hackrf/host/hackrf-tools/src/hackrf_transfer.c

1008 lines
25 KiB
C

/*
* Copyright 2012 Jared Boone <jared@sharebrained.com>
* Copyright 2013-2014 Benjamin Vernoux <titanmkd@gmail.com>
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <hackrf.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#ifdef _WIN32
#include <windows.h>
#ifdef _MSC_VER
#ifdef _WIN64
typedef int64_t ssize_t;
#else
typedef int32_t ssize_t;
#endif
#define strtoull _strtoui64
#define snprintf _snprintf
int gettimeofday(struct timeval *tv, void* ignored)
{
FILETIME ft;
unsigned __int64 tmp = 0;
if (NULL != tv) {
GetSystemTimeAsFileTime(&ft);
tmp |= ft.dwHighDateTime;
tmp <<= 32;
tmp |= ft.dwLowDateTime;
tmp /= 10;
tmp -= 11644473600000000Ui64;
tv->tv_sec = (long)(tmp / 1000000UL);
tv->tv_usec = (long)(tmp % 1000000UL);
}
return 0;
}
#endif
#endif
#if defined(__GNUC__)
#include <unistd.h>
#include <sys/time.h>
#endif
#include <signal.h>
#define FD_BUFFER_SIZE (8*1024)
#define FREQ_ONE_MHZ (1000000ull)
#define DEFAULT_FREQ_HZ (900000000ull) /* 900MHz */
#define FREQ_MIN_HZ (0ull) /* 0 Hz */
#define FREQ_MAX_HZ (7250000000ull) /* 7250MHz */
#define IF_MIN_HZ (2150000000ull)
#define IF_MAX_HZ (2750000000ull)
#define LO_MIN_HZ (84375000ull)
#define LO_MAX_HZ (5400000000ull)
#define DEFAULT_LO_HZ (1000000000ull)
#define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */
#define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */
#define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */
#define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */
#if defined _WIN32
#define sleep(a) Sleep( (a*1000) )
#endif
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
typedef struct
{
char groupID[4]; /* 'RIFF' */
uint32_t size; /* File size + 8bytes */
char riffType[4]; /* 'WAVE'*/
} t_WAVRIFF_hdr;
#define FormatID "fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */
typedef struct {
char chunkID[4]; /* 'fmt ' */
uint32_t chunkSize; /* 16 fixed */
uint16_t wFormatTag; /* 1 fixed */
uint16_t wChannels; /* 2 fixed */
uint32_t dwSamplesPerSec; /* Freq Hz sampling */
uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */
uint16_t wBlockAlign; /* 2 fixed */
uint16_t wBitsPerSample; /* 8 fixed */
} t_FormatChunk;
typedef struct
{
char chunkID[4]; /* 'data' */
uint32_t chunkSize; /* Size of data in bytes */
/* Samples I(8bits) then Q(8bits), I, Q ... */
} t_DataChunk;
typedef struct
{
t_WAVRIFF_hdr hdr;
t_FormatChunk fmt_chunk;
t_DataChunk data_chunk;
} t_wav_file_hdr;
t_wav_file_hdr wave_file_hdr =
{
/* t_WAVRIFF_hdr */
{
{ 'R', 'I', 'F', 'F' }, /* groupID */
0, /* size to update later */
{ 'W', 'A', 'V', 'E' }
},
/* t_FormatChunk */
{
{ 'f', 'm', 't', ' ' }, /* char chunkID[4]; */
16, /* uint32_t chunkSize; */
1, /* uint16_t wFormatTag; 1 fixed */
2, /* uint16_t wChannels; 2 fixed */
0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */
0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */
2, /* uint16_t wBlockAlign; 2 fixed */
8, /* uint16_t wBitsPerSample; 8 fixed */
},
/* t_DataChunk */
{
{ 'd', 'a', 't', 'a' }, /* char chunkID[4]; */
0, /* uint32_t chunkSize; to update later */
}
};
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX;
#define U64TOA_MAX_DIGIT (31)
typedef struct
{
char data[U64TOA_MAX_DIGIT+1];
} t_u64toa;
t_u64toa ascii_u64_data1;
t_u64toa ascii_u64_data2;
static float
TimevalDiff(const struct timeval *a, const struct timeval *b)
{
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
}
int parse_u64(char* s, uint64_t* const value) {
uint_fast8_t base = 10;
char* s_end;
uint64_t u64_value;
if( strlen(s) > 2 ) {
if( s[0] == '0' ) {
if( (s[1] == 'x') || (s[1] == 'X') ) {
base = 16;
s += 2;
} else if( (s[1] == 'b') || (s[1] == 'B') ) {
base = 2;
s += 2;
}
}
}
s_end = s;
u64_value = strtoull(s, &s_end, base);
if( (s != s_end) && (*s_end == 0) ) {
*value = u64_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
int parse_u32(char* s, uint32_t* const value) {
uint_fast8_t base = 10;
char* s_end;
uint64_t ulong_value;
if( strlen(s) > 2 ) {
if( s[0] == '0' ) {
if( (s[1] == 'x') || (s[1] == 'X') ) {
base = 16;
s += 2;
} else if( (s[1] == 'b') || (s[1] == 'B') ) {
base = 2;
s += 2;
}
}
}
s_end = s;
ulong_value = strtoul(s, &s_end, base);
if( (s != s_end) && (*s_end == 0) ) {
*value = (uint32_t)ulong_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
static char *stringrev(char *str)
{
char *p1, *p2;
if(! str || ! *str)
return str;
for(p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2)
{
*p1 ^= *p2;
*p2 ^= *p1;
*p1 ^= *p2;
}
return str;
}
char* u64toa(uint64_t val, t_u64toa* str)
{
#define BASE (10ull) /* Base10 by default */
uint64_t sum;
int pos;
int digit;
int max_len;
char* res;
sum = val;
max_len = U64TOA_MAX_DIGIT;
pos = 0;
do
{
digit = (sum % BASE);
str->data[pos] = digit + '0';
pos++;
sum /= BASE;
}while( (sum>0) && (pos < max_len) );
if( (pos == max_len) && (sum>0) )
return NULL;
str->data[pos] = '\0';
res = stringrev(str->data);
return res;
}
volatile bool do_exit = false;
FILE* fd = NULL;
volatile uint32_t byte_count = 0;
bool signalsource = false;
uint32_t amplitude = 0;
bool receive = false;
bool receive_wav = false;
bool transmit = false;
struct timeval time_start;
struct timeval t_start;
bool automatic_tuning = false;
uint64_t freq_hz;
bool if_freq = false;
uint64_t if_freq_hz;
bool lo_freq = false;
uint64_t lo_freq_hz = DEFAULT_LO_HZ;
bool image_reject = false;
uint32_t image_reject_selection;
bool amp = false;
uint32_t amp_enable;
bool antenna = false;
uint32_t antenna_enable;
bool sample_rate = false;
uint32_t sample_rate_hz;
bool limit_num_samples = false;
uint64_t samples_to_xfer = 0;
size_t bytes_to_xfer = 0;
bool baseband_filter_bw = false;
uint32_t baseband_filter_bw_hz = 0;
int rx_callback(hackrf_transfer* transfer) {
size_t bytes_to_write;
int i;
if( fd != NULL )
{
ssize_t bytes_written;
byte_count += transfer->valid_length;
bytes_to_write = transfer->valid_length;
if (limit_num_samples) {
if (bytes_to_write >= bytes_to_xfer) {
bytes_to_write = bytes_to_xfer;
}
bytes_to_xfer -= bytes_to_write;
}
if (receive_wav) {
/* convert .wav contents from signed to unsigned */
for (i = 0; i < bytes_to_write; i++) {
transfer->buffer[i] ^= (uint8_t)0x80;
}
}
bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, fd);
if ((bytes_written != bytes_to_write)
|| (limit_num_samples && (bytes_to_xfer == 0))) {
return -1;
} else {
return 0;
}
} else {
return -1;
}
}
int tx_callback(hackrf_transfer* transfer) {
size_t bytes_to_read;
int i;
if( fd != NULL )
{
ssize_t bytes_read;
byte_count += transfer->valid_length;
bytes_to_read = transfer->valid_length;
if (limit_num_samples) {
if (bytes_to_read >= bytes_to_xfer) {
/*
* In this condition, we probably tx some of the previous
* buffer contents at the end. :-(
*/
bytes_to_read = bytes_to_xfer;
}
bytes_to_xfer -= bytes_to_read;
}
bytes_read = fread(transfer->buffer, 1, bytes_to_read, fd);
if ((bytes_read != bytes_to_read)
|| (limit_num_samples && (bytes_to_xfer == 0))) {
return -1;
} else {
return 0;
}
} else if (transceiver_mode == TRANSCEIVER_MODE_SS) {
/* Transmit continuous wave with specific amplitude */
byte_count += transfer->valid_length;
bytes_to_read = transfer->valid_length;
if (limit_num_samples) {
if (bytes_to_read >= bytes_to_xfer) {
bytes_to_read = bytes_to_xfer;
}
bytes_to_xfer -= bytes_to_read;
}
for(i = 0;i<bytes_to_read;i++)
transfer->buffer[i] = amplitude;
if (limit_num_samples && (bytes_to_xfer == 0)) {
return -1;
} else {
return 0;
}
} else {
return -1;
}
}
static void usage() {
printf("Usage:\n");
printf("\t[-d serial_number] # Serial number of desired HackRF.\n");
printf("\t-r <filename> # Receive data into file.\n");
printf("\t-t <filename> # Transmit data from file.\n");
printf("\t-w # Receive data into file with WAV header and automatic name.\n");
printf("\t # This is for SDR# compatibility and may not work with other software.\n");
printf("\t[-f freq_hz] # Frequency in Hz [%sMHz to %sMHz].\n",
u64toa((FREQ_MIN_HZ/FREQ_ONE_MHZ),&ascii_u64_data1),
u64toa((FREQ_MAX_HZ/FREQ_ONE_MHZ),&ascii_u64_data2));
printf("\t[-i if_freq_hz] # Intermediate Frequency (IF) in Hz [%sMHz to %sMHz].\n",
u64toa((IF_MIN_HZ/FREQ_ONE_MHZ),&ascii_u64_data1),
u64toa((IF_MAX_HZ/FREQ_ONE_MHZ),&ascii_u64_data2));
printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%sMHz to %sMHz].\n",
u64toa((LO_MIN_HZ/FREQ_ONE_MHZ),&ascii_u64_data1),
u64toa((LO_MAX_HZ/FREQ_ONE_MHZ),&ascii_u64_data2));
printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n");
printf("\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n");
printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n");
printf("\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
printf("\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
printf("\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n");
printf("\t[-s sample_rate_hz] # Sample rate in Hz (8/10/12.5/16/20MHz, default %sMHz).\n",
u64toa((DEFAULT_SAMPLE_RATE_HZ/FREQ_ONE_MHZ),&ascii_u64_data1));
printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n");
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n");
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in MHz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default < sample_rate_hz.\n" );
}
static hackrf_device* device = NULL;
#ifdef _MSC_VER
BOOL WINAPI
sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stdout, "Caught signal %d\n", signum);
do_exit = true;
return TRUE;
}
return FALSE;
}
#else
void sigint_callback_handler(int signum)
{
fprintf(stdout, "Caught signal %d\n", signum);
do_exit = true;
}
#endif
#define PATH_FILE_MAX_LEN (FILENAME_MAX)
#define DATE_TIME_MAX_LEN (32)
int main(int argc, char** argv) {
int opt;
char path_file[PATH_FILE_MAX_LEN];
char date_time[DATE_TIME_MAX_LEN];
const char* path = NULL;
const char* serial_number = NULL;
int result;
time_t rawtime;
struct tm * timeinfo;
long int file_pos;
int exit_code = EXIT_SUCCESS;
struct timeval t_end;
float time_diff;
unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
while( (opt = getopt(argc, argv, "wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:")) != EOF )
{
result = HACKRF_SUCCESS;
switch( opt )
{
case 'w':
receive_wav = true;
break;
case 'r':
receive = true;
path = optarg;
break;
case 't':
transmit = true;
path = optarg;
break;
case 'd':
serial_number = optarg;
break;
case 'f':
automatic_tuning = true;
result = parse_u64(optarg, &freq_hz);
break;
case 'i':
if_freq = true;
result = parse_u64(optarg, &if_freq_hz);
break;
case 'o':
lo_freq = true;
result = parse_u64(optarg, &lo_freq_hz);
break;
case 'm':
image_reject = true;
result = parse_u32(optarg, &image_reject_selection);
break;
case 'a':
amp = true;
result = parse_u32(optarg, &amp_enable);
break;
case 'p':
antenna = true;
result = parse_u32(optarg, &antenna_enable);
break;
case 'l':
result = parse_u32(optarg, &lna_gain);
break;
case 'g':
result = parse_u32(optarg, &vga_gain);
break;
case 'x':
result = parse_u32(optarg, &txvga_gain);
break;
case 's':
sample_rate = true;
result = parse_u32(optarg, &sample_rate_hz);
break;
case 'n':
limit_num_samples = true;
result = parse_u64(optarg, &samples_to_xfer);
bytes_to_xfer = samples_to_xfer * 2ull;
break;
case 'b':
baseband_filter_bw = true;
result = parse_u32(optarg, &baseband_filter_bw_hz);
break;
case 'c':
transmit = true;
signalsource = true;
result = parse_u32(optarg, &amplitude);
break;
default:
printf("unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if( result != HACKRF_SUCCESS ) {
printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (lna_gain % 8)
printf("warning: lna_gain (-l) must be a multiple of 8\n");
if (vga_gain % 2)
printf("warning: vga_gain (-g) must be a multiple of 2\n");
if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
printf("argument error: num_samples must be less than %s/%sMio\n",
u64toa(SAMPLES_TO_XFER_MAX,&ascii_u64_data1),
u64toa((SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ),&ascii_u64_data2));
usage();
return EXIT_FAILURE;
}
if (if_freq || lo_freq || image_reject) {
/* explicit tuning selected */
if (!if_freq) {
printf("argument error: if_freq_hz must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!image_reject) {
printf("argument error: image_reject must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
printf("argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
usage();
return EXIT_FAILURE;
}
if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) {
printf("argument error: if_freq_hz shall be between %s and %s.\n",
u64toa(IF_MIN_HZ,&ascii_u64_data1),
u64toa(IF_MAX_HZ,&ascii_u64_data2));
usage();
return EXIT_FAILURE;
}
if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
printf("argument error: lo_freq_hz shall be between %s and %s.\n",
u64toa(LO_MIN_HZ,&ascii_u64_data1),
u64toa(LO_MAX_HZ,&ascii_u64_data2));
usage();
return EXIT_FAILURE;
}
if (image_reject_selection > 2) {
printf("argument error: image_reject must be 0, 1, or 2 .\n");
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
printf("warning: freq_hz ignored by explicit tuning selection.\n");
automatic_tuning = false;
}
switch (image_reject_selection) {
case RF_PATH_FILTER_BYPASS:
freq_hz = if_freq_hz;
break;
case RF_PATH_FILTER_LOW_PASS:
freq_hz = abs(if_freq_hz - lo_freq_hz);
break;
case RF_PATH_FILTER_HIGH_PASS:
freq_hz = if_freq_hz + lo_freq_hz;
break;
default:
freq_hz = DEFAULT_FREQ_HZ;
break;
}
printf("explicit tuning specified for %s Hz.\n",
u64toa(freq_hz,&ascii_u64_data1));
} else if (automatic_tuning) {
if( (freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) )
{
printf("argument error: freq_hz shall be between %s and %s.\n",
u64toa(FREQ_MIN_HZ,&ascii_u64_data1),
u64toa(FREQ_MAX_HZ,&ascii_u64_data2));
usage();
return EXIT_FAILURE;
}
} else {
/* Use default freq */
freq_hz = DEFAULT_FREQ_HZ;
automatic_tuning = true;
}
if( amp ) {
if( amp_enable > 1 )
{
printf("argument error: amp_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
if (antenna_enable > 1) {
printf("argument error: antenna_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if( sample_rate == false )
{
sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
}
if( baseband_filter_bw )
{
/* Compute nearest freq for bw filter */
baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
}else
{
/* Compute default value depending on sample rate */
baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz);
}
if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
if( (transmit == false) && (receive == receive_wav) )
{
printf("receive -r and receive_wav -w options are mutually exclusive\n");
usage();
return EXIT_FAILURE;
}
if( receive_wav == false )
{
if( transmit == receive )
{
if( transmit == true )
{
printf("receive -r and transmit -t options are mutually exclusive\n");
} else
{
printf("specify either transmit -t or receive -r or receive_wav -w option\n");
}
usage();
return EXIT_FAILURE;
}
}
if( receive ) {
transceiver_mode = TRANSCEIVER_MODE_RX;
}
if( transmit ) {
transceiver_mode = TRANSCEIVER_MODE_TX;
}
if (signalsource) {
transceiver_mode = TRANSCEIVER_MODE_SS;
if (amplitude >127) {
printf("argument error: amplitude shall be in between 0 and 128.\n");
usage();
return EXIT_FAILURE;
}
}
if( receive_wav )
{
time (&rawtime);
timeinfo = localtime (&rawtime);
transceiver_mode = TRANSCEIVER_MODE_RX;
/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) );
path = path_file;
printf("Receive wav file: %s\n", path);
}
// In signal source mode, the PATH argument is neglected.
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
if( path == NULL ) {
printf("specify a path to a file to transmit/receive\n");
usage();
return EXIT_FAILURE;
}
}
result = hackrf_init();
if( result != HACKRF_SUCCESS ) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
if( transceiver_mode == TRANSCEIVER_MODE_RX )
{
fd = fopen(path, "wb");
} else {
fd = fopen(path, "rb");
}
if( fd == NULL ) {
printf("Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
/* Change fd buffer to have bigger one to store or read data on/to HDD */
result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE);
if( result != 0 ) {
printf("setvbuf() failed: %d\n", result);
usage();
return EXIT_FAILURE;
}
}
/* Write Wav header */
if( receive_wav )
{
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd);
}
#ifdef _MSC_VER
SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#else
signal(SIGINT, &sigint_callback_handler);
signal(SIGILL, &sigint_callback_handler);
signal(SIGFPE, &sigint_callback_handler);
signal(SIGSEGV, &sigint_callback_handler);
signal(SIGTERM, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
#endif
printf("call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ));
result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n",
baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
if( transceiver_mode == TRANSCEIVER_MODE_RX ) {
result = hackrf_set_vga_gain(device, vga_gain);
result |= hackrf_set_lna_gain(device, lna_gain);
result |= hackrf_start_rx(device, rx_callback, NULL);
} else {
result = hackrf_set_txvga_gain(device, txvga_gain);
result |= hackrf_start_tx(device, tx_callback, NULL);
}
if( result != HACKRF_SUCCESS ) {
printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
printf("call hackrf_set_freq(%s Hz/%.03f MHz)\n",
u64toa(freq_hz, &ascii_u64_data1),((double)freq_hz/(double)FREQ_ONE_MHZ) );
result = hackrf_set_freq(device, freq_hz);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
} else {
printf("call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
u64toa(if_freq_hz,&ascii_u64_data1),
u64toa(lo_freq_hz,&ascii_u64_data2),
hackrf_filter_path_name(image_reject_selection));
result = hackrf_set_freq_explicit(device, if_freq_hz, lo_freq_hz,
image_reject_selection);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_freq_explicit() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if( amp ) {
printf("call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t)amp_enable);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
printf("call hackrf_set_antenna_enable(%u)\n", antenna_enable);
result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if( limit_num_samples ) {
printf("samples_to_xfer %s/%sMio\n",
u64toa(samples_to_xfer,&ascii_u64_data1),
u64toa((samples_to_xfer/FREQ_ONE_MHZ),&ascii_u64_data2) );
}
gettimeofday(&t_start, NULL);
gettimeofday(&time_start, NULL);
printf("Stop with Ctrl-C\n");
while( (hackrf_is_streaming(device) == HACKRF_TRUE) &&
(do_exit == false) )
{
uint32_t byte_count_now;
struct timeval time_now;
float time_difference, rate;
sleep(1);
gettimeofday(&time_now, NULL);
byte_count_now = byte_count;
byte_count = 0;
time_difference = TimevalDiff(&time_now, &time_start);
rate = (float)byte_count_now / time_difference;
printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n",
(byte_count_now / 1e6f), time_difference, (rate / 1e6f) );
time_start = time_now;
if (byte_count_now == 0) {
exit_code = EXIT_FAILURE;
printf("\nCouldn't transfer any bytes for one second.\n");
break;
}
}
result = hackrf_is_streaming(device);
if (do_exit)
{
printf("\nUser cancel, exiting...\n");
} else {
printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result);
}
gettimeofday(&t_end, NULL);
time_diff = TimevalDiff(&t_end, &t_start);
printf("Total time: %5.5f s\n", time_diff);
if(device != NULL)
{
if( receive )
{
result = hackrf_stop_rx(device);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
}else {
printf("hackrf_stop_rx() done\n");
}
}
if( transmit )
{
result = hackrf_stop_tx(device);
if( result != HACKRF_SUCCESS ) {
printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result);
}else {
printf("hackrf_stop_tx() done\n");
}
}
result = hackrf_close(device);
if( result != HACKRF_SUCCESS )
{
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
}else {
printf("hackrf_close() done\n");
}
hackrf_exit();
printf("hackrf_exit() done\n");
}
if(fd != NULL)
{
if( receive_wav )
{
/* Get size of file */
file_pos = ftell(fd);
/* Update Wav Header */
wave_file_hdr.hdr.size = file_pos+8;
wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2;
wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr);
/* Overwrite header with updated data */
rewind(fd);
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd);
}
fclose(fd);
fd = NULL;
printf("fclose(fd) done\n");
}
printf("exit\n");
return exit_code;
}