
Compiling with clang-cl, gives this error: ```c hackrf-tools/src/hackrf_sweep.c(685,3): error: call to undeclared function '_setmode'; ISO C99 and later do not support implicit function declarations [-Wimplicit-function-declaration] 685 | _setmode(_fileno(stdout), _O_BINARY); | ^ ``` fixed by simply adding `#include <io.h>`.
937 lines
23 KiB
C
937 lines
23 KiB
C
/*
|
|
* Copyright 2016-2022 Great Scott Gadgets <info@greatscottgadgets.com>
|
|
* Copyright 2016 Dominic Spill <dominicgs@gmail.com>
|
|
* Copyright 2016 Mike Walters <mike@flomp.net>
|
|
*
|
|
* This file is part of HackRF.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <hackrf.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <getopt.h>
|
|
#include <time.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <fftw3.h>
|
|
#include <inttypes.h>
|
|
|
|
#define _FILE_OFFSET_BITS 64
|
|
|
|
#ifndef bool
|
|
typedef int bool;
|
|
#define true 1
|
|
#define false 0
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#define _USE_MATH_DEFINES
|
|
#include <windows.h>
|
|
#include <io.h>
|
|
#ifdef _MSC_VER
|
|
|
|
#ifdef _WIN64
|
|
typedef int64_t ssize_t;
|
|
#else
|
|
typedef int32_t ssize_t;
|
|
#endif
|
|
|
|
#define strtoull _strtoui64
|
|
#define snprintf _snprintf
|
|
|
|
int gettimeofday(struct timeval* tv, void* ignored)
|
|
{
|
|
FILETIME ft;
|
|
unsigned __int64 tmp = 0;
|
|
if (NULL != tv) {
|
|
GetSystemTimeAsFileTime(&ft);
|
|
tmp |= ft.dwHighDateTime;
|
|
tmp <<= 32;
|
|
tmp |= ft.dwLowDateTime;
|
|
tmp /= 10;
|
|
tmp -= 11644473600000000Ui64;
|
|
tv->tv_sec = (long) (tmp / 1000000UL);
|
|
tv->tv_usec = (long) (tmp % 1000000UL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#include <signal.h>
|
|
#include <math.h>
|
|
|
|
#define FD_BUFFER_SIZE (8 * 1024)
|
|
|
|
#define FREQ_ONE_MHZ (1000000ull)
|
|
|
|
#define FREQ_MIN_MHZ (0) /* 0 MHz */
|
|
#define FREQ_MAX_MHZ (7250) /* 7250 MHz */
|
|
|
|
#define DEFAULT_SAMPLE_RATE_HZ (20000000) /* 20MHz default sample rate */
|
|
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (15000000) /* 15MHz default */
|
|
|
|
#define TUNE_STEP (DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ)
|
|
#define OFFSET 7500000
|
|
|
|
#define BLOCKS_PER_TRANSFER 16
|
|
#define THROWAWAY_BLOCKS 2
|
|
|
|
#if defined _WIN32
|
|
#define m_sleep(a) Sleep((a))
|
|
#else
|
|
#define m_sleep(a) usleep((a * 1000))
|
|
#endif
|
|
|
|
uint32_t num_sweeps = 0;
|
|
int num_ranges = 0;
|
|
uint16_t frequencies[MAX_SWEEP_RANGES * 2];
|
|
int step_count;
|
|
|
|
static float TimevalDiff(const struct timeval* a, const struct timeval* b)
|
|
{
|
|
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
|
|
}
|
|
|
|
int parse_u32(char* s, uint32_t* const value)
|
|
{
|
|
uint_fast8_t base = 10;
|
|
char* s_end;
|
|
uint64_t ulong_value;
|
|
|
|
if (strlen(s) > 2) {
|
|
if (s[0] == '0') {
|
|
if ((s[1] == 'x') || (s[1] == 'X')) {
|
|
base = 16;
|
|
s += 2;
|
|
} else if ((s[1] == 'b') || (s[1] == 'B')) {
|
|
base = 2;
|
|
s += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
s_end = s;
|
|
ulong_value = strtoul(s, &s_end, base);
|
|
if ((s != s_end) && (*s_end == 0)) {
|
|
*value = (uint32_t) ulong_value;
|
|
return HACKRF_SUCCESS;
|
|
} else {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max)
|
|
{
|
|
int result;
|
|
|
|
char* sep = strchr(s, ':');
|
|
if (!sep) {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
|
|
*sep = 0;
|
|
|
|
result = parse_u32(s, value_min);
|
|
if (result != HACKRF_SUCCESS) {
|
|
return result;
|
|
}
|
|
result = parse_u32(sep + 1, value_max);
|
|
if (result != HACKRF_SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
return HACKRF_SUCCESS;
|
|
}
|
|
|
|
volatile bool do_exit = false;
|
|
|
|
FILE* outfile = NULL;
|
|
volatile uint32_t byte_count = 0;
|
|
volatile uint64_t sweep_count = 0;
|
|
|
|
struct timeval time_start;
|
|
struct timeval t_start;
|
|
|
|
bool amp = false;
|
|
uint32_t amp_enable;
|
|
|
|
bool antenna = false;
|
|
uint32_t antenna_enable;
|
|
|
|
bool binary_output = false;
|
|
bool ifft_output = false;
|
|
bool one_shot = false;
|
|
bool finite_mode = false;
|
|
volatile bool sweep_started = false;
|
|
|
|
int fftSize = 20;
|
|
double fft_bin_width;
|
|
fftwf_complex* fftwIn = NULL;
|
|
fftwf_complex* fftwOut = NULL;
|
|
fftwf_plan fftwPlan = NULL;
|
|
fftwf_complex* ifftwIn = NULL;
|
|
fftwf_complex* ifftwOut = NULL;
|
|
fftwf_plan ifftwPlan = NULL;
|
|
uint32_t ifft_idx = 0;
|
|
float* pwr;
|
|
float* window;
|
|
|
|
float logPower(fftwf_complex in, float scale)
|
|
{
|
|
float re = in[0] * scale;
|
|
float im = in[1] * scale;
|
|
float magsq = re * re + im * im;
|
|
return (float) (log2(magsq) * 10.0f / log2(10.0f));
|
|
}
|
|
|
|
int rx_callback(hackrf_transfer* transfer)
|
|
{
|
|
int8_t* buf;
|
|
uint8_t* ubuf;
|
|
uint64_t frequency; /* in Hz */
|
|
uint64_t band_edge;
|
|
uint32_t record_length;
|
|
int i, j, ifft_bins;
|
|
struct tm* fft_time;
|
|
char time_str[50];
|
|
struct timeval usb_transfer_time;
|
|
|
|
if (NULL == outfile) {
|
|
return -1;
|
|
}
|
|
|
|
if (do_exit) {
|
|
return 0;
|
|
}
|
|
gettimeofday(&usb_transfer_time, NULL);
|
|
byte_count += transfer->valid_length;
|
|
buf = (int8_t*) transfer->buffer;
|
|
ifft_bins = fftSize * step_count;
|
|
for (j = 0; j < BLOCKS_PER_TRANSFER; j++) {
|
|
ubuf = (uint8_t*) buf;
|
|
if (ubuf[0] == 0x7F && ubuf[1] == 0x7F) {
|
|
frequency = ((uint64_t) (ubuf[9]) << 56) |
|
|
((uint64_t) (ubuf[8]) << 48) |
|
|
((uint64_t) (ubuf[7]) << 40) |
|
|
((uint64_t) (ubuf[6]) << 32) |
|
|
((uint64_t) (ubuf[5]) << 24) |
|
|
((uint64_t) (ubuf[4]) << 16) |
|
|
((uint64_t) (ubuf[3]) << 8) | ubuf[2];
|
|
} else {
|
|
buf += BYTES_PER_BLOCK;
|
|
continue;
|
|
}
|
|
if (frequency == (uint64_t) (FREQ_ONE_MHZ * frequencies[0])) {
|
|
if (sweep_started) {
|
|
if (ifft_output) {
|
|
fftwf_execute(ifftwPlan);
|
|
for (i = 0; i < ifft_bins; i++) {
|
|
ifftwOut[i][0] *= 1.0f / ifft_bins;
|
|
ifftwOut[i][1] *= 1.0f / ifft_bins;
|
|
fwrite(&ifftwOut[i][0],
|
|
sizeof(float),
|
|
1,
|
|
outfile);
|
|
fwrite(&ifftwOut[i][1],
|
|
sizeof(float),
|
|
1,
|
|
outfile);
|
|
}
|
|
}
|
|
sweep_count++;
|
|
if (one_shot) {
|
|
do_exit = true;
|
|
} else if (finite_mode && sweep_count == num_sweeps) {
|
|
do_exit = true;
|
|
}
|
|
}
|
|
sweep_started = true;
|
|
}
|
|
if (do_exit) {
|
|
return 0;
|
|
}
|
|
if (!sweep_started) {
|
|
buf += BYTES_PER_BLOCK;
|
|
continue;
|
|
}
|
|
if ((FREQ_MAX_MHZ * FREQ_ONE_MHZ) < frequency) {
|
|
buf += BYTES_PER_BLOCK;
|
|
continue;
|
|
}
|
|
/* copy to fftwIn as floats */
|
|
buf += BYTES_PER_BLOCK - (fftSize * 2);
|
|
for (i = 0; i < fftSize; i++) {
|
|
fftwIn[i][0] = buf[i * 2] * window[i] * 1.0f / 128.0f;
|
|
fftwIn[i][1] = buf[i * 2 + 1] * window[i] * 1.0f / 128.0f;
|
|
}
|
|
buf += fftSize * 2;
|
|
fftwf_execute(fftwPlan);
|
|
for (i = 0; i < fftSize; i++) {
|
|
pwr[i] = logPower(fftwOut[i], 1.0f / fftSize);
|
|
}
|
|
if (binary_output) {
|
|
record_length =
|
|
2 * sizeof(band_edge) + (fftSize / 4) * sizeof(float);
|
|
|
|
fwrite(&record_length, sizeof(record_length), 1, outfile);
|
|
band_edge = frequency;
|
|
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
|
|
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 4;
|
|
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
|
|
fwrite(&pwr[1 + (fftSize * 5) / 8],
|
|
sizeof(float),
|
|
fftSize / 4,
|
|
outfile);
|
|
|
|
fwrite(&record_length, sizeof(record_length), 1, outfile);
|
|
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 2;
|
|
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
|
|
band_edge = frequency + (DEFAULT_SAMPLE_RATE_HZ * 3) / 4;
|
|
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
|
|
fwrite(&pwr[1 + fftSize / 8], sizeof(float), fftSize / 4, outfile);
|
|
} else if (ifft_output) {
|
|
ifft_idx = (uint32_t) round(
|
|
(frequency - (uint64_t) (FREQ_ONE_MHZ * frequencies[0])) /
|
|
fft_bin_width);
|
|
ifft_idx = (ifft_idx + ifft_bins / 2) % ifft_bins;
|
|
for (i = 0; (fftSize / 4) > i; i++) {
|
|
ifftwIn[ifft_idx + i][0] =
|
|
fftwOut[i + 1 + (fftSize * 5) / 8][0];
|
|
ifftwIn[ifft_idx + i][1] =
|
|
fftwOut[i + 1 + (fftSize * 5) / 8][1];
|
|
}
|
|
ifft_idx += fftSize / 2;
|
|
ifft_idx %= ifft_bins;
|
|
for (i = 0; (fftSize / 4) > i; i++) {
|
|
ifftwIn[ifft_idx + i][0] =
|
|
fftwOut[i + 1 + (fftSize / 8)][0];
|
|
ifftwIn[ifft_idx + i][1] =
|
|
fftwOut[i + 1 + (fftSize / 8)][1];
|
|
}
|
|
} else {
|
|
time_t time_stamp_seconds = usb_transfer_time.tv_sec;
|
|
fft_time = localtime(&time_stamp_seconds);
|
|
strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time);
|
|
fprintf(outfile,
|
|
"%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
|
|
time_str,
|
|
(long int) usb_transfer_time.tv_usec,
|
|
(uint64_t) (frequency),
|
|
(uint64_t) (frequency + DEFAULT_SAMPLE_RATE_HZ / 4),
|
|
fft_bin_width,
|
|
fftSize);
|
|
for (i = 0; (fftSize / 4) > i; i++) {
|
|
fprintf(outfile,
|
|
", %.2f",
|
|
pwr[i + 1 + (fftSize * 5) / 8]);
|
|
}
|
|
fprintf(outfile, "\n");
|
|
fprintf(outfile,
|
|
"%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
|
|
time_str,
|
|
(long int) usb_transfer_time.tv_usec,
|
|
(uint64_t) (frequency + (DEFAULT_SAMPLE_RATE_HZ / 2)),
|
|
(uint64_t) (frequency + ((DEFAULT_SAMPLE_RATE_HZ * 3) / 4)),
|
|
fft_bin_width,
|
|
fftSize);
|
|
for (i = 0; (fftSize / 4) > i; i++) {
|
|
fprintf(outfile, ", %.2f", pwr[i + 1 + (fftSize / 8)]);
|
|
}
|
|
fprintf(outfile, "\n");
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void usage()
|
|
{
|
|
fprintf(stderr,
|
|
"Usage:\n"
|
|
"\t[-h] # this help\n"
|
|
"\t[-d serial_number] # Serial number of desired HackRF\n"
|
|
"\t[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable\n"
|
|
"\t[-f freq_min:freq_max] # minimum and maximum frequencies in MHz\n"
|
|
"\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable\n"
|
|
"\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n"
|
|
"\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n"
|
|
"\t[-w bin_width] # FFT bin width (frequency resolution) in Hz, 2445-5000000\n"
|
|
"\t[-W wisdom_file] # Use FFTW wisdom file (will be created if necessary)\n"
|
|
"\t[-P estimate|measure|patient|exhaustive] # FFTW plan type, default is 'measure'\n"
|
|
"\t[-1] # one shot mode\n"
|
|
"\t[-N num_sweeps] # Number of sweeps to perform\n"
|
|
"\t[-B] # binary output\n"
|
|
"\t[-I] # binary inverse FFT output\n"
|
|
"\t-r filename # output file\n"
|
|
"\n"
|
|
"Output fields:\n"
|
|
"\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n");
|
|
}
|
|
|
|
static hackrf_device* device = NULL;
|
|
|
|
#ifdef _MSC_VER
|
|
BOOL WINAPI sighandler(int signum)
|
|
{
|
|
if (CTRL_C_EVENT == signum) {
|
|
fprintf(stderr, "Caught signal %d\n", signum);
|
|
do_exit = true;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
#else
|
|
void sigint_callback_handler(int signum)
|
|
{
|
|
fprintf(stderr, "Caught signal %d\n", signum);
|
|
do_exit = true;
|
|
}
|
|
#endif
|
|
|
|
int import_wisdom(const char* path)
|
|
{
|
|
// Returns nonzero
|
|
if (!fftwf_import_wisdom_from_filename(path)) {
|
|
fprintf(stderr,
|
|
"Wisdom file %s not found; will attempt to create it\n",
|
|
path);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int import_default_wisdom()
|
|
{
|
|
return fftwf_import_system_wisdom();
|
|
}
|
|
|
|
int export_wisdom(const char* path)
|
|
{
|
|
if (path != NULL) {
|
|
if (!fftwf_export_wisdom_to_filename(path)) {
|
|
fprintf(stderr, "Could not write FFTW wisdom file to %s", path);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
int opt, i, result = 0;
|
|
const char* path = NULL;
|
|
const char* serial_number = NULL;
|
|
int exit_code = EXIT_SUCCESS;
|
|
struct timeval time_now;
|
|
struct timeval time_prev;
|
|
float time_diff;
|
|
float sweep_rate = 0;
|
|
unsigned int lna_gain = 16, vga_gain = 20;
|
|
uint32_t freq_min = 0;
|
|
uint32_t freq_max = 6000;
|
|
uint32_t requested_fft_bin_width;
|
|
const char* fftwWisdomPath = NULL;
|
|
int fftw_plan_type = FFTW_MEASURE;
|
|
|
|
while ((opt = getopt(argc, argv, "a:f:p:l:g:d:n:N:w:W:P:1BIr:h?")) != EOF) {
|
|
result = HACKRF_SUCCESS;
|
|
switch (opt) {
|
|
case 'd':
|
|
serial_number = optarg;
|
|
break;
|
|
|
|
case 'a':
|
|
amp = true;
|
|
result = parse_u32(optarg, &_enable);
|
|
break;
|
|
|
|
case 'f':
|
|
result = parse_u32_range(optarg, &freq_min, &freq_max);
|
|
if (freq_min >= freq_max) {
|
|
fprintf(stderr,
|
|
"argument error: freq_max must be greater than freq_min.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (FREQ_MAX_MHZ < freq_max) {
|
|
fprintf(stderr,
|
|
"argument error: freq_max may not be higher than %u.\n",
|
|
FREQ_MAX_MHZ);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (MAX_SWEEP_RANGES <= num_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: specify a maximum of %u frequency ranges.\n",
|
|
MAX_SWEEP_RANGES);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
frequencies[2 * num_ranges] = (uint16_t) freq_min;
|
|
frequencies[2 * num_ranges + 1] = (uint16_t) freq_max;
|
|
num_ranges++;
|
|
break;
|
|
|
|
case 'p':
|
|
antenna = true;
|
|
result = parse_u32(optarg, &antenna_enable);
|
|
break;
|
|
|
|
case 'l':
|
|
result = parse_u32(optarg, &lna_gain);
|
|
break;
|
|
|
|
case 'g':
|
|
result = parse_u32(optarg, &vga_gain);
|
|
break;
|
|
|
|
case 'N':
|
|
finite_mode = true;
|
|
result = parse_u32(optarg, &num_sweeps);
|
|
break;
|
|
|
|
case 'w':
|
|
result = parse_u32(optarg, &requested_fft_bin_width);
|
|
fftSize = DEFAULT_SAMPLE_RATE_HZ / requested_fft_bin_width;
|
|
break;
|
|
|
|
case 'W':
|
|
fftwWisdomPath = optarg;
|
|
break;
|
|
|
|
case 'P':
|
|
if (strcmp("estimate", optarg) == 0) {
|
|
fftw_plan_type = FFTW_ESTIMATE;
|
|
} else if (strcmp("measure", optarg) == 0) {
|
|
fftw_plan_type = FFTW_MEASURE;
|
|
} else if (strcmp("patient", optarg) == 0) {
|
|
fftw_plan_type = FFTW_PATIENT;
|
|
} else if (strcmp("exhaustive", optarg) == 0) {
|
|
fftw_plan_type = FFTW_EXHAUSTIVE;
|
|
} else {
|
|
fprintf(stderr, "Unknown FFTW plan type '%s'\n", optarg);
|
|
return EXIT_FAILURE;
|
|
}
|
|
break;
|
|
|
|
case '1':
|
|
one_shot = true;
|
|
break;
|
|
|
|
case 'B':
|
|
binary_output = true;
|
|
break;
|
|
|
|
case 'I':
|
|
ifft_output = true;
|
|
break;
|
|
|
|
case 'r':
|
|
path = optarg;
|
|
break;
|
|
|
|
case 'h':
|
|
case '?':
|
|
usage();
|
|
return EXIT_SUCCESS;
|
|
|
|
default:
|
|
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"argument error: '-%c %s' %s (%d)\n",
|
|
opt,
|
|
optarg,
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
// Try to load a wisdom file if specified, otherwise
|
|
// try to load the system-wide wisdom file
|
|
if (fftwWisdomPath) {
|
|
import_wisdom(fftwWisdomPath);
|
|
} else {
|
|
import_default_wisdom();
|
|
}
|
|
|
|
if (lna_gain % 8) {
|
|
fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n");
|
|
}
|
|
|
|
if (vga_gain % 2) {
|
|
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
|
|
}
|
|
|
|
if (amp) {
|
|
if (amp_enable > 1) {
|
|
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (antenna) {
|
|
if (antenna_enable > 1) {
|
|
fprintf(stderr,
|
|
"argument error: antenna_enable shall be 0 or 1.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (0 == num_ranges) {
|
|
frequencies[0] = (uint16_t) freq_min;
|
|
frequencies[1] = (uint16_t) freq_max;
|
|
num_ranges++;
|
|
}
|
|
|
|
if (binary_output && ifft_output) {
|
|
fprintf(stderr,
|
|
"argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (ifft_output && (1 < num_ranges)) {
|
|
fprintf(stderr,
|
|
"argument error: only one frequency range is supported in IFFT output (-I) mode.\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* The FFT bin width must be no more than a quarter of the sample rate
|
|
* for interleaved mode. With our fixed sample rate of 20 Msps, that
|
|
* results in a maximum bin width of 5000000 Hz.
|
|
*/
|
|
if (4 > fftSize) {
|
|
fprintf(stderr,
|
|
"argument error: FFT bin width (-w) must be no more than 5000000\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* The maximum number of FFT bins we support is equal to the number of
|
|
* samples in a block. Each block consists of 16384 bytes minus 10
|
|
* bytes for the frequency header, leaving room for 8187 two-byte
|
|
* samples. As we pad fftSize up to the next odd multiple of four, this
|
|
* makes our maximum supported fftSize 8180. With our fixed sample
|
|
* rate of 20 Msps, that results in a minimum bin width of 2445 Hz.
|
|
*/
|
|
if (8180 < fftSize) {
|
|
fprintf(stderr,
|
|
"argument error: FFT bin width (-w) must be no less than 2445\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* In interleaved mode, the FFT bin selection works best if the total
|
|
* number of FFT bins is equal to an odd multiple of four.
|
|
* (e.g. 4, 12, 20, 28, 36, . . .)
|
|
*/
|
|
while ((fftSize + 4) % 8) {
|
|
fftSize++;
|
|
}
|
|
|
|
fft_bin_width = (double) DEFAULT_SAMPLE_RATE_HZ / fftSize;
|
|
fftwIn = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
|
|
fftwOut = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
|
|
fftwPlan =
|
|
fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, fftw_plan_type);
|
|
pwr = (float*) fftwf_malloc(sizeof(float) * fftSize);
|
|
window = (float*) fftwf_malloc(sizeof(float) * fftSize);
|
|
for (i = 0; i < fftSize; i++) {
|
|
window[i] = (float) (0.5f * (1.0f - cos(2 * M_PI * i / (fftSize - 1))));
|
|
}
|
|
|
|
/* Execute the plan once to make sure it's ready to go when real
|
|
* data starts to flow. See issue #1366
|
|
*/
|
|
fftwf_execute(fftwPlan);
|
|
|
|
#ifdef _MSC_VER
|
|
if (binary_output) {
|
|
_setmode(_fileno(stdout), _O_BINARY);
|
|
}
|
|
#endif
|
|
|
|
result = hackrf_init();
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_init() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
result = hackrf_open_by_serial(serial_number, &device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_open() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if ((NULL == path) || (strcmp(path, "-") == 0)) {
|
|
outfile = stdout;
|
|
} else {
|
|
outfile = fopen(path, "wb");
|
|
}
|
|
|
|
if (NULL == outfile) {
|
|
fprintf(stderr, "Failed to open file: %s\n", path);
|
|
return EXIT_FAILURE;
|
|
}
|
|
/* Change outfile buffer to have bigger one to store or read data on/to HDD */
|
|
result = setvbuf(outfile, NULL, _IOFBF, FD_BUFFER_SIZE);
|
|
if (result != 0) {
|
|
fprintf(stderr, "setvbuf() failed: %d\n", result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE);
|
|
#else
|
|
signal(SIGINT, &sigint_callback_handler);
|
|
signal(SIGILL, &sigint_callback_handler);
|
|
signal(SIGFPE, &sigint_callback_handler);
|
|
signal(SIGSEGV, &sigint_callback_handler);
|
|
signal(SIGTERM, &sigint_callback_handler);
|
|
signal(SIGABRT, &sigint_callback_handler);
|
|
#endif
|
|
fprintf(stderr,
|
|
"call hackrf_sample_rate_set(%.03f MHz)\n",
|
|
((float) DEFAULT_SAMPLE_RATE_HZ / (float) FREQ_ONE_MHZ));
|
|
result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_sample_rate_set() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
fprintf(stderr,
|
|
"call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
|
|
((float) DEFAULT_BASEBAND_FILTER_BANDWIDTH / (float) FREQ_ONE_MHZ));
|
|
result = hackrf_set_baseband_filter_bandwidth(
|
|
device,
|
|
DEFAULT_BASEBAND_FILTER_BANDWIDTH);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
result = hackrf_set_vga_gain(device, vga_gain);
|
|
result |= hackrf_set_lna_gain(device, lna_gain);
|
|
|
|
/*
|
|
* For each range, plan a whole number of tuning steps of a certain
|
|
* bandwidth. Increase high end of range if necessary to accommodate a
|
|
* whole number of steps, minimum 1.
|
|
*/
|
|
for (i = 0; i < num_ranges; i++) {
|
|
step_count =
|
|
1 + (frequencies[2 * i + 1] - frequencies[2 * i] - 1) / TUNE_STEP;
|
|
frequencies[2 * i + 1] =
|
|
(uint16_t) (frequencies[2 * i] + step_count * TUNE_STEP);
|
|
fprintf(stderr,
|
|
"Sweeping from %u MHz to %u MHz\n",
|
|
frequencies[2 * i],
|
|
frequencies[2 * i + 1]);
|
|
}
|
|
|
|
if (ifft_output) {
|
|
ifftwIn = (fftwf_complex*) fftwf_malloc(
|
|
sizeof(fftwf_complex) * fftSize * step_count);
|
|
ifftwOut = (fftwf_complex*) fftwf_malloc(
|
|
sizeof(fftwf_complex) * fftSize * step_count);
|
|
ifftwPlan = fftwf_plan_dft_1d(
|
|
fftSize * step_count,
|
|
ifftwIn,
|
|
ifftwOut,
|
|
FFTW_BACKWARD,
|
|
fftw_plan_type);
|
|
|
|
/* Execute the plan once to make sure it's ready to go when real
|
|
* data starts to flow. See issue #1366
|
|
*/
|
|
fftwf_execute(ifftwPlan);
|
|
}
|
|
|
|
result = hackrf_init_sweep(
|
|
device,
|
|
frequencies,
|
|
num_ranges,
|
|
BYTES_PER_BLOCK,
|
|
TUNE_STEP * FREQ_ONE_MHZ,
|
|
OFFSET,
|
|
INTERLEAVED);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_init_sweep() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
result |= hackrf_start_rx_sweep(device, rx_callback, NULL);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_start_rx_sweep() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (amp) {
|
|
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
|
|
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_amp_enable() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (antenna) {
|
|
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
|
|
result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_antenna_enable() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
gettimeofday(&t_start, NULL);
|
|
time_prev = t_start;
|
|
|
|
fprintf(stderr, "Stop with Ctrl-C\n");
|
|
while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
|
|
float time_difference;
|
|
m_sleep(50);
|
|
|
|
gettimeofday(&time_now, NULL);
|
|
if (TimevalDiff(&time_now, &time_prev) >= 1.0f) {
|
|
time_difference = TimevalDiff(&time_now, &t_start);
|
|
sweep_rate = (float) sweep_count / time_difference;
|
|
fprintf(stderr,
|
|
"%" PRIu64
|
|
" total sweeps completed, %.2f sweeps/second\n",
|
|
sweep_count,
|
|
sweep_rate);
|
|
|
|
if (byte_count == 0) {
|
|
exit_code = EXIT_FAILURE;
|
|
fprintf(stderr,
|
|
"\nCouldn't transfer any data for one second.\n");
|
|
break;
|
|
}
|
|
byte_count = 0;
|
|
time_prev = time_now;
|
|
}
|
|
}
|
|
|
|
fflush(outfile);
|
|
result = hackrf_is_streaming(device);
|
|
if (do_exit) {
|
|
fprintf(stderr, "\nExiting...\n");
|
|
} else {
|
|
fprintf(stderr,
|
|
"\nExiting... hackrf_is_streaming() result: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
}
|
|
|
|
gettimeofday(&time_now, NULL);
|
|
time_diff = TimevalDiff(&time_now, &t_start);
|
|
if ((sweep_rate == 0) && (time_diff > 0)) {
|
|
sweep_rate = sweep_count / time_diff;
|
|
}
|
|
fprintf(stderr,
|
|
"Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n",
|
|
sweep_count,
|
|
time_diff,
|
|
sweep_rate);
|
|
|
|
if (device != NULL) {
|
|
result = hackrf_close(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_close() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_close() done\n");
|
|
}
|
|
|
|
hackrf_exit();
|
|
fprintf(stderr, "hackrf_exit() done\n");
|
|
}
|
|
|
|
fflush(outfile);
|
|
if ((outfile != NULL) && (outfile != stdout)) {
|
|
fclose(outfile);
|
|
outfile = NULL;
|
|
fprintf(stderr, "fclose() done\n");
|
|
}
|
|
fftwf_free(fftwIn);
|
|
fftwf_free(fftwOut);
|
|
fftwf_free(pwr);
|
|
fftwf_free(window);
|
|
fftwf_free(ifftwIn);
|
|
fftwf_free(ifftwOut);
|
|
export_wisdom(fftwWisdomPath);
|
|
fprintf(stderr, "exit\n");
|
|
return exit_code;
|
|
}
|