hackrf/host/hackrf-tools/src/hackrf_sweep.c
2017-02-03 17:44:10 -07:00

578 lines
15 KiB
C

/*
* Copyright 2016 Dominic Spill <dominicgs@gmail.com>
* Copyright 2016 Mike Walters <mike@flomp.net>
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <hackrf.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <fftw3.h>
#include <math.h>
#include <inttypes.h>
#define _FILE_OFFSET_BITS 64
#define BLOCKS_PER_TRANSFER 16
#define SAMPLES_PER_BLOCK 16384
#define STEP_SIZE_IN_HZ 312500
#define FFT_SIZE 64
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#ifdef _WIN32
#include <windows.h>
#ifdef _MSC_VER
#ifdef _WIN64
typedef int64_t ssize_t;
#else
typedef int32_t ssize_t;
#endif
#define strtoull _strtoui64
#define snprintf _snprintf
int gettimeofday(struct timeval *tv, void* ignored) {
FILETIME ft;
unsigned __int64 tmp = 0;
if (NULL != tv) {
GetSystemTimeAsFileTime(&ft);
tmp |= ft.dwHighDateTime;
tmp <<= 32;
tmp |= ft.dwLowDateTime;
tmp /= 10;
tmp -= 11644473600000000Ui64;
tv->tv_sec = (long)(tmp / 1000000UL);
tv->tv_usec = (long)(tmp % 1000000UL);
}
return 0;
}
#endif
#endif
#if defined(__GNUC__)
#include <unistd.h>
#include <sys/time.h>
#endif
#include <signal.h>
#define FD_BUFFER_SIZE (8*1024)
#define FREQ_ONE_MHZ (1000000ull)
#define FREQ_MIN_HZ (0ull) /* 0 Hz */
#define FREQ_MAX_HZ (7250000000ull) /* 7250MHz */
#define DEFAULT_SAMPLE_RATE_HZ (20000000) /* 20MHz default sample rate */
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (15000000) /* 5MHz default */
#define FREQ_STEP (DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ)
#define MAX_FREQ_COUNT 1000
#define DEFAULT_SAMPLE_COUNT 0x4000
#if defined _WIN32
#define sleep(a) Sleep( (a*1000) )
#endif
static float TimevalDiff(const struct timeval *a, const struct timeval *b) {
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
}
int parse_u32(char* s, uint32_t* const value) {
uint_fast8_t base = 10;
char* s_end;
uint64_t ulong_value;
if( strlen(s) > 2 ) {
if( s[0] == '0' ) {
if( (s[1] == 'x') || (s[1] == 'X') ) {
base = 16;
s += 2;
} else if( (s[1] == 'b') || (s[1] == 'B') ) {
base = 2;
s += 2;
}
}
}
s_end = s;
ulong_value = strtoul(s, &s_end, base);
if( (s != s_end) && (*s_end == 0) ) {
*value = (uint32_t)ulong_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max) {
int result;
char *sep = strchr(s, ':');
if (!sep)
return HACKRF_ERROR_INVALID_PARAM;
*sep = 0;
result = parse_u32(s, value_min);
if (result != HACKRF_SUCCESS)
return result;
result = parse_u32(sep + 1, value_max);
if (result != HACKRF_SUCCESS)
return result;
return HACKRF_SUCCESS;
}
volatile bool do_exit = false;
FILE* fd = NULL;
volatile uint32_t byte_count = 0;
struct timeval time_start;
struct timeval t_start;
bool amp = false;
uint32_t amp_enable;
bool antenna = false;
uint32_t antenna_enable;
uint32_t freq_min;
uint32_t freq_max;
bool binary_output = false;
int fftSize;
fftwf_complex *fftwIn = NULL;
fftwf_complex *fftwOut = NULL;
fftwf_plan fftwPlan = NULL;
float* pwr;
float* window;
time_t time_now;
struct tm *fft_time;
char time_str[50];
float logPower(fftwf_complex in, float scale)
{
float re = in[0] * scale;
float im = in[1] * scale;
float magsq = re * re + im * im;
return log2f(magsq) * 10.0f / log2(10.0f);
}
int rx_callback(hackrf_transfer* transfer) {
/* This is where we need to do interesting things with the samples
* FFT
* Throw away unused bins
* write output to pipe
*/
int8_t* buf;
float frequency;
int i, j;
if( fd != NULL ) {
byte_count += transfer->valid_length;
buf = (int8_t*) transfer->buffer;
for(j=0; j<BLOCKS_PER_TRANSFER; j++) {
if(buf[0] == 0x7F && buf[1] == 0x7F) {
frequency = *(uint16_t*)&buf[2];
}
/* copy to fftwIn as floats */
buf += SAMPLES_PER_BLOCK - (fftSize * 2);
for(i=0; i < fftSize; i++) {
fftwIn[i][0] = buf[i*2] * window[i] * 1.0f / 128.0f;
fftwIn[i][1] = buf[i*2+1] * window[i] * 1.0f / 128.0f;
}
buf += fftSize * 2;
fftwf_execute(fftwPlan);
for (i=0; i < fftSize; i++) {
// Start from the middle of the FFTW array and wrap
// to rearrange the data
//FIXME only works when fftSize = 2**n
int k = i ^ (fftSize >> 1);
pwr[i] = logPower(fftwOut[k], 1.0f / fftSize);
}
if(binary_output) {
fwrite(&frequency, sizeof(float), 1, stdout);
fwrite(pwr, sizeof(float), fftSize, stdout);
} else {
time_now = time(NULL);
fft_time = localtime(&time_now);
strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time);
printf("%s, %" PRIu64 ", %" PRIu64 ", %f, %d, ",
time_str,
(uint64_t)((FREQ_ONE_MHZ*frequency)+1-STEP_SIZE_IN_HZ*(FFT_SIZE/2)),
(uint64_t)((FREQ_ONE_MHZ*frequency)+STEP_SIZE_IN_HZ*(FFT_SIZE/2)),
(float)STEP_SIZE_IN_HZ,
FFT_SIZE);
for(i=0; i < (fftSize - 1); i++) {
printf("%.2f, ", pwr[i]);
}
printf("%.2f\n", pwr[fftSize - 1]);
}
}
return 0;
} else {
return -1;
}
}
static void usage() {
fprintf(stderr, "Usage:\n");
fprintf(stderr, "\t[-h] # this help\n");
fprintf(stderr, "\t[-d serial_number] # Serial number of desired HackRF.\n");
fprintf(stderr, "\t[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable.\n");
fprintf(stderr, "\t[-f freq_min:freq_max # Specify minimum & maximum sweep frequencies (MHz).\n");
fprintf(stderr, "\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n");
fprintf(stderr, "\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
fprintf(stderr, "\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
fprintf(stderr, "\t[-n num_samples] # Number of samples per frequency, 16384-4294967296\n");
fprintf(stderr, "\t[-B] # binary output\n");
}
static hackrf_device* device = NULL;
#ifdef _MSC_VER
BOOL WINAPI
sighandler(int signum) {
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
return TRUE;
}
return FALSE;
}
#else
void sigint_callback_handler(int signum) {
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
}
#endif
int main(int argc, char** argv) {
int opt, i, result, ifreq = 0;
bool odd;
const char* path = "/dev/null";
const char* serial_number = NULL;
int exit_code = EXIT_SUCCESS;
struct timeval t_end;
float time_diff;
unsigned int lna_gain=16, vga_gain=20;
uint16_t frequencies[MAX_FREQ_COUNT];
uint32_t num_samples = DEFAULT_SAMPLE_COUNT;
while( (opt = getopt(argc, argv, "a:f:p:l:g:d:n:Bh?")) != EOF ) {
result = HACKRF_SUCCESS;
switch( opt )
{
case 'd':
serial_number = optarg;
break;
case 'a':
amp = true;
result = parse_u32(optarg, &amp_enable);
break;
case 'f':
result = parse_u32_range(optarg, &freq_min, &freq_max);
fprintf(stderr, "Scanning %uMHz to %uMHz\n", freq_min, freq_max);
frequencies[ifreq++] = freq_min;
odd = true;
while(frequencies[ifreq-1] <= freq_max) {
if (odd)
frequencies[ifreq] = frequencies[ifreq-1] + FREQ_STEP / 4;
else
frequencies[ifreq] = frequencies[ifreq-1] + 3*(FREQ_STEP/4);
ifreq++;
odd = !odd;
}
break;
case 'p':
antenna = true;
result = parse_u32(optarg, &antenna_enable);
break;
case 'l':
result = parse_u32(optarg, &lna_gain);
break;
case 'g':
result = parse_u32(optarg, &vga_gain);
break;
case 'n':
result = parse_u32(optarg, &num_samples);
break;
case 'B':
binary_output = true;
break;
case 'h':
case '?':
usage();
return EXIT_SUCCESS;
default:
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (lna_gain % 8)
fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n");
if (vga_gain % 2)
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
if (num_samples % SAMPLES_PER_BLOCK) {
fprintf(stderr, "warning: num_samples (-n) must be a multiple of 16384\n");
return EXIT_FAILURE;
}
if (num_samples < SAMPLES_PER_BLOCK) {
fprintf(stderr, "warning: num_samples (-n) must be at least 16384\n");
return EXIT_FAILURE;
}
if( amp ) {
if( amp_enable > 1 ) {
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
if (antenna_enable > 1) {
fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (ifreq == 0) {
fprintf(stderr, "argument error: must specify sweep frequency range (-f).\n");
usage();
return EXIT_FAILURE;
}
fftSize = FFT_SIZE;
fftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize);
fftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize);
fftwPlan = fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, FFTW_MEASURE);
pwr = (float*)fftwf_malloc(sizeof(float) * fftSize);
window = (float*)fftwf_malloc(sizeof(float) * fftSize);
for (i = 0; i < fftSize; i++) {
window[i] = 0.5f * (1.0f - cos(2 * M_PI * i / (fftSize - 1)));
}
result = hackrf_init();
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
fd = fopen(path, "wb");
if( fd == NULL ) {
fprintf(stderr, "Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
/* Change fd buffer to have bigger one to store or read data on/to HDD */
result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE);
if( result != 0 ) {
fprintf(stderr, "setvbuf() failed: %d\n", result);
usage();
return EXIT_FAILURE;
}
#ifdef _MSC_VER
SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#else
signal(SIGINT, &sigint_callback_handler);
signal(SIGILL, &sigint_callback_handler);
signal(SIGFPE, &sigint_callback_handler);
signal(SIGSEGV, &sigint_callback_handler);
signal(SIGTERM, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
#endif
fprintf(stderr, "call hackrf_sample_rate_set(%.03f MHz)\n",
((float)DEFAULT_SAMPLE_RATE_HZ/(float)FREQ_ONE_MHZ));
result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
((float)DEFAULT_BASEBAND_FILTER_BANDWIDTH/(float)FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, DEFAULT_BASEBAND_FILTER_BANDWIDTH);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_set_vga_gain(device, vga_gain);
result |= hackrf_set_lna_gain(device, lna_gain);
result |= hackrf_start_rx(device, rx_callback, NULL);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_init_sweep(device, frequencies, ifreq, num_samples);
if( result != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_init_sweep() failed: %s (%d)\n",
hackrf_error_name(result), result);
return EXIT_FAILURE;
}
if (amp) {
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t)amp_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
gettimeofday(&t_start, NULL);
gettimeofday(&time_start, NULL);
fprintf(stderr, "Stop with Ctrl-C\n");
while((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
uint32_t byte_count_now;
struct timeval time_now;
float time_difference, rate;
sleep(1);
gettimeofday(&time_now, NULL);
byte_count_now = byte_count;
byte_count = 0;
time_difference = TimevalDiff(&time_now, &time_start);
rate = (float)byte_count_now / time_difference;
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second\n",
(byte_count_now / 1e6f), time_difference, (rate / 1e6f) );
time_start = time_now;
if (byte_count_now == 0) {
exit_code = EXIT_FAILURE;
fprintf(stderr, "\nCouldn't transfer any bytes for one second.\n");
break;
}
}
result = hackrf_is_streaming(device);
if (do_exit) {
fprintf(stderr, "\nExiting...\n");
} else {
fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n",
hackrf_error_name(result), result);
}
gettimeofday(&t_end, NULL);
time_diff = TimevalDiff(&t_end, &t_start);
fprintf(stderr, "Total time: %5.5f s\n", time_diff);
if(device != NULL) {
result = hackrf_stop_rx(device);
if(result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n",
hackrf_error_name(result), result);
} else {
fprintf(stderr, "hackrf_stop_rx() done\n");
}
result = hackrf_close(device);
if(result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result), result);
} else {
fprintf(stderr, "hackrf_close() done\n");
}
hackrf_exit();
fprintf(stderr, "hackrf_exit() done\n");
}
if(fd != NULL) {
fclose(fd);
fd = NULL;
fprintf(stderr, "fclose(fd) done\n");
}
fprintf(stderr, "exit\n");
return exit_code;
}