hackrf/host/hackrf-tools/src/hackrf_transfer.c
2024-10-18 14:32:56 +00:00

1561 lines
39 KiB
C

/*
* Copyright 2012-2022 Great Scott Gadgets <info@greatscottgadgets.com>
* Copyright 2012 Jared Boone <jared@sharebrained.com>
* Copyright 2013-2014 Benjamin Vernoux <titanmkd@gmail.com>
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#define _FILE_OFFSET_BITS 64
#include <hackrf.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <inttypes.h>
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#ifdef _WIN32
#include <windows.h>
#ifdef _MSC_VER
#ifdef _WIN64
typedef int64_t ssize_t;
#else
typedef int32_t ssize_t;
#endif
#define strtoull _strtoui64
#define snprintf _snprintf
int gettimeofday(struct timeval* tv, void* ignored)
{
FILETIME ft;
unsigned __int64 tmp = 0;
if (NULL != tv) {
GetSystemTimeAsFileTime(&ft);
tmp |= ft.dwHighDateTime;
tmp <<= 32;
tmp |= ft.dwLowDateTime;
tmp /= 10;
tmp -= 11644473600000000Ui64;
tv->tv_sec = (long) (tmp / 1000000UL);
tv->tv_usec = (long) (tmp % 1000000UL);
}
return 0;
}
#endif
#endif
#if defined(__GNUC__)
#include <unistd.h>
#include <sys/time.h>
#endif
#include <signal.h>
#define FD_BUFFER_SIZE (8 * 1024)
#define FREQ_ONE_MHZ (1000000ll)
#define DEFAULT_FREQ_HZ (900000000ll) /* 900MHz */
#define FREQ_ABS_MIN_HZ (0ull) /* 0 Hz */
#define FREQ_MIN_HZ (1000000ll) /* 1MHz */
#define FREQ_MAX_HZ (6000000000ll) /* 6000MHz */
#define FREQ_ABS_MAX_HZ (7250000000ll) /* 7250MHz */
#define IF_ABS_MIN_HZ (2000000000ll)
#define IF_MIN_HZ (2170000000ll)
#define IF_MAX_HZ (2740000000ll)
#define IF_ABS_MAX_HZ (3000000000ll)
#define LO_MIN_HZ (84375000ll)
#define LO_MAX_HZ (5400000000ll)
#define DEFAULT_LO_HZ (1000000000ll)
#define SAMPLE_RATE_MIN_HZ (2000000) /* 2MHz min sample rate */
#define SAMPLE_RATE_MAX_HZ (20000000) /* 20MHz max sample rate */
#define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */
#define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */
#define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */
#define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */
typedef enum {
TRANSCEIVER_MODE_OFF = 0,
TRANSCEIVER_MODE_RX = 1,
TRANSCEIVER_MODE_TX = 2,
TRANSCEIVER_MODE_SS = 3,
} transceiver_mode_t;
typedef enum {
HW_SYNC_MODE_OFF = 0,
HW_SYNC_MODE_ON = 1,
} hw_sync_mode_t;
typedef struct {
uint64_t m0_total;
uint64_t m4_total;
} stats_t;
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
typedef struct {
char groupID[4]; /* 'RIFF' */
uint32_t size; /* File size + 8bytes */
char riffType[4]; /* 'WAVE'*/
} t_WAVRIFF_hdr;
#define FormatID \
"fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */
typedef struct {
char chunkID[4]; /* 'fmt ' */
uint32_t chunkSize; /* 16 fixed */
uint16_t wFormatTag; /* 1 fixed */
uint16_t wChannels; /* 2 fixed */
uint32_t dwSamplesPerSec; /* Freq Hz sampling */
uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */
uint16_t wBlockAlign; /* 2 fixed */
uint16_t wBitsPerSample; /* 8 fixed */
} t_FormatChunk;
typedef struct {
char chunkID[4]; /* 'data' */
uint32_t chunkSize; /* Size of data in bytes */
/* Samples I(8bits) then Q(8bits), I, Q ... */
} t_DataChunk;
typedef struct {
t_WAVRIFF_hdr hdr;
t_FormatChunk fmt_chunk;
t_DataChunk data_chunk;
} t_wav_file_hdr;
t_wav_file_hdr wave_file_hdr = {
/* t_WAVRIFF_hdr */
{/* groupID */
{'R', 'I', 'F', 'F'},
0, /* size to update later */
{'W', 'A', 'V', 'E'}},
/* t_FormatChunk */
{
/* char chunkID[4]; */
{'f', 'm', 't', ' '},
16, /* uint32_t chunkSize; */
1, /* uint16_t wFormatTag; 1 fixed */
2, /* uint16_t wChannels; 2 fixed */
0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */
0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */
2, /* uint16_t wBlockAlign; 2 fixed */
8, /* uint16_t wBitsPerSample; 8 fixed */
},
/* t_DataChunk */
{
/* char chunkID[4]; */
{'d', 'a', 't', 'a'},
0, /* uint32_t chunkSize; to update later */
}};
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX;
#define U64TOA_MAX_DIGIT (31)
typedef struct {
char data[U64TOA_MAX_DIGIT + 1];
} t_u64toa;
t_u64toa ascii_u64_data[4];
static float TimevalDiff(const struct timeval* a, const struct timeval* b)
{
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
}
int parse_u64(char* s, uint64_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
uint64_t u64_value;
if (strlen(s) > 2) {
if (s[0] == '0') {
if ((s[1] == 'x') || (s[1] == 'X')) {
base = 16;
s += 2;
} else if ((s[1] == 'b') || (s[1] == 'B')) {
base = 2;
s += 2;
}
}
}
s_end = s;
u64_value = strtoull(s, &s_end, base);
if ((s != s_end) && (*s_end == 0)) {
*value = u64_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
int parse_u32(char* s, uint32_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
uint64_t ulong_value;
if (strlen(s) > 2) {
if (s[0] == '0') {
if ((s[1] == 'x') || (s[1] == 'X')) {
base = 16;
s += 2;
} else if ((s[1] == 'b') || (s[1] == 'B')) {
base = 2;
s += 2;
}
}
}
s_end = s;
ulong_value = strtoul(s, &s_end, base);
if ((s != s_end) && (*s_end == 0)) {
*value = (uint32_t) ulong_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
/* Parse frequencies as doubles to take advantage of notation parsing */
int parse_frequency_i64(char* optarg, char* endptr, int64_t* value)
{
*value = (int64_t) strtod(optarg, &endptr);
if (optarg == endptr) {
return HACKRF_ERROR_INVALID_PARAM;
}
return HACKRF_SUCCESS;
}
int parse_frequency_u32(char* optarg, char* endptr, uint32_t* value)
{
*value = (uint32_t) strtod(optarg, &endptr);
if (optarg == endptr) {
return HACKRF_ERROR_INVALID_PARAM;
}
return HACKRF_SUCCESS;
}
static char* stringrev(char* str)
{
char *p1, *p2;
if (!str || !*str)
return str;
for (p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2) {
*p1 ^= *p2;
*p2 ^= *p1;
*p1 ^= *p2;
}
return str;
}
char* u64toa(uint64_t val, t_u64toa* str)
{
#define BASE (10ull) /* Base10 by default */
uint64_t sum;
int pos;
int digit;
int max_len;
char* res;
sum = val;
max_len = U64TOA_MAX_DIGIT;
pos = 0;
do {
digit = (sum % BASE);
str->data[pos] = digit + '0';
pos++;
sum /= BASE;
} while ((sum > 0) && (pos < max_len));
if ((pos == max_len) && (sum > 0))
return NULL;
str->data[pos] = '\0';
res = stringrev(str->data);
return res;
}
static volatile bool do_exit = false;
static volatile bool interrupted = false;
static volatile bool tx_complete = false;
static volatile bool flush_complete = false;
#ifdef _WIN32
static HANDLE interrupt_handle;
#endif
FILE* file = NULL;
volatile uint32_t byte_count = 0;
bool signalsource = false;
uint32_t amplitude = 0;
bool hw_sync = false;
bool receive = false;
bool receive_wav = false;
uint64_t stream_size = 0;
uint32_t stream_head = 0;
uint32_t stream_tail = 0;
uint32_t stream_drop = 0;
uint8_t* stream_buf = NULL;
/* sum of power of all samples, reset on the periodic report */
volatile uint64_t stream_power = 0;
bool transmit = false;
struct timeval time_start;
struct timeval t_start;
bool automatic_tuning = false;
int64_t freq_hz;
bool if_freq = false;
int64_t if_freq_hz;
bool lo_freq = false;
int64_t lo_freq_hz = DEFAULT_LO_HZ;
bool image_reject = false;
uint32_t image_reject_selection;
bool amp = false;
uint32_t amp_enable;
bool antenna = false;
uint32_t antenna_enable;
bool sample_rate = false;
uint32_t sample_rate_hz;
bool force_ranges = false;
bool limit_num_samples = false;
uint64_t samples_to_xfer = 0;
size_t bytes_to_xfer = 0;
bool display_stats = false;
bool baseband_filter_bw = false;
uint32_t baseband_filter_bw_hz = 0;
bool repeat = false;
bool crystal_correct = false;
uint32_t crystal_correct_ppm;
int requested_mode_count = 0;
void stop_main_loop(void)
{
do_exit = true;
#ifdef _WIN32
SetEvent(interrupt_handle);
#else
kill(getpid(), SIGALRM);
#endif
}
int rx_callback(hackrf_transfer* transfer)
{
size_t bytes_to_write;
size_t bytes_written;
unsigned int i;
if (file == NULL) {
stop_main_loop();
return -1;
}
/* Accumulate power (magnitude squared). */
bytes_to_write = transfer->valid_length;
uint64_t sum = 0;
for (i = 0; i < bytes_to_write; i++) {
int8_t value = transfer->buffer[i];
sum += value * value;
}
/* Update both running totals at approximately the same time. */
byte_count += transfer->valid_length;
stream_power += sum;
if (limit_num_samples) {
if (bytes_to_write >= bytes_to_xfer) {
bytes_to_write = bytes_to_xfer;
}
bytes_to_xfer -= bytes_to_write;
}
if (receive_wav) {
/* convert .wav contents from signed to unsigned */
for (i = 0; i < bytes_to_write; i++) {
transfer->buffer[i] ^= (uint8_t) 0x80;
}
}
if (stream_size == 0) {
bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, file);
if ((bytes_written != bytes_to_write) ||
(limit_num_samples && (bytes_to_xfer == 0))) {
stop_main_loop();
return -1;
} else {
return 0;
}
}
#ifndef _WIN32
if ((stream_size - 1 + stream_head - stream_tail) % stream_size <
bytes_to_write) {
stream_drop++;
} else {
if (stream_tail + bytes_to_write <= stream_size) {
memcpy(stream_buf + stream_tail,
transfer->buffer,
bytes_to_write);
} else {
memcpy(stream_buf + stream_tail,
transfer->buffer,
(stream_size - stream_tail));
memcpy(stream_buf,
transfer->buffer + (stream_size - stream_tail),
bytes_to_write - (stream_size - stream_tail));
};
__atomic_store_n(
&stream_tail,
(stream_tail + bytes_to_write) % stream_size,
__ATOMIC_RELEASE);
}
#endif
return 0;
}
int tx_callback(hackrf_transfer* transfer)
{
size_t bytes_to_read;
size_t bytes_read;
unsigned int i;
/* Check we have a valid source of samples. */
if (file == NULL && transceiver_mode != TRANSCEIVER_MODE_SS) {
stop_main_loop();
return -1;
}
/* If the last data was already buffered, stop. */
if (tx_complete) {
return -1;
}
/* Determine how many bytes we need to put in the buffer. */
bytes_to_read = transfer->buffer_length;
if (limit_num_samples) {
if (bytes_to_read >= bytes_to_xfer) {
bytes_to_read = bytes_to_xfer;
}
bytes_to_xfer -= bytes_to_read;
}
/* Fill the buffer. */
if (file == NULL) {
/* Transmit continuous wave with specific amplitude */
for (i = 0; i < bytes_to_read; i += 2) {
transfer->buffer[i] = amplitude;
transfer->buffer[i + 1] = 0;
}
bytes_read = bytes_to_read;
} else {
/* Read samples from file. */
bytes_read = fread(transfer->buffer, 1, bytes_to_read, file);
/* If no more bytes, error or file empty, terminate. */
if (bytes_read == 0) {
/* Report any error. */
if (ferror(file)) {
fprintf(stderr, "Could not read input file.\n");
stop_main_loop();
return -1;
}
if (ftell(file) < 1) {
stop_main_loop();
return -1;
}
}
}
/* Now set the valid length to the bytes we put in the buffer. */
transfer->valid_length = bytes_read;
/* If the sample limit has been reached, this is the last data. */
if (limit_num_samples && (bytes_to_xfer == 0)) {
tx_complete = true;
return 0;
}
/* If we filled the number of bytes needed, return normally. */
if (bytes_read == bytes_to_read) {
return 0;
}
/* Otherwise, the file ran short. If not repeating, this is the last data. */
if ((!repeat) || (ftell(file) < 1)) {
tx_complete = true;
return 0;
}
/* If we get to here, we need to repeat the file until we fill the buffer. */
while (bytes_read < bytes_to_read) {
size_t extra_bytes_read;
/* Rewind and read more samples. */
rewind(file);
extra_bytes_read =
fread(transfer->buffer + bytes_read,
1,
bytes_to_read - bytes_read,
file);
/* If no more bytes, error or file empty, use what we have. */
if (extra_bytes_read == 0) {
/* Report any error. */
if (ferror(file)) {
fprintf(stderr, "Could not read input file.\n");
tx_complete = true;
return 0;
}
if (ftell(file) < 1) {
tx_complete = true;
return 0;
}
}
bytes_read += extra_bytes_read;
transfer->valid_length += extra_bytes_read;
}
/* Then return normally. */
return 0;
}
static void tx_complete_callback(hackrf_transfer* transfer, int success)
{
// If a transfer failed to complete, stop the main loop.
if (!success) {
stop_main_loop();
return;
}
/* Accumulate power (magnitude squared). */
uint32_t i;
uint64_t sum = 0;
for (i = 0; i < transfer->valid_length; i++) {
int8_t value = transfer->buffer[i];
sum += value * value;
}
/* Update both running totals at approximately the same time. */
byte_count += transfer->valid_length;
stream_power += sum;
}
static void flush_callback(void* flush_ctx, int success)
{
if (success) {
flush_complete = true;
}
stop_main_loop();
}
static int update_stats(hackrf_device* device, hackrf_m0_state* state, stats_t* stats)
{
int result = hackrf_get_m0_state(device, state);
if (result == HACKRF_SUCCESS) {
/*
* Update 64-bit running totals, to handle wrapping of the 32-bit fields
* for M0 and M4 byte counts.
*
* The logic for handling wrapping works as follows:
*
* If a 32-bit count read from the HackRF is less than the lower 32 bits of
* the previous 64-bit running total, this indicates the 32-bit counter has
* wrapped since it was last read. Add 2^32 to the 64-bit total to account
* for this.
*
* Then, having accounted for the possible wrap, mask off the bottom 32
* bits of the 64-bit total, and replace them with the new 32-bit count.
*
* This should result in correct results as long as the 32-bit counter
* cannot wrap more than once between reads.
*
* We read the M0 state every second, and the counters will wrap every 107
* seconds at 20Msps, so this should be a safe assumption.
*/
if (state->m0_count < (stats->m0_total & 0xFFFFFFFF))
stats->m0_total += 0x100000000;
if (state->m4_count < (stats->m4_total & 0xFFFFFFFF))
stats->m4_total += 0x100000000;
stats->m0_total =
(stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
stats->m4_total =
(stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
}
return result;
}
static void usage()
{
printf("Usage:\n");
printf("\t-h # this help\n");
printf("\t[-d serial_number] # Serial number of desired HackRF.\n");
printf("\t-r <filename> # Receive data into file (use '-' for stdout).\n");
printf("\t-t <filename> # Transmit data from file (use '-' for stdin).\n");
printf("\t-w # Receive data into file with WAV header and automatic name.\n");
printf("\t # This is for SDR# compatibility and may not work with other software.\n");
printf("\t[-f freq_hz] # Frequency in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n",
u64toa((FREQ_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
u64toa((FREQ_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
u64toa((FREQ_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]),
u64toa((FREQ_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3]));
printf("\t[-i if_freq_hz] # Intermediate Frequency (IF) in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n",
u64toa((IF_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
u64toa((IF_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
u64toa((IF_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]),
u64toa((IF_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3]));
printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%sMHz to %sMHz].\n",
u64toa((LO_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
u64toa((LO_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]));
printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n");
printf("\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n");
printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n");
printf("\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
printf("\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
printf("\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n");
printf("\t[-s sample_rate_hz] # Sample rate in Hz (%s-%sMHz supported, default %sMHz).\n",
u64toa((SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
u64toa((SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
u64toa((DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]));
printf("\t[-F force] # Force use of parameters outside supported ranges.\n");
printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n");
#ifndef _WIN32
/* The required atomic load/store functions aren't available when using C with MSVC */
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
#endif
printf("\t[-B] # Print buffer statistics during transfer\n");
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n");
printf("\t[-R] # Repeat TX mode (default is off) \n");
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n");
printf("\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n");
printf("\t[-C ppm] # Set Internal crystal clock error in ppm.\n");
printf("\t[-H] # Synchronize RX/TX to external trigger input.\n");
}
static hackrf_device* device = NULL;
#ifdef _WIN32
BOOL WINAPI sighandler(int signum)
{
if (CTRL_C_EVENT == signum || CTRL_BREAK_EVENT == signum) {
interrupted = true;
fprintf(stderr, "Caught signal %d\n", signum);
stop_main_loop();
return TRUE;
}
return FALSE;
}
#else
void sigint_callback_handler(int signum)
{
interrupted = true;
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
}
#endif
#ifndef _WIN32
void sigalrm_callback_handler(int signum)
{
}
#endif
#define PATH_FILE_MAX_LEN (FILENAME_MAX)
#define DATE_TIME_MAX_LEN (32)
int main(int argc, char** argv)
{
int opt;
char path_file[PATH_FILE_MAX_LEN];
char date_time[DATE_TIME_MAX_LEN];
const char* path = NULL;
const char* serial_number = NULL;
char* endptr = NULL;
int result;
time_t rawtime;
struct tm* timeinfo;
long int file_pos;
int exit_code = EXIT_SUCCESS;
struct timeval t_end;
float time_diff;
unsigned int lna_gain = 8, vga_gain = 20, txvga_gain = 0;
hackrf_m0_state state;
stats_t stats = {0, 0};
while ((opt = getopt(argc, argv, "Hwr:t:f:i:o:m:a:p:s:Fn:b:l:g:x:c:d:C:RS:Bh?")) !=
EOF) {
result = HACKRF_SUCCESS;
switch (opt) {
case 'H':
hw_sync = true;
break;
case 'w':
receive_wav = true;
requested_mode_count++;
break;
case 'r':
receive = true;
requested_mode_count++;
path = optarg;
break;
case 't':
transmit = true;
requested_mode_count++;
path = optarg;
break;
case 'd':
serial_number = optarg;
break;
case 'S':
result = parse_u64(optarg, &stream_size);
stream_buf = calloc(1, stream_size);
break;
case 'f':
result = parse_frequency_i64(optarg, endptr, &freq_hz);
automatic_tuning = true;
break;
case 'i':
result = parse_frequency_i64(optarg, endptr, &if_freq_hz);
if_freq = true;
break;
case 'o':
result = parse_frequency_i64(optarg, endptr, &lo_freq_hz);
lo_freq = true;
break;
case 'm':
image_reject = true;
result = parse_u32(optarg, &image_reject_selection);
break;
case 'a':
amp = true;
result = parse_u32(optarg, &amp_enable);
break;
case 'p':
antenna = true;
result = parse_u32(optarg, &antenna_enable);
break;
case 'l':
result = parse_u32(optarg, &lna_gain);
break;
case 'g':
result = parse_u32(optarg, &vga_gain);
break;
case 'x':
result = parse_u32(optarg, &txvga_gain);
break;
case 's':
result = parse_frequency_u32(optarg, endptr, &sample_rate_hz);
sample_rate = true;
break;
case 'F':
force_ranges = true;
break;
case 'n':
limit_num_samples = true;
result = parse_u64(optarg, &samples_to_xfer);
bytes_to_xfer = samples_to_xfer * 2ull;
break;
case 'B':
display_stats = true;
break;
case 'b':
result = parse_frequency_u32(
optarg,
endptr,
&baseband_filter_bw_hz);
baseband_filter_bw = true;
break;
case 'c':
signalsource = true;
requested_mode_count++;
result = parse_u32(optarg, &amplitude);
break;
case 'R':
repeat = true;
break;
case 'C':
crystal_correct = true;
result = parse_u32(optarg, &crystal_correct_ppm);
break;
case 'h':
case '?':
usage();
return EXIT_SUCCESS;
default:
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"argument error: '-%c %s' %s (%d)\n",
opt,
optarg,
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (lna_gain % 8)
fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n");
if (vga_gain % 2)
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
fprintf(stderr,
"argument error: num_samples must be less than %s/%sMio\n",
u64toa(SAMPLES_TO_XFER_MAX, &ascii_u64_data[0]),
u64toa((SAMPLES_TO_XFER_MAX / FREQ_ONE_MHZ), &ascii_u64_data[1]));
usage();
return EXIT_FAILURE;
}
if (if_freq || lo_freq || image_reject) {
/* explicit tuning selected */
if (!if_freq) {
fprintf(stderr,
"argument error: if_freq_hz must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!image_reject) {
fprintf(stderr,
"argument error: image_reject must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
fprintf(stderr,
"argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
usage();
return EXIT_FAILURE;
}
if (((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) &&
!force_ranges) {
fprintf(stderr,
"argument error: if_freq_hz should be between %s and %s.\n",
u64toa(IF_MIN_HZ, &ascii_u64_data[0]),
u64toa(IF_MAX_HZ, &ascii_u64_data[1]));
usage();
return EXIT_FAILURE;
}
if ((if_freq_hz > IF_ABS_MAX_HZ) || (if_freq_hz < IF_ABS_MIN_HZ)) {
fprintf(stderr,
"argument error: if_freq_hz must be between %s and %s.\n",
u64toa(IF_ABS_MIN_HZ, &ascii_u64_data[0]),
u64toa(IF_ABS_MAX_HZ, &ascii_u64_data[1]));
usage();
return EXIT_FAILURE;
}
if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
fprintf(stderr,
"argument error: lo_freq_hz shall be between %s and %s.\n",
u64toa(LO_MIN_HZ, &ascii_u64_data[0]),
u64toa(LO_MAX_HZ, &ascii_u64_data[1]));
usage();
return EXIT_FAILURE;
}
if (image_reject_selection > 2) {
fprintf(stderr,
"argument error: image_reject must be 0, 1, or 2 .\n");
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
fprintf(stderr,
"warning: freq_hz ignored by explicit tuning selection.\n");
automatic_tuning = false;
}
switch (image_reject_selection) {
case RF_PATH_FILTER_BYPASS:
freq_hz = if_freq_hz;
break;
case RF_PATH_FILTER_LOW_PASS:
freq_hz = (int64_t) labs((long int) (if_freq_hz - lo_freq_hz));
break;
case RF_PATH_FILTER_HIGH_PASS:
freq_hz = if_freq_hz + lo_freq_hz;
break;
default:
freq_hz = DEFAULT_FREQ_HZ;
break;
}
fprintf(stderr,
"explicit tuning specified for %s Hz.\n",
u64toa(freq_hz, &ascii_u64_data[0]));
} else if (automatic_tuning) {
if (((freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ)) &&
!force_ranges) {
fprintf(stderr,
"argument error: freq_hz should be between %s and %s.\n",
u64toa(FREQ_MIN_HZ, &ascii_u64_data[0]),
u64toa(FREQ_MAX_HZ, &ascii_u64_data[1]));
usage();
return EXIT_FAILURE;
}
if (freq_hz > FREQ_ABS_MAX_HZ) {
fprintf(stderr,
"argument error: freq_hz must be between %s and %s.\n",
u64toa(FREQ_ABS_MIN_HZ, &ascii_u64_data[0]),
u64toa(FREQ_ABS_MAX_HZ, &ascii_u64_data[1]));
usage();
return EXIT_FAILURE;
}
} else {
/* Use default freq */
freq_hz = DEFAULT_FREQ_HZ;
automatic_tuning = true;
}
if (amp) {
if (amp_enable > 1) {
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
if (antenna_enable > 1) {
fprintf(stderr,
"argument error: antenna_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if (sample_rate) {
if (sample_rate_hz > SAMPLE_RATE_MAX_HZ && !force_ranges) {
fprintf(stderr,
"argument error: sample_rate_hz should be less than or equal to %u Hz/%.03f MHz\n",
SAMPLE_RATE_MAX_HZ,
(float) (SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
if (sample_rate_hz < SAMPLE_RATE_MIN_HZ && !force_ranges) {
fprintf(stderr,
"argument error: sample_rate_hz should be greater than or equal to %u Hz/%.03f MHz\n",
SAMPLE_RATE_MIN_HZ,
(float) (SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
} else {
sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
}
if (baseband_filter_bw) {
if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
fprintf(stderr,
"argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MAX,
(float) (BASEBAND_FILTER_BW_MAX / FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
fprintf(stderr,
"argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MIN,
(float) (BASEBAND_FILTER_BW_MIN / FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
/* Compute nearest freq for bw filter */
baseband_filter_bw_hz =
hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
}
if (requested_mode_count > 1) {
fprintf(stderr, "specify only one of: -t, -c, -r, -w\n");
usage();
return EXIT_FAILURE;
}
if (requested_mode_count < 1) {
fprintf(stderr, "specify one of: -t, -c, -r, -w\n");
usage();
return EXIT_FAILURE;
}
if (receive) {
transceiver_mode = TRANSCEIVER_MODE_RX;
}
if (transmit) {
transceiver_mode = TRANSCEIVER_MODE_TX;
}
if (signalsource) {
transceiver_mode = TRANSCEIVER_MODE_SS;
if (amplitude > 127) {
fprintf(stderr,
"argument error: amplitude must be between 0 and 127.\n");
usage();
return EXIT_FAILURE;
}
}
if (receive_wav) {
time(&rawtime);
timeinfo = localtime(&rawtime);
transceiver_mode = TRANSCEIVER_MODE_RX;
/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
snprintf(
path_file,
PATH_FILE_MAX_LEN,
"HackRF_%sZ_%ukHz_IQ.wav",
date_time,
(uint32_t) (freq_hz / (1000ull)));
path = path_file;
fprintf(stderr, "Receive wav file: %s\n", path);
}
// In signal source mode, the PATH argument is neglected.
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
if (path == NULL) {
fprintf(stderr, "specify a path to a file to transmit/receive\n");
usage();
return EXIT_FAILURE;
}
}
// Change the freq and sample rate to correct the crystal clock error.
if (crystal_correct) {
sample_rate_hz =
(uint32_t) ((double) sample_rate_hz * (1000000 - crystal_correct_ppm) / 1000000 + 0.5);
freq_hz = freq_hz * (1000000 - crystal_correct_ppm) / 1000000;
}
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
if (strcmp(path, "-") == 0) {
file = stdout;
} else {
file = fopen(path, "wb");
}
} else {
if (strcmp(path, "-") == 0) {
file = stdin;
} else {
file = fopen(path, "rb");
}
}
if (file == NULL) {
fprintf(stderr, "Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
/* Change file buffer to have bigger one to store or read data on/to HDD */
result = setvbuf(file, NULL, _IOFBF, FD_BUFFER_SIZE);
if (result != 0) {
fprintf(stderr, "setvbuf() failed: %d\n", result);
usage();
return EXIT_FAILURE;
}
}
/* Write Wav header */
if (receive_wav) {
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
}
#ifdef _WIN32
SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE);
#else
signal(SIGINT, &sigint_callback_handler);
signal(SIGILL, &sigint_callback_handler);
signal(SIGFPE, &sigint_callback_handler);
signal(SIGSEGV, &sigint_callback_handler);
signal(SIGTERM, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
#endif
#ifdef _WIN32
interrupt_handle = CreateEvent(NULL, TRUE, FALSE, NULL);
#else
signal(SIGALRM, &sigalrm_callback_handler);
#endif
fprintf(stderr,
"call hackrf_set_sample_rate(%u Hz/%.03f MHz)\n",
sample_rate_hz,
((float) sample_rate_hz / (float) FREQ_ONE_MHZ));
result = hackrf_set_sample_rate(device, sample_rate_hz);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_sample_rate() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
if (baseband_filter_bw) {
fprintf(stderr,
"call hackrf_set_baseband_filter_bandwidth(%d Hz/%.03f MHz)\n",
baseband_filter_bw_hz,
((float) baseband_filter_bw_hz / (float) FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(
device,
baseband_filter_bw_hz);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_baseband_filter_bandwidth() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
fprintf(stderr, "call hackrf_set_hw_sync_mode(%d)\n", hw_sync ? 1 : 0);
result = hackrf_set_hw_sync_mode(
device,
hw_sync ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_hw_sync_mode() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_start_?x() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
fprintf(stderr,
"call hackrf_set_freq(%s Hz/%.03f MHz)\n",
u64toa(freq_hz, &ascii_u64_data[0]),
((double) freq_hz / (double) FREQ_ONE_MHZ));
result = hackrf_set_freq(device, freq_hz);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_freq() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
} else {
fprintf(stderr,
"call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
u64toa(if_freq_hz, &ascii_u64_data[0]),
u64toa(lo_freq_hz, &ascii_u64_data[1]),
hackrf_filter_path_name(image_reject_selection));
result = hackrf_set_freq_explicit(
device,
if_freq_hz,
lo_freq_hz,
image_reject_selection);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_freq_explicit() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (amp) {
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_amp_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (antenna) {
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_set_antenna_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
result = hackrf_set_vga_gain(device, vga_gain);
result |= hackrf_set_lna_gain(device, lna_gain);
result |= hackrf_start_rx(device, rx_callback, NULL);
} else {
result = hackrf_set_txvga_gain(device, txvga_gain);
result |= hackrf_enable_tx_flush(device, flush_callback, NULL);
result |= hackrf_set_tx_block_complete_callback(
device,
tx_complete_callback);
result |= hackrf_start_tx(device, tx_callback, NULL);
}
if (limit_num_samples) {
fprintf(stderr,
"samples_to_xfer %s/%sMio\n",
u64toa(samples_to_xfer, &ascii_u64_data[0]),
u64toa((samples_to_xfer / FREQ_ONE_MHZ), &ascii_u64_data[1]));
}
gettimeofday(&t_start, NULL);
gettimeofday(&time_start, NULL);
fprintf(stderr, "Stop with Ctrl-C\n");
// Set up an interval timer which will fire once per second.
#ifdef _WIN32
HANDLE timer_handle = CreateWaitableTimer(NULL, FALSE, NULL);
LARGE_INTEGER due_time;
due_time.QuadPart = -10000000LL;
LONG period = 1000;
SetWaitableTimer(timer_handle, &due_time, period, NULL, NULL, 0);
#else
struct itimerval interval_timer = {
.it_interval = {.tv_sec = 1, .tv_usec = 0},
.it_value = {.tv_sec = 1, .tv_usec = 0}};
setitimer(ITIMER_REAL, &interval_timer, NULL);
#endif
while (!do_exit) {
struct timeval time_now;
float time_difference, rate;
if (stream_size > 0) {
#ifndef _WIN32
if (stream_head == stream_tail) {
usleep(10000); // queue empty
} else {
ssize_t len;
ssize_t bytes_written;
uint32_t _st =
__atomic_load_n(&stream_tail, __ATOMIC_ACQUIRE);
if (stream_head < _st)
len = _st - stream_head;
else
len = stream_size - stream_head;
bytes_written =
fwrite(stream_buf + stream_head, 1, len, file);
if (len != bytes_written) {
fprintf(stderr, "write failed");
do_exit = true;
};
stream_head = (stream_head + len) % stream_size;
}
if (stream_drop > 0) {
uint32_t drops = __atomic_exchange_n(
&stream_drop,
0,
__ATOMIC_SEQ_CST);
fprintf(stderr, "dropped frames: [%d]\n", drops);
}
#endif
} else {
uint64_t byte_count_now;
uint64_t stream_power_now;
#ifdef _WIN32
// Wait for interval timer event, or interrupt event.
HANDLE handles[] = {timer_handle, interrupt_handle};
WaitForMultipleObjects(2, handles, FALSE, INFINITE);
#else
// Wait for SIGALRM from interval timer, or another signal.
pause();
#endif
gettimeofday(&time_now, NULL);
/* Read and reset both totals at approximately the same time. */
byte_count_now = byte_count;
stream_power_now = stream_power;
byte_count = 0;
stream_power = 0;
time_difference = TimevalDiff(&time_now, &time_start);
rate = (float) byte_count_now / time_difference;
if ((byte_count_now == 0) && (hw_sync)) {
fprintf(stderr, "Waiting for trigger...\n");
} else if (!((byte_count_now == 0) && (flush_complete))) {
double full_scale_ratio = (double) stream_power_now /
(byte_count_now * 127 * 127);
double dB_full_scale = 10 * log10(full_scale_ratio) + 3.0;
fprintf(stderr,
"%4.1f MiB / %5.3f sec = %4.1f MiB/second, average power %3.1f dBfs",
(byte_count_now / 1e6f),
time_difference,
(rate / 1e6f),
dB_full_scale);
if (display_stats) {
bool tx = transmit || signalsource;
result = update_stats(device, &state, &stats);
if (result != HACKRF_SUCCESS)
fprintf(stderr,
"\nhackrf_get_m0_state() failed: %s (%d)\n",
hackrf_error_name(result),
result);
else
fprintf(stderr,
", %d bytes %s in buffer, %u %s, longest %u bytes\n",
tx ? state.m4_count -
state.m0_count :
state.m0_count -
state.m4_count,
tx ? "filled" : "free",
state.num_shortfalls,
tx ? "underruns" : "overruns",
state.longest_shortfall);
} else {
fprintf(stderr, "\n");
}
}
time_start = time_now;
if ((byte_count_now == 0) && (!hw_sync) && (!flush_complete)) {
exit_code = EXIT_FAILURE;
fprintf(stderr,
"\nCouldn't transfer any bytes for one second.\n");
break;
}
}
}
// Stop interval timer.
#ifdef _WIN32
CancelWaitableTimer(timer_handle);
CloseHandle(timer_handle);
#else
interval_timer.it_value.tv_sec = 0;
setitimer(ITIMER_REAL, &interval_timer, NULL);
#endif
result = hackrf_is_streaming(device);
if (do_exit) {
fprintf(stderr, "\nExiting...\n");
} else {
fprintf(stderr,
"\nExiting... hackrf_is_streaming() result: %s (%d)\n",
hackrf_error_name(result),
result);
}
gettimeofday(&t_end, NULL);
time_diff = TimevalDiff(&t_end, &t_start);
fprintf(stderr, "Total time: %5.5f s\n", time_diff);
if (device != NULL) {
if (receive || receive_wav) {
result = hackrf_stop_rx(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_stop_rx() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_stop_rx() done\n");
}
}
if (transmit || signalsource) {
result = hackrf_stop_tx(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_stop_tx() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_stop_tx() done\n");
}
}
if (display_stats) {
result = update_stats(device, &state, &stats);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_get_m0_state() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr,
"Transfer statistics:\n"
"%" PRIu64 " bytes transferred by M0\n"
"%" PRIu64 " bytes transferred by M4\n"
"%u %s, longest %u bytes\n",
stats.m0_total,
stats.m4_total,
state.num_shortfalls,
(transmit || signalsource) ? "underruns" :
"overruns",
state.longest_shortfall);
}
}
result = hackrf_close(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_close() done\n");
}
hackrf_exit();
fprintf(stderr, "hackrf_exit() done\n");
}
if (file != NULL) {
if (receive_wav) {
/* Get size of file */
file_pos = ftell(file);
/* Update Wav Header */
wave_file_hdr.hdr.size = file_pos - 8;
wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
wave_file_hdr.fmt_chunk.dwAvgBytesPerSec =
wave_file_hdr.fmt_chunk.dwSamplesPerSec * 2;
wave_file_hdr.data_chunk.chunkSize =
file_pos - sizeof(t_wav_file_hdr);
/* Overwrite header with updated data */
rewind(file);
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
}
if (file != stdin) {
fflush(file);
}
if ((file != stdout) && (file != stdin)) {
fclose(file);
file = NULL;
fprintf(stderr, "fclose() done\n");
}
}
fprintf(stderr, "exit\n");
return exit_code;
}