreq = 2600000000U;
pin_setup();
enable_1v8_power();
cpu_clock_init();
usb_set_configuration_changed_cb(usb_configuration_changed);
usb_peripheral_reset();
usb_device_init(0, &usb_device);
usb_queue_init(&usb_endpoint_control_out_queue);
usb_queue_init(&usb_endpoint_control_in_queue);
usb_queue_init(&usb_endpoint_bulk_out_queue);
usb_queue_init(&usb_endpoint_bulk_in_queue);
usb_endpoint_init(&usb_endpoint_control_out);
usb_endpoint_init(&usb_endpoint_control_in);
nvic_set_priority(NVIC_USB0_IRQ, 255);
usb_run(&usb_device);
ssp1_init();
ssp1_set_mode_max5864();
max5864_xcvr();
ssp1_set_mode_max2837();
max2837_setup();
max2837_set_frequency(ifreq);
rffc5071_setup();
rf_path_init();
unsigned int phase = 0;
while(true) {
// Check whether we need to initiate a CPLD update
if (start_cpld_update)
cpld_update();
// Set up IN transfer of buffer 0.
if ( usb_bulk_buffer_offset >= 16384
&& phase == 1
&& transceiver_mode != TRANSCEIVER_MODE_OFF) {
usb_transfer_schedule_block(
(transceiver_mode == TRANSCEIVER_MODE_RX)
? &usb_endpoint_bulk_in : &usb_endpoint_bulk_out,
&usb_bulk_buffer[0x0000],
0x4000,
NULL, NULL
);
phase = 0;
}
// Set up IN transfer of buffer 1.
if ( usb_bulk_buffer_offset < 16384
&& phase == 0
&& transceiver_mode != TRANSCEIVER_MODE_OFF) {
usb_transfer_schedule_block(
(transceiver_mode == TRANSCEIVER_MODE_RX)
? &usb_endpoint_bulk_in : &usb_endpoint_bulk_out,
&usb_bulk_buffer[0x4000],
0x4000,
NULL, NULL
);
phase = 1;
}
}
return 0;
}