hackrf/host/hackrf-tools/src/hackrf_sweep.c
2017-02-21 12:43:59 -07:00

760 lines
20 KiB
C

/*
* Copyright 2016 Dominic Spill <dominicgs@gmail.com>
* Copyright 2016 Mike Walters <mike@flomp.net>
* Copyright 2017 Michael Ossmann <mike@ossmann.com>
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <hackrf.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <fftw3.h>
#include <inttypes.h>
#define _FILE_OFFSET_BITS 64
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#ifdef _WIN32
#define _USE_MATH_DEFINES
#include <windows.h>
#ifdef _MSC_VER
#ifdef _WIN64
typedef int64_t ssize_t;
#else
typedef int32_t ssize_t;
#endif
#define strtoull _strtoui64
#define snprintf _snprintf
int gettimeofday(struct timeval *tv, void* ignored) {
FILETIME ft;
unsigned __int64 tmp = 0;
if (NULL != tv) {
GetSystemTimeAsFileTime(&ft);
tmp |= ft.dwHighDateTime;
tmp <<= 32;
tmp |= ft.dwLowDateTime;
tmp /= 10;
tmp -= 11644473600000000Ui64;
tv->tv_sec = (long)(tmp / 1000000UL);
tv->tv_usec = (long)(tmp % 1000000UL);
}
return 0;
}
#endif
#endif
#if defined(__GNUC__)
#include <unistd.h>
#include <sys/time.h>
#endif
#include <signal.h>
#include <math.h>
#define FD_BUFFER_SIZE (8*1024)
#define FREQ_ONE_MHZ (1000000ull)
#define FREQ_MIN_MHZ (0) /* 0 MHz */
#define FREQ_MAX_MHZ (7250) /* 7250 MHz */
#define DEFAULT_SAMPLE_RATE_HZ (20000000) /* 20MHz default sample rate */
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (15000000) /* 5MHz default */
#define TUNE_STEP (DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ)
#define OFFSET 7500000
#define BLOCKS_PER_TRANSFER 16
#define THROWAWAY_BLOCKS 2
#if defined _WIN32
#define sleep(a) Sleep( (a*1000) )
#endif
uint32_t num_samples = SAMPLES_PER_BLOCK;
int num_ranges = 0;
uint16_t frequencies[MAX_SWEEP_RANGES*2];
int step_count;
static float TimevalDiff(const struct timeval *a, const struct timeval *b) {
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
}
int parse_u32(char* s, uint32_t* const value) {
uint_fast8_t base = 10;
char* s_end;
uint64_t ulong_value;
if( strlen(s) > 2 ) {
if( s[0] == '0' ) {
if( (s[1] == 'x') || (s[1] == 'X') ) {
base = 16;
s += 2;
} else if( (s[1] == 'b') || (s[1] == 'B') ) {
base = 2;
s += 2;
}
}
}
s_end = s;
ulong_value = strtoul(s, &s_end, base);
if( (s != s_end) && (*s_end == 0) ) {
*value = (uint32_t)ulong_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max) {
int result;
char *sep = strchr(s, ':');
if (!sep)
return HACKRF_ERROR_INVALID_PARAM;
*sep = 0;
result = parse_u32(s, value_min);
if (result != HACKRF_SUCCESS)
return result;
result = parse_u32(sep + 1, value_max);
if (result != HACKRF_SUCCESS)
return result;
return HACKRF_SUCCESS;
}
volatile bool do_exit = false;
FILE* fd = NULL;
volatile uint32_t byte_count = 0;
volatile uint64_t sweep_count = 0;
struct timeval time_start;
struct timeval t_start;
struct timeval time_stamp;
bool amp = false;
uint32_t amp_enable;
bool antenna = false;
uint32_t antenna_enable;
bool binary_output = false;
bool ifft_output = false;
bool one_shot = false;
volatile bool sweep_started = false;
int fftSize = 20;
double fft_bin_width;
fftwf_complex *fftwIn = NULL;
fftwf_complex *fftwOut = NULL;
fftwf_plan fftwPlan = NULL;
fftwf_complex *ifftwIn = NULL;
fftwf_complex *ifftwOut = NULL;
fftwf_plan ifftwPlan = NULL;
uint32_t ifft_idx = 0;
float* pwr;
float* window;
float logPower(fftwf_complex in, float scale)
{
float re = in[0] * scale;
float im = in[1] * scale;
float magsq = re * re + im * im;
return log2f(magsq) * 10.0f / log2(10.0f);
}
int rx_callback(hackrf_transfer* transfer) {
int8_t* buf;
uint8_t* ubuf;
uint64_t frequency; /* in Hz */
uint64_t band_edge;
uint32_t record_length;
int i, j, ifft_bins;
struct tm *fft_time;
char time_str[50];
struct timeval usb_transfer_time;
if(NULL == fd) {
return -1;
}
gettimeofday(&usb_transfer_time, NULL);
byte_count += transfer->valid_length;
buf = (int8_t*) transfer->buffer;
ifft_bins = fftSize * step_count;
for(j=0; j<BLOCKS_PER_TRANSFER; j++) {
ubuf = (uint8_t*) buf;
if(ubuf[0] == 0x7F && ubuf[1] == 0x7F) {
frequency = ((uint64_t)(ubuf[9]) << 56) | ((uint64_t)(ubuf[8]) << 48) | ((uint64_t)(ubuf[7]) << 40)
| ((uint64_t)(ubuf[6]) << 32) | ((uint64_t)(ubuf[5]) << 24) | ((uint64_t)(ubuf[4]) << 16)
| ((uint64_t)(ubuf[3]) << 8) | ubuf[2];
} else {
buf += BYTES_PER_BLOCK;
continue;
}
if (frequency == (uint64_t)(FREQ_ONE_MHZ*frequencies[0])) {
if(sweep_started) {
if(ifft_output) {
fftwf_execute(ifftwPlan);
for(i=0; i < ifft_bins; i++) {
ifftwOut[i][0] *= 1.0f / ifft_bins;
ifftwOut[i][1] *= 1.0f / ifft_bins;
fwrite(&ifftwOut[i][0], sizeof(float), 1, fd);
fwrite(&ifftwOut[i][1], sizeof(float), 1, fd);
}
}
sweep_count++;
if(one_shot) {
do_exit = true;
}
}
sweep_started = true;
time_stamp = usb_transfer_time;
time_stamp.tv_usec +=
(uint64_t)(num_samples + THROWAWAY_BLOCKS * SAMPLES_PER_BLOCK)
* j * FREQ_ONE_MHZ / DEFAULT_SAMPLE_RATE_HZ;
if(999999 < time_stamp.tv_usec) {
time_stamp.tv_usec = time_stamp.tv_usec % 1000000;
time_stamp.tv_sec += time_stamp.tv_usec / 1000000;
}
}
if(do_exit) {
return 0;
}
if(!sweep_started) {
buf += BYTES_PER_BLOCK;
continue;
}
if((FREQ_MAX_MHZ * FREQ_ONE_MHZ) < frequency) {
buf += BYTES_PER_BLOCK;
continue;
}
/* copy to fftwIn as floats */
buf += BYTES_PER_BLOCK - (fftSize * 2);
for(i=0; i < fftSize; i++) {
fftwIn[i][0] = buf[i*2] * window[i] * 1.0f / 128.0f;
fftwIn[i][1] = buf[i*2+1] * window[i] * 1.0f / 128.0f;
}
buf += fftSize * 2;
fftwf_execute(fftwPlan);
for (i=0; i < fftSize; i++) {
pwr[i] = logPower(fftwOut[i], 1.0f / fftSize);
}
if(binary_output) {
record_length = 2 * sizeof(band_edge)
+ (fftSize/4) * sizeof(float);
fwrite(&record_length, sizeof(record_length), 1, fd);
band_edge = frequency;
fwrite(&band_edge, sizeof(band_edge), 1, fd);
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 4;
fwrite(&band_edge, sizeof(band_edge), 1, fd);
fwrite(&pwr[1+(fftSize*5)/8], sizeof(float), fftSize/4, fd);
fwrite(&record_length, sizeof(record_length), 1, fd);
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 2;
fwrite(&band_edge, sizeof(band_edge), 1, fd);
band_edge = frequency + (DEFAULT_SAMPLE_RATE_HZ * 3) / 4;
fwrite(&band_edge, sizeof(band_edge), 1, fd);
fwrite(&pwr[1+fftSize/8], sizeof(float), fftSize/4, fd);
} else if(ifft_output) {
ifft_idx = round((frequency - (uint64_t)(FREQ_ONE_MHZ*frequencies[0]))
/ fft_bin_width);
ifft_idx = (ifft_idx + ifft_bins/2) % ifft_bins;
for(i = 0; (fftSize / 4) > i; i++) {
ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize*5)/8][0];
ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize*5)/8][1];
}
ifft_idx += fftSize / 2;
ifft_idx %= ifft_bins;
for(i = 0; (fftSize / 4) > i; i++) {
ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize/8)][0];
ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize/8)][1];
}
} else {
fft_time = localtime(&time_stamp.tv_sec);
strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time);
fprintf(fd, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
time_str,
(long int)time_stamp.tv_usec,
(uint64_t)(frequency),
(uint64_t)(frequency+DEFAULT_SAMPLE_RATE_HZ/4),
fft_bin_width,
fftSize);
for(i = 0; (fftSize / 4) > i; i++) {
fprintf(fd, ", %.2f", pwr[i + 1 + (fftSize*5)/8]);
}
fprintf(fd, "\n");
fprintf(fd, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
time_str,
(long int)time_stamp.tv_usec,
(uint64_t)(frequency+(DEFAULT_SAMPLE_RATE_HZ/2)),
(uint64_t)(frequency+((DEFAULT_SAMPLE_RATE_HZ*3)/4)),
fft_bin_width,
fftSize);
for(i = 0; (fftSize / 4) > i; i++) {
fprintf(fd, ", %.2f", pwr[i + 1 + (fftSize/8)]);
}
fprintf(fd, "\n");
}
}
return 0;
}
static void usage() {
fprintf(stderr, "Usage:\n");
fprintf(stderr, "\t[-h] # this help\n");
fprintf(stderr, "\t[-d serial_number] # Serial number of desired HackRF\n");
fprintf(stderr, "\t[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable\n");
fprintf(stderr, "\t[-f freq_min:freq_max] # minimum and maximum frequencies in MHz\n");
fprintf(stderr, "\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable\n");
fprintf(stderr, "\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
fprintf(stderr, "\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
fprintf(stderr, "\t[-n num_samples] # Number of samples per frequency, 8192-4294967296\n");
fprintf(stderr, "\t[-w bin_width] # FFT bin width (frequency resolution) in Hz\n");
fprintf(stderr, "\t[-1] # one shot mode\n");
fprintf(stderr, "\t[-B] # binary output\n");
fprintf(stderr, "\t[-I] # binary inverse FFT output\n");
fprintf(stderr, "\t-r filename # output file\n");
fprintf(stderr, "\n");
fprintf(stderr, "Output fields:\n");
fprintf(stderr, "\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n");
}
static hackrf_device* device = NULL;
#ifdef _MSC_VER
BOOL WINAPI
sighandler(int signum) {
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
return TRUE;
}
return FALSE;
}
#else
void sigint_callback_handler(int signum) {
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
}
#endif
int main(int argc, char** argv) {
int opt, i, result = 0;
const char* path = NULL;
const char* serial_number = NULL;
int exit_code = EXIT_SUCCESS;
struct timeval time_now;
float time_diff;
float sweep_rate;
unsigned int lna_gain=16, vga_gain=20;
uint32_t freq_min = 0;
uint32_t freq_max = 6000;
uint32_t requested_fft_bin_width;
while( (opt = getopt(argc, argv, "a:f:p:l:g:d:n:w:1BIr:h?")) != EOF ) {
result = HACKRF_SUCCESS;
switch( opt )
{
case 'd':
serial_number = optarg;
break;
case 'a':
amp = true;
result = parse_u32(optarg, &amp_enable);
break;
case 'f':
result = parse_u32_range(optarg, &freq_min, &freq_max);
if(freq_min >= freq_max) {
fprintf(stderr,
"argument error: freq_max must be greater than freq_min.\n");
usage();
return EXIT_FAILURE;
}
if(FREQ_MAX_MHZ <freq_max) {
fprintf(stderr,
"argument error: freq_max may not be higher than %u.\n",
FREQ_MAX_MHZ);
usage();
return EXIT_FAILURE;
}
if(MAX_SWEEP_RANGES <= num_ranges) {
fprintf(stderr,
"argument error: specify a maximum of %u frequency ranges.\n",
MAX_SWEEP_RANGES);
usage();
return EXIT_FAILURE;
}
frequencies[2*num_ranges] = (uint16_t)freq_min;
frequencies[2*num_ranges+1] = (uint16_t)freq_max;
num_ranges++;
break;
case 'p':
antenna = true;
result = parse_u32(optarg, &antenna_enable);
break;
case 'l':
result = parse_u32(optarg, &lna_gain);
break;
case 'g':
result = parse_u32(optarg, &vga_gain);
break;
case 'n':
result = parse_u32(optarg, &num_samples);
break;
case 'w':
result = parse_u32(optarg, &requested_fft_bin_width);
fftSize = DEFAULT_SAMPLE_RATE_HZ / requested_fft_bin_width;
break;
case '1':
one_shot = true;
break;
case 'B':
binary_output = true;
break;
case 'I':
ifft_output = true;
break;
case 'r':
path = optarg;
break;
case 'h':
case '?':
usage();
return EXIT_SUCCESS;
default:
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (lna_gain % 8)
fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n");
if (vga_gain % 2)
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
if (num_samples % SAMPLES_PER_BLOCK) {
fprintf(stderr, "warning: num_samples (-n) must be a multiple of 8192\n");
return EXIT_FAILURE;
}
if (num_samples < SAMPLES_PER_BLOCK) {
fprintf(stderr, "warning: num_samples (-n) must be at least 8192\n");
return EXIT_FAILURE;
}
if( amp ) {
if( amp_enable > 1 ) {
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
if (antenna_enable > 1) {
fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (0 == num_ranges) {
frequencies[0] = (uint16_t)freq_min;
frequencies[1] = (uint16_t)freq_max;
num_ranges++;
}
if(binary_output && ifft_output) {
fprintf(stderr, "argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n");
return EXIT_FAILURE;
}
if(ifft_output && (1 < num_ranges)) {
fprintf(stderr, "argument error: only one frequency range is supported in IFFT output (-I) mode.\n");
return EXIT_FAILURE;
}
if(4 > fftSize) {
fprintf(stderr,
"argument error: FFT bin width (-w) must be no more than one quarter the sample rate\n");
return EXIT_FAILURE;
}
if(8184 < fftSize) {
fprintf(stderr,
"argument error: FFT bin width (-w) too small, resulted in more than 8184 FFT bins\n");
return EXIT_FAILURE;
}
/* In interleaved mode, the FFT bin selection works best if the total
* number of FFT bins is equal to an odd multiple of four.
* (e.g. 4, 12, 20, 28, 36, . . .)
*/
while((fftSize + 4) % 8) {
fftSize++;
}
fft_bin_width = (double)DEFAULT_SAMPLE_RATE_HZ / fftSize;
fftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize);
fftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize);
fftwPlan = fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, FFTW_MEASURE);
pwr = (float*)fftwf_malloc(sizeof(float) * fftSize);
window = (float*)fftwf_malloc(sizeof(float) * fftSize);
for (i = 0; i < fftSize; i++) {
window[i] = 0.5f * (1.0f - cos(2 * M_PI * i / (fftSize - 1)));
}
result = hackrf_init();
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
if((NULL == path) || (strcmp(path, "-") == 0)) {
fd = stdout;
} else {
fd = fopen(path, "wb");
}
if(NULL == fd) {
fprintf(stderr, "Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
/* Change fd buffer to have bigger one to store or read data on/to HDD */
result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE);
if( result != 0 ) {
fprintf(stderr, "setvbuf() failed: %d\n", result);
usage();
return EXIT_FAILURE;
}
#ifdef _MSC_VER
SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#else
signal(SIGINT, &sigint_callback_handler);
signal(SIGILL, &sigint_callback_handler);
signal(SIGFPE, &sigint_callback_handler);
signal(SIGSEGV, &sigint_callback_handler);
signal(SIGTERM, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
#endif
fprintf(stderr, "call hackrf_sample_rate_set(%.03f MHz)\n",
((float)DEFAULT_SAMPLE_RATE_HZ/(float)FREQ_ONE_MHZ));
result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
((float)DEFAULT_BASEBAND_FILTER_BANDWIDTH/(float)FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, DEFAULT_BASEBAND_FILTER_BANDWIDTH);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_set_vga_gain(device, vga_gain);
result |= hackrf_set_lna_gain(device, lna_gain);
/*
* For each range, plan a whole number of tuning steps of a certain
* bandwidth. Increase high end of range if necessary to accommodate a
* whole number of steps, minimum 1.
*/
for(i = 0; i < num_ranges; i++) {
step_count = 1 + (frequencies[2*i+1] - frequencies[2*i] - 1)
/ TUNE_STEP;
frequencies[2*i+1] = frequencies[2*i] + step_count * TUNE_STEP;
fprintf(stderr, "Sweeping from %u MHz to %u MHz\n",
frequencies[2*i], frequencies[2*i+1]);
}
if(ifft_output) {
ifftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count);
ifftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count);
ifftwPlan = fftwf_plan_dft_1d(fftSize * step_count, ifftwIn, ifftwOut, FFTW_BACKWARD, FFTW_MEASURE);
}
result |= hackrf_start_rx(device, rx_callback, NULL);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_init_sweep(device, frequencies, num_ranges, num_samples * 2,
TUNE_STEP * FREQ_ONE_MHZ, OFFSET, INTERLEAVED);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_init_sweep() failed: %s (%d)\n",
hackrf_error_name(result), result);
return EXIT_FAILURE;
}
if (amp) {
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t)amp_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
gettimeofday(&t_start, NULL);
fprintf(stderr, "Stop with Ctrl-C\n");
while((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
float time_difference;
sleep(1);
gettimeofday(&time_now, NULL);
time_difference = TimevalDiff(&time_now, &t_start);
sweep_rate = (float)sweep_count / time_difference;
fprintf(stderr, "%" PRIu64 " total sweeps completed, %.2f sweeps/second\n",
sweep_count, sweep_rate);
if (byte_count == 0) {
exit_code = EXIT_FAILURE;
fprintf(stderr, "\nCouldn't transfer any data for one second.\n");
break;
}
byte_count = 0;
}
result = hackrf_is_streaming(device);
if (do_exit) {
fprintf(stderr, "\nExiting...\n");
} else {
fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n",
hackrf_error_name(result), result);
}
gettimeofday(&time_now, NULL);
time_diff = TimevalDiff(&time_now, &t_start);
fprintf(stderr, "Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n",
sweep_count, time_diff, sweep_rate);
if(device != NULL) {
result = hackrf_stop_rx(device);
if(result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n",
hackrf_error_name(result), result);
} else {
fprintf(stderr, "hackrf_stop_rx() done\n");
}
result = hackrf_close(device);
if(result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result), result);
} else {
fprintf(stderr, "hackrf_close() done\n");
}
hackrf_exit();
fprintf(stderr, "hackrf_exit() done\n");
}
if(fd != NULL) {
fclose(fd);
fd = NULL;
fprintf(stderr, "fclose(fd) done\n");
}
fftwf_free(fftwIn);
fftwf_free(fftwOut);
fftwf_free(pwr);
fftwf_free(window);
fftwf_free(ifftwIn);
fftwf_free(ifftwOut);
fprintf(stderr, "exit\n");
return exit_code;
}