hackrf/firmware/hackrf_usb/usb_queue.c
2013-07-07 17:50:53 -04:00

181 lines
6.2 KiB
C

/*
* Copyright 2012 Jared Boone
* Copyright 2013 Ben Gamari
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include <assert.h>
#include "usb.h"
#include "usb_queue.h"
struct _usb_transfer_t {
struct _usb_transfer_t* next;
usb_transfer_descriptor_t td ATTR_ALIGNED(64);
unsigned int maximum_length;
usb_endpoint_t* endpoint;
transfer_completion_cb completion_cb;
};
usb_transfer_t transfer_pool[8];
const unsigned int transfer_pool_size = sizeof(transfer_pool) / sizeof(usb_transfer_t);
// Available transfer list
usb_transfer_t* free_transfers;
#define USB_ENDPOINT_INDEX(endpoint_address) (((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
// Pending transfer heads
usb_transfer_t* endpoint_transfers[12] = {};
void usb_queue_init() {
usb_transfer_t* t = &transfer_pool[0];
free_transfers = t;
for (unsigned int i=0; i < transfer_pool_size - 1; i++, t++) {
t->next = t+1;
}
t->next = NULL;
}
/* Allocate a transfer */
static usb_transfer_t* allocate_transfer()
{
while (free_transfers == NULL);
//disable_irqs(); // FIXME
usb_transfer_t* const transfer = free_transfers;
free_transfers = transfer->next;
//enable_irqs();
return transfer;
}
/* Place a transfer in the free list */
static void free_transfer(usb_transfer_t* const transfer)
{
//disable_irqs(); // FIXME
transfer->next = free_transfers;
free_transfers = transfer;
//enable_irqs();
}
/* Add a transfer to the end of an endpoint's queue */
static void endpoint_add_transfer(
const usb_endpoint_t* const endpoint,
usb_transfer_t* const transfer
) {
uint_fast8_t index = USB_ENDPOINT_INDEX(endpoint->address);
//FIXME disable_irqs();
transfer->next = NULL;
if (endpoint_transfers[index] != NULL) {
usb_transfer_t* t = endpoint_transfers[index];
for (; t->next != NULL; t = t->next);
t->next = transfer;
} else {
endpoint_transfers[index] = transfer;
}
//enable_irqs();
}
void usb_transfer_schedule(
const usb_endpoint_t* const endpoint,
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb
) {
usb_transfer_t* const transfer = allocate_transfer();
assert(transfer != NULL);
usb_transfer_descriptor_t* const td = &transfer->td;
uint_fast8_t index = USB_ENDPOINT_INDEX(endpoint->address);
// Configure the transfer descriptor
td->next_dtd_pointer = USB_TD_NEXT_DTD_POINTER_TERMINATE;
td->total_bytes =
USB_TD_DTD_TOKEN_TOTAL_BYTES(maximum_length)
| USB_TD_DTD_TOKEN_IOC
| USB_TD_DTD_TOKEN_MULTO(0)
| USB_TD_DTD_TOKEN_STATUS_ACTIVE
;
td->buffer_pointer_page[0] = (uint32_t)data;
td->buffer_pointer_page[1] = ((uint32_t)data + 0x1000) & 0xfffff000;
td->buffer_pointer_page[2] = ((uint32_t)data + 0x2000) & 0xfffff000;
td->buffer_pointer_page[3] = ((uint32_t)data + 0x3000) & 0xfffff000;
td->buffer_pointer_page[4] = ((uint32_t)data + 0x4000) & 0xfffff000;
// Fill in transfer fields
transfer->maximum_length = maximum_length;
transfer->completion_cb = completion_cb;
transfer->endpoint = (usb_endpoint_t*) endpoint;
// TODO: disable_interrupts();
usb_transfer_t* tail = endpoint_transfers[index];
endpoint_add_transfer(endpoint, transfer);
if (1 || tail == NULL) {
// The queue is currently empty, we need to re-prime
usb_endpoint_schedule_wait(endpoint, &transfer->td);
} else {
// The queue is currently running, try to append
for (; tail->next != NULL; tail = tail->next);
usb_endpoint_schedule_append(endpoint, &tail->td, &transfer->td);
}
//enable_interrupts();
}
void usb_transfer_schedule_ack(
const usb_endpoint_t* const endpoint
) {
usb_transfer_schedule(endpoint, 0, 0, NULL);
}
/* Called when an endpoint might have completed a transfer */
void usb_queue_transfer_complete(usb_endpoint_t* const endpoint)
{
uint_fast8_t index = USB_ENDPOINT_INDEX(endpoint->address);
usb_transfer_t* transfer = endpoint_transfers[index];
while (transfer != NULL) {
uint8_t status = transfer->td.total_bytes;
// Check for failures
if ( status & USB_TD_DTD_TOKEN_STATUS_HALTED
|| status & USB_TD_DTD_TOKEN_STATUS_BUFFER_ERROR
|| status & USB_TD_DTD_TOKEN_STATUS_TRANSACTION_ERROR) {
// TODO: Uh oh, do something useful here
while (1);
}
// Still not finished
if (status & USB_TD_DTD_TOKEN_STATUS_ACTIVE)
break;
// Invoke completion callback
unsigned int total_bytes = (transfer->td.total_bytes & USB_TD_DTD_TOKEN_TOTAL_BYTES_MASK) >> USB_TD_DTD_TOKEN_TOTAL_BYTES_SHIFT;
unsigned int transferred = transfer->maximum_length - total_bytes;
if (transfer->completion_cb)
transfer->completion_cb(transfer, transferred);
// Advance head and free transfer
endpoint_transfers[index] = transfer->next;
usb_transfer_t* next = transfer->next;
free_transfer(transfer);
transfer = next;
}
}