1561 lines
39 KiB
C
1561 lines
39 KiB
C
/*
|
|
* Copyright 2012-2022 Great Scott Gadgets <info@greatscottgadgets.com>
|
|
* Copyright 2012 Jared Boone <jared@sharebrained.com>
|
|
* Copyright 2013-2014 Benjamin Vernoux <titanmkd@gmail.com>
|
|
*
|
|
* This file is part of HackRF.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#define _FILE_OFFSET_BITS 64
|
|
|
|
#include <hackrf.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <getopt.h>
|
|
#include <time.h>
|
|
#include <math.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
|
|
#ifndef bool
|
|
typedef int bool;
|
|
#define true 1
|
|
#define false 0
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#ifdef _WIN64
|
|
typedef int64_t ssize_t;
|
|
#else
|
|
typedef int32_t ssize_t;
|
|
#endif
|
|
|
|
#define strtoull _strtoui64
|
|
#define snprintf _snprintf
|
|
|
|
int gettimeofday(struct timeval* tv, void* ignored)
|
|
{
|
|
FILETIME ft;
|
|
unsigned __int64 tmp = 0;
|
|
if (NULL != tv) {
|
|
GetSystemTimeAsFileTime(&ft);
|
|
tmp |= ft.dwHighDateTime;
|
|
tmp <<= 32;
|
|
tmp |= ft.dwLowDateTime;
|
|
tmp /= 10;
|
|
tmp -= 11644473600000000Ui64;
|
|
tv->tv_sec = (long) (tmp / 1000000UL);
|
|
tv->tv_usec = (long) (tmp % 1000000UL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#include <signal.h>
|
|
|
|
#define FD_BUFFER_SIZE (8 * 1024)
|
|
|
|
#define FREQ_ONE_MHZ (1000000ll)
|
|
|
|
#define DEFAULT_FREQ_HZ (900000000ll) /* 900MHz */
|
|
#define FREQ_ABS_MIN_HZ (0ull) /* 0 Hz */
|
|
#define FREQ_MIN_HZ (1000000ll) /* 1MHz */
|
|
#define FREQ_MAX_HZ (6000000000ll) /* 6000MHz */
|
|
#define FREQ_ABS_MAX_HZ (7250000000ll) /* 7250MHz */
|
|
#define IF_ABS_MIN_HZ (2000000000ll)
|
|
#define IF_MIN_HZ (2170000000ll)
|
|
#define IF_MAX_HZ (2740000000ll)
|
|
#define IF_ABS_MAX_HZ (3000000000ll)
|
|
#define LO_MIN_HZ (84375000ll)
|
|
#define LO_MAX_HZ (5400000000ll)
|
|
#define DEFAULT_LO_HZ (1000000000ll)
|
|
|
|
#define SAMPLE_RATE_MIN_HZ (2000000) /* 2MHz min sample rate */
|
|
#define SAMPLE_RATE_MAX_HZ (20000000) /* 20MHz max sample rate */
|
|
#define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */
|
|
|
|
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */
|
|
|
|
#define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */
|
|
|
|
#define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */
|
|
#define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */
|
|
|
|
typedef enum {
|
|
TRANSCEIVER_MODE_OFF = 0,
|
|
TRANSCEIVER_MODE_RX = 1,
|
|
TRANSCEIVER_MODE_TX = 2,
|
|
TRANSCEIVER_MODE_SS = 3,
|
|
} transceiver_mode_t;
|
|
|
|
typedef enum {
|
|
HW_SYNC_MODE_OFF = 0,
|
|
HW_SYNC_MODE_ON = 1,
|
|
} hw_sync_mode_t;
|
|
|
|
typedef struct {
|
|
uint64_t m0_total;
|
|
uint64_t m4_total;
|
|
} stats_t;
|
|
|
|
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
|
|
typedef struct {
|
|
char groupID[4]; /* 'RIFF' */
|
|
uint32_t size; /* File size + 8bytes */
|
|
char riffType[4]; /* 'WAVE'*/
|
|
} t_WAVRIFF_hdr;
|
|
|
|
#define FormatID \
|
|
"fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */
|
|
|
|
typedef struct {
|
|
char chunkID[4]; /* 'fmt ' */
|
|
uint32_t chunkSize; /* 16 fixed */
|
|
uint16_t wFormatTag; /* 1 fixed */
|
|
uint16_t wChannels; /* 2 fixed */
|
|
uint32_t dwSamplesPerSec; /* Freq Hz sampling */
|
|
uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */
|
|
uint16_t wBlockAlign; /* 2 fixed */
|
|
uint16_t wBitsPerSample; /* 8 fixed */
|
|
} t_FormatChunk;
|
|
|
|
typedef struct {
|
|
char chunkID[4]; /* 'data' */
|
|
uint32_t chunkSize; /* Size of data in bytes */
|
|
|
|
/* Samples I(8bits) then Q(8bits), I, Q ... */
|
|
} t_DataChunk;
|
|
|
|
typedef struct {
|
|
t_WAVRIFF_hdr hdr;
|
|
t_FormatChunk fmt_chunk;
|
|
t_DataChunk data_chunk;
|
|
} t_wav_file_hdr;
|
|
|
|
t_wav_file_hdr wave_file_hdr = {
|
|
/* t_WAVRIFF_hdr */
|
|
{/* groupID */
|
|
{'R', 'I', 'F', 'F'},
|
|
0, /* size to update later */
|
|
{'W', 'A', 'V', 'E'}},
|
|
/* t_FormatChunk */
|
|
{
|
|
/* char chunkID[4]; */
|
|
{'f', 'm', 't', ' '},
|
|
16, /* uint32_t chunkSize; */
|
|
1, /* uint16_t wFormatTag; 1 fixed */
|
|
2, /* uint16_t wChannels; 2 fixed */
|
|
0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */
|
|
0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */
|
|
2, /* uint16_t wBlockAlign; 2 fixed */
|
|
8, /* uint16_t wBitsPerSample; 8 fixed */
|
|
},
|
|
/* t_DataChunk */
|
|
{
|
|
/* char chunkID[4]; */
|
|
{'d', 'a', 't', 'a'},
|
|
0, /* uint32_t chunkSize; to update later */
|
|
}};
|
|
|
|
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX;
|
|
|
|
#define U64TOA_MAX_DIGIT (31)
|
|
|
|
typedef struct {
|
|
char data[U64TOA_MAX_DIGIT + 1];
|
|
} t_u64toa;
|
|
|
|
t_u64toa ascii_u64_data[4];
|
|
|
|
static float TimevalDiff(const struct timeval* a, const struct timeval* b)
|
|
{
|
|
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
|
|
}
|
|
|
|
int parse_u64(char* s, uint64_t* const value)
|
|
{
|
|
uint_fast8_t base = 10;
|
|
char* s_end;
|
|
uint64_t u64_value;
|
|
|
|
if (strlen(s) > 2) {
|
|
if (s[0] == '0') {
|
|
if ((s[1] == 'x') || (s[1] == 'X')) {
|
|
base = 16;
|
|
s += 2;
|
|
} else if ((s[1] == 'b') || (s[1] == 'B')) {
|
|
base = 2;
|
|
s += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
s_end = s;
|
|
u64_value = strtoull(s, &s_end, base);
|
|
if ((s != s_end) && (*s_end == 0)) {
|
|
*value = u64_value;
|
|
return HACKRF_SUCCESS;
|
|
} else {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
int parse_u32(char* s, uint32_t* const value)
|
|
{
|
|
uint_fast8_t base = 10;
|
|
char* s_end;
|
|
uint64_t ulong_value;
|
|
|
|
if (strlen(s) > 2) {
|
|
if (s[0] == '0') {
|
|
if ((s[1] == 'x') || (s[1] == 'X')) {
|
|
base = 16;
|
|
s += 2;
|
|
} else if ((s[1] == 'b') || (s[1] == 'B')) {
|
|
base = 2;
|
|
s += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
s_end = s;
|
|
ulong_value = strtoul(s, &s_end, base);
|
|
if ((s != s_end) && (*s_end == 0)) {
|
|
*value = (uint32_t) ulong_value;
|
|
return HACKRF_SUCCESS;
|
|
} else {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
/* Parse frequencies as doubles to take advantage of notation parsing */
|
|
int parse_frequency_i64(char* optarg, char* endptr, int64_t* value)
|
|
{
|
|
*value = (int64_t) strtod(optarg, &endptr);
|
|
if (optarg == endptr) {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
return HACKRF_SUCCESS;
|
|
}
|
|
|
|
int parse_frequency_u32(char* optarg, char* endptr, uint32_t* value)
|
|
{
|
|
*value = (uint32_t) strtod(optarg, &endptr);
|
|
if (optarg == endptr) {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
return HACKRF_SUCCESS;
|
|
}
|
|
|
|
static char* stringrev(char* str)
|
|
{
|
|
char *p1, *p2;
|
|
|
|
if (!str || !*str)
|
|
return str;
|
|
|
|
for (p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2) {
|
|
*p1 ^= *p2;
|
|
*p2 ^= *p1;
|
|
*p1 ^= *p2;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
char* u64toa(uint64_t val, t_u64toa* str)
|
|
{
|
|
#define BASE (10ull) /* Base10 by default */
|
|
uint64_t sum;
|
|
int pos;
|
|
int digit;
|
|
int max_len;
|
|
char* res;
|
|
|
|
sum = val;
|
|
max_len = U64TOA_MAX_DIGIT;
|
|
pos = 0;
|
|
|
|
do {
|
|
digit = (sum % BASE);
|
|
str->data[pos] = digit + '0';
|
|
pos++;
|
|
|
|
sum /= BASE;
|
|
} while ((sum > 0) && (pos < max_len));
|
|
|
|
if ((pos == max_len) && (sum > 0))
|
|
return NULL;
|
|
|
|
str->data[pos] = '\0';
|
|
res = stringrev(str->data);
|
|
|
|
return res;
|
|
}
|
|
|
|
static volatile bool do_exit = false;
|
|
static volatile bool interrupted = false;
|
|
static volatile bool tx_complete = false;
|
|
static volatile bool flush_complete = false;
|
|
#ifdef _WIN32
|
|
static HANDLE interrupt_handle;
|
|
#endif
|
|
|
|
FILE* file = NULL;
|
|
volatile uint32_t byte_count = 0;
|
|
|
|
bool signalsource = false;
|
|
uint32_t amplitude = 0;
|
|
|
|
bool hw_sync = false;
|
|
|
|
bool receive = false;
|
|
bool receive_wav = false;
|
|
uint64_t stream_size = 0;
|
|
uint32_t stream_head = 0;
|
|
uint32_t stream_tail = 0;
|
|
uint32_t stream_drop = 0;
|
|
uint8_t* stream_buf = NULL;
|
|
|
|
/* sum of power of all samples, reset on the periodic report */
|
|
volatile uint64_t stream_power = 0;
|
|
|
|
bool transmit = false;
|
|
struct timeval time_start;
|
|
struct timeval t_start;
|
|
|
|
bool automatic_tuning = false;
|
|
int64_t freq_hz;
|
|
|
|
bool if_freq = false;
|
|
int64_t if_freq_hz;
|
|
|
|
bool lo_freq = false;
|
|
int64_t lo_freq_hz = DEFAULT_LO_HZ;
|
|
|
|
bool image_reject = false;
|
|
uint32_t image_reject_selection;
|
|
|
|
bool amp = false;
|
|
uint32_t amp_enable;
|
|
|
|
bool antenna = false;
|
|
uint32_t antenna_enable;
|
|
|
|
bool sample_rate = false;
|
|
uint32_t sample_rate_hz;
|
|
|
|
bool force_ranges = false;
|
|
|
|
bool limit_num_samples = false;
|
|
uint64_t samples_to_xfer = 0;
|
|
size_t bytes_to_xfer = 0;
|
|
|
|
bool display_stats = false;
|
|
|
|
bool baseband_filter_bw = false;
|
|
uint32_t baseband_filter_bw_hz = 0;
|
|
|
|
bool repeat = false;
|
|
|
|
bool crystal_correct = false;
|
|
uint32_t crystal_correct_ppm;
|
|
|
|
int requested_mode_count = 0;
|
|
|
|
void stop_main_loop(void)
|
|
{
|
|
do_exit = true;
|
|
#ifdef _WIN32
|
|
SetEvent(interrupt_handle);
|
|
#else
|
|
kill(getpid(), SIGALRM);
|
|
#endif
|
|
}
|
|
|
|
int rx_callback(hackrf_transfer* transfer)
|
|
{
|
|
size_t bytes_to_write;
|
|
size_t bytes_written;
|
|
unsigned int i;
|
|
|
|
if (file == NULL) {
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
|
|
/* Accumulate power (magnitude squared). */
|
|
bytes_to_write = transfer->valid_length;
|
|
uint64_t sum = 0;
|
|
for (i = 0; i < bytes_to_write; i++) {
|
|
int8_t value = transfer->buffer[i];
|
|
sum += value * value;
|
|
}
|
|
|
|
/* Update both running totals at approximately the same time. */
|
|
byte_count += transfer->valid_length;
|
|
stream_power += sum;
|
|
|
|
if (limit_num_samples) {
|
|
if (bytes_to_write >= bytes_to_xfer) {
|
|
bytes_to_write = bytes_to_xfer;
|
|
}
|
|
bytes_to_xfer -= bytes_to_write;
|
|
}
|
|
|
|
if (receive_wav) {
|
|
/* convert .wav contents from signed to unsigned */
|
|
for (i = 0; i < bytes_to_write; i++) {
|
|
transfer->buffer[i] ^= (uint8_t) 0x80;
|
|
}
|
|
}
|
|
|
|
if (stream_size == 0) {
|
|
bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, file);
|
|
if ((bytes_written != bytes_to_write) ||
|
|
(limit_num_samples && (bytes_to_xfer == 0))) {
|
|
stop_main_loop();
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
if ((stream_size - 1 + stream_head - stream_tail) % stream_size <
|
|
bytes_to_write) {
|
|
stream_drop++;
|
|
} else {
|
|
if (stream_tail + bytes_to_write <= stream_size) {
|
|
memcpy(stream_buf + stream_tail,
|
|
transfer->buffer,
|
|
bytes_to_write);
|
|
} else {
|
|
memcpy(stream_buf + stream_tail,
|
|
transfer->buffer,
|
|
(stream_size - stream_tail));
|
|
memcpy(stream_buf,
|
|
transfer->buffer + (stream_size - stream_tail),
|
|
bytes_to_write - (stream_size - stream_tail));
|
|
};
|
|
__atomic_store_n(
|
|
&stream_tail,
|
|
(stream_tail + bytes_to_write) % stream_size,
|
|
__ATOMIC_RELEASE);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int tx_callback(hackrf_transfer* transfer)
|
|
{
|
|
size_t bytes_to_read;
|
|
size_t bytes_read;
|
|
unsigned int i;
|
|
|
|
/* Check we have a valid source of samples. */
|
|
if (file == NULL && transceiver_mode != TRANSCEIVER_MODE_SS) {
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
|
|
/* If the last data was already buffered, stop. */
|
|
if (tx_complete) {
|
|
return -1;
|
|
}
|
|
|
|
/* Determine how many bytes we need to put in the buffer. */
|
|
bytes_to_read = transfer->buffer_length;
|
|
if (limit_num_samples) {
|
|
if (bytes_to_read >= bytes_to_xfer) {
|
|
bytes_to_read = bytes_to_xfer;
|
|
}
|
|
bytes_to_xfer -= bytes_to_read;
|
|
}
|
|
|
|
/* Fill the buffer. */
|
|
if (file == NULL) {
|
|
/* Transmit continuous wave with specific amplitude */
|
|
for (i = 0; i < bytes_to_read; i += 2) {
|
|
transfer->buffer[i] = amplitude;
|
|
transfer->buffer[i + 1] = 0;
|
|
}
|
|
bytes_read = bytes_to_read;
|
|
} else {
|
|
/* Read samples from file. */
|
|
bytes_read = fread(transfer->buffer, 1, bytes_to_read, file);
|
|
|
|
/* If no more bytes, error or file empty, terminate. */
|
|
if (bytes_read == 0) {
|
|
/* Report any error. */
|
|
if (ferror(file)) {
|
|
fprintf(stderr, "Could not read input file.\n");
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
if (ftell(file) < 1) {
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now set the valid length to the bytes we put in the buffer. */
|
|
transfer->valid_length = bytes_read;
|
|
|
|
/* If the sample limit has been reached, this is the last data. */
|
|
if (limit_num_samples && (bytes_to_xfer == 0)) {
|
|
tx_complete = true;
|
|
return 0;
|
|
}
|
|
|
|
/* If we filled the number of bytes needed, return normally. */
|
|
if (bytes_read == bytes_to_read) {
|
|
return 0;
|
|
}
|
|
|
|
/* Otherwise, the file ran short. If not repeating, this is the last data. */
|
|
if ((!repeat) || (ftell(file) < 1)) {
|
|
tx_complete = true;
|
|
return 0;
|
|
}
|
|
|
|
/* If we get to here, we need to repeat the file until we fill the buffer. */
|
|
while (bytes_read < bytes_to_read) {
|
|
size_t extra_bytes_read;
|
|
|
|
/* Rewind and read more samples. */
|
|
rewind(file);
|
|
extra_bytes_read =
|
|
fread(transfer->buffer + bytes_read,
|
|
1,
|
|
bytes_to_read - bytes_read,
|
|
file);
|
|
|
|
/* If no more bytes, error or file empty, use what we have. */
|
|
if (extra_bytes_read == 0) {
|
|
/* Report any error. */
|
|
if (ferror(file)) {
|
|
fprintf(stderr, "Could not read input file.\n");
|
|
tx_complete = true;
|
|
return 0;
|
|
}
|
|
if (ftell(file) < 1) {
|
|
tx_complete = true;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bytes_read += extra_bytes_read;
|
|
transfer->valid_length += extra_bytes_read;
|
|
}
|
|
|
|
/* Then return normally. */
|
|
return 0;
|
|
}
|
|
|
|
static void tx_complete_callback(hackrf_transfer* transfer, int success)
|
|
{
|
|
// If a transfer failed to complete, stop the main loop.
|
|
if (!success) {
|
|
stop_main_loop();
|
|
return;
|
|
}
|
|
|
|
/* Accumulate power (magnitude squared). */
|
|
uint32_t i;
|
|
uint64_t sum = 0;
|
|
for (i = 0; i < transfer->valid_length; i++) {
|
|
int8_t value = transfer->buffer[i];
|
|
sum += value * value;
|
|
}
|
|
|
|
/* Update both running totals at approximately the same time. */
|
|
byte_count += transfer->valid_length;
|
|
stream_power += sum;
|
|
}
|
|
|
|
static void flush_callback(void* flush_ctx, int success)
|
|
{
|
|
if (success) {
|
|
flush_complete = true;
|
|
}
|
|
stop_main_loop();
|
|
}
|
|
|
|
static int update_stats(hackrf_device* device, hackrf_m0_state* state, stats_t* stats)
|
|
{
|
|
int result = hackrf_get_m0_state(device, state);
|
|
|
|
if (result == HACKRF_SUCCESS) {
|
|
/*
|
|
* Update 64-bit running totals, to handle wrapping of the 32-bit fields
|
|
* for M0 and M4 byte counts.
|
|
*
|
|
* The logic for handling wrapping works as follows:
|
|
*
|
|
* If a 32-bit count read from the HackRF is less than the lower 32 bits of
|
|
* the previous 64-bit running total, this indicates the 32-bit counter has
|
|
* wrapped since it was last read. Add 2^32 to the 64-bit total to account
|
|
* for this.
|
|
*
|
|
* Then, having accounted for the possible wrap, mask off the bottom 32
|
|
* bits of the 64-bit total, and replace them with the new 32-bit count.
|
|
*
|
|
* This should result in correct results as long as the 32-bit counter
|
|
* cannot wrap more than once between reads.
|
|
*
|
|
* We read the M0 state every second, and the counters will wrap every 107
|
|
* seconds at 20Msps, so this should be a safe assumption.
|
|
*/
|
|
if (state->m0_count < (stats->m0_total & 0xFFFFFFFF))
|
|
stats->m0_total += 0x100000000;
|
|
if (state->m4_count < (stats->m4_total & 0xFFFFFFFF))
|
|
stats->m4_total += 0x100000000;
|
|
stats->m0_total =
|
|
(stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
|
|
stats->m4_total =
|
|
(stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void usage()
|
|
{
|
|
printf("Usage:\n");
|
|
printf("\t-h # this help\n");
|
|
printf("\t[-d serial_number] # Serial number of desired HackRF.\n");
|
|
printf("\t-r <filename> # Receive data into file (use '-' for stdout).\n");
|
|
printf("\t-t <filename> # Transmit data from file (use '-' for stdin).\n");
|
|
printf("\t-w # Receive data into file with WAV header and automatic name.\n");
|
|
printf("\t # This is for SDR# compatibility and may not work with other software.\n");
|
|
printf("\t[-f freq_hz] # Frequency in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n",
|
|
u64toa((FREQ_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((FREQ_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
|
|
u64toa((FREQ_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]),
|
|
u64toa((FREQ_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3]));
|
|
printf("\t[-i if_freq_hz] # Intermediate Frequency (IF) in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n",
|
|
u64toa((IF_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((IF_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
|
|
u64toa((IF_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]),
|
|
u64toa((IF_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3]));
|
|
printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%sMHz to %sMHz].\n",
|
|
u64toa((LO_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((LO_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n");
|
|
printf("\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n");
|
|
printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n");
|
|
printf("\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
|
|
printf("\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
|
|
printf("\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n");
|
|
printf("\t[-s sample_rate_hz] # Sample rate in Hz (%s-%sMHz supported, default %sMHz).\n",
|
|
u64toa((SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
|
|
u64toa((DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]));
|
|
printf("\t[-F force] # Force use of parameters outside supported ranges.\n");
|
|
printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n");
|
|
#ifndef _WIN32
|
|
/* The required atomic load/store functions aren't available when using C with MSVC */
|
|
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
|
|
#endif
|
|
printf("\t[-B] # Print buffer statistics during transfer\n");
|
|
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n");
|
|
printf("\t[-R] # Repeat TX mode (default is off) \n");
|
|
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n");
|
|
printf("\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n");
|
|
printf("\t[-C ppm] # Set Internal crystal clock error in ppm.\n");
|
|
printf("\t[-H] # Synchronize RX/TX to external trigger input.\n");
|
|
}
|
|
|
|
static hackrf_device* device = NULL;
|
|
|
|
#ifdef _WIN32
|
|
BOOL WINAPI sighandler(int signum)
|
|
{
|
|
if (CTRL_C_EVENT == signum || CTRL_BREAK_EVENT == signum) {
|
|
interrupted = true;
|
|
fprintf(stderr, "Caught signal %d\n", signum);
|
|
stop_main_loop();
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
#else
|
|
void sigint_callback_handler(int signum)
|
|
{
|
|
interrupted = true;
|
|
fprintf(stderr, "Caught signal %d\n", signum);
|
|
do_exit = true;
|
|
}
|
|
#endif
|
|
|
|
#ifndef _WIN32
|
|
void sigalrm_callback_handler(int signum)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#define PATH_FILE_MAX_LEN (FILENAME_MAX)
|
|
#define DATE_TIME_MAX_LEN (32)
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
int opt;
|
|
char path_file[PATH_FILE_MAX_LEN];
|
|
char date_time[DATE_TIME_MAX_LEN];
|
|
const char* path = NULL;
|
|
const char* serial_number = NULL;
|
|
char* endptr = NULL;
|
|
int result;
|
|
time_t rawtime;
|
|
struct tm* timeinfo;
|
|
long int file_pos;
|
|
int exit_code = EXIT_SUCCESS;
|
|
struct timeval t_end;
|
|
float time_diff;
|
|
unsigned int lna_gain = 8, vga_gain = 20, txvga_gain = 0;
|
|
hackrf_m0_state state;
|
|
stats_t stats = {0, 0};
|
|
|
|
while ((opt = getopt(argc, argv, "Hwr:t:f:i:o:m:a:p:s:Fn:b:l:g:x:c:d:C:RS:Bh?")) !=
|
|
EOF) {
|
|
result = HACKRF_SUCCESS;
|
|
switch (opt) {
|
|
case 'H':
|
|
hw_sync = true;
|
|
break;
|
|
case 'w':
|
|
receive_wav = true;
|
|
requested_mode_count++;
|
|
break;
|
|
|
|
case 'r':
|
|
receive = true;
|
|
requested_mode_count++;
|
|
path = optarg;
|
|
break;
|
|
|
|
case 't':
|
|
transmit = true;
|
|
requested_mode_count++;
|
|
path = optarg;
|
|
break;
|
|
|
|
case 'd':
|
|
serial_number = optarg;
|
|
break;
|
|
|
|
case 'S':
|
|
result = parse_u64(optarg, &stream_size);
|
|
stream_buf = calloc(1, stream_size);
|
|
break;
|
|
|
|
case 'f':
|
|
result = parse_frequency_i64(optarg, endptr, &freq_hz);
|
|
automatic_tuning = true;
|
|
break;
|
|
|
|
case 'i':
|
|
result = parse_frequency_i64(optarg, endptr, &if_freq_hz);
|
|
if_freq = true;
|
|
break;
|
|
|
|
case 'o':
|
|
result = parse_frequency_i64(optarg, endptr, &lo_freq_hz);
|
|
lo_freq = true;
|
|
break;
|
|
|
|
case 'm':
|
|
image_reject = true;
|
|
result = parse_u32(optarg, &image_reject_selection);
|
|
break;
|
|
|
|
case 'a':
|
|
amp = true;
|
|
result = parse_u32(optarg, &_enable);
|
|
break;
|
|
|
|
case 'p':
|
|
antenna = true;
|
|
result = parse_u32(optarg, &antenna_enable);
|
|
break;
|
|
|
|
case 'l':
|
|
result = parse_u32(optarg, &lna_gain);
|
|
break;
|
|
|
|
case 'g':
|
|
result = parse_u32(optarg, &vga_gain);
|
|
break;
|
|
|
|
case 'x':
|
|
result = parse_u32(optarg, &txvga_gain);
|
|
break;
|
|
|
|
case 's':
|
|
result = parse_frequency_u32(optarg, endptr, &sample_rate_hz);
|
|
sample_rate = true;
|
|
break;
|
|
|
|
case 'F':
|
|
force_ranges = true;
|
|
break;
|
|
|
|
case 'n':
|
|
limit_num_samples = true;
|
|
result = parse_u64(optarg, &samples_to_xfer);
|
|
bytes_to_xfer = samples_to_xfer * 2ull;
|
|
break;
|
|
|
|
case 'B':
|
|
display_stats = true;
|
|
break;
|
|
|
|
case 'b':
|
|
result = parse_frequency_u32(
|
|
optarg,
|
|
endptr,
|
|
&baseband_filter_bw_hz);
|
|
baseband_filter_bw = true;
|
|
break;
|
|
|
|
case 'c':
|
|
signalsource = true;
|
|
requested_mode_count++;
|
|
result = parse_u32(optarg, &litude);
|
|
break;
|
|
|
|
case 'R':
|
|
repeat = true;
|
|
break;
|
|
|
|
case 'C':
|
|
crystal_correct = true;
|
|
result = parse_u32(optarg, &crystal_correct_ppm);
|
|
break;
|
|
|
|
case 'h':
|
|
case '?':
|
|
usage();
|
|
return EXIT_SUCCESS;
|
|
|
|
default:
|
|
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"argument error: '-%c %s' %s (%d)\n",
|
|
opt,
|
|
optarg,
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (lna_gain % 8)
|
|
fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n");
|
|
|
|
if (vga_gain % 2)
|
|
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
|
|
|
|
if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
|
|
fprintf(stderr,
|
|
"argument error: num_samples must be less than %s/%sMio\n",
|
|
u64toa(SAMPLES_TO_XFER_MAX, &ascii_u64_data[0]),
|
|
u64toa((SAMPLES_TO_XFER_MAX / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (if_freq || lo_freq || image_reject) {
|
|
/* explicit tuning selected */
|
|
if (!if_freq) {
|
|
fprintf(stderr,
|
|
"argument error: if_freq_hz must be specified for explicit tuning.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (!image_reject) {
|
|
fprintf(stderr,
|
|
"argument error: image_reject must be specified for explicit tuning.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
|
|
fprintf(stderr,
|
|
"argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) &&
|
|
!force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: if_freq_hz should be between %s and %s.\n",
|
|
u64toa(IF_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(IF_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if ((if_freq_hz > IF_ABS_MAX_HZ) || (if_freq_hz < IF_ABS_MIN_HZ)) {
|
|
fprintf(stderr,
|
|
"argument error: if_freq_hz must be between %s and %s.\n",
|
|
u64toa(IF_ABS_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(IF_ABS_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
|
|
fprintf(stderr,
|
|
"argument error: lo_freq_hz shall be between %s and %s.\n",
|
|
u64toa(LO_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(LO_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (image_reject_selection > 2) {
|
|
fprintf(stderr,
|
|
"argument error: image_reject must be 0, 1, or 2 .\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (automatic_tuning) {
|
|
fprintf(stderr,
|
|
"warning: freq_hz ignored by explicit tuning selection.\n");
|
|
automatic_tuning = false;
|
|
}
|
|
switch (image_reject_selection) {
|
|
case RF_PATH_FILTER_BYPASS:
|
|
freq_hz = if_freq_hz;
|
|
break;
|
|
case RF_PATH_FILTER_LOW_PASS:
|
|
freq_hz = (int64_t) labs((long int) (if_freq_hz - lo_freq_hz));
|
|
break;
|
|
case RF_PATH_FILTER_HIGH_PASS:
|
|
freq_hz = if_freq_hz + lo_freq_hz;
|
|
break;
|
|
default:
|
|
freq_hz = DEFAULT_FREQ_HZ;
|
|
break;
|
|
}
|
|
fprintf(stderr,
|
|
"explicit tuning specified for %s Hz.\n",
|
|
u64toa(freq_hz, &ascii_u64_data[0]));
|
|
|
|
} else if (automatic_tuning) {
|
|
if (((freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ)) &&
|
|
!force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: freq_hz should be between %s and %s.\n",
|
|
u64toa(FREQ_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(FREQ_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (freq_hz > FREQ_ABS_MAX_HZ) {
|
|
fprintf(stderr,
|
|
"argument error: freq_hz must be between %s and %s.\n",
|
|
u64toa(FREQ_ABS_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(FREQ_ABS_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
/* Use default freq */
|
|
freq_hz = DEFAULT_FREQ_HZ;
|
|
automatic_tuning = true;
|
|
}
|
|
|
|
if (amp) {
|
|
if (amp_enable > 1) {
|
|
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (antenna) {
|
|
if (antenna_enable > 1) {
|
|
fprintf(stderr,
|
|
"argument error: antenna_enable shall be 0 or 1.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (sample_rate) {
|
|
if (sample_rate_hz > SAMPLE_RATE_MAX_HZ && !force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: sample_rate_hz should be less than or equal to %u Hz/%.03f MHz\n",
|
|
SAMPLE_RATE_MAX_HZ,
|
|
(float) (SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (sample_rate_hz < SAMPLE_RATE_MIN_HZ && !force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: sample_rate_hz should be greater than or equal to %u Hz/%.03f MHz\n",
|
|
SAMPLE_RATE_MIN_HZ,
|
|
(float) (SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
|
|
}
|
|
|
|
if (baseband_filter_bw) {
|
|
if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
|
|
fprintf(stderr,
|
|
"argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
|
|
BASEBAND_FILTER_BW_MAX,
|
|
(float) (BASEBAND_FILTER_BW_MAX / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
|
|
fprintf(stderr,
|
|
"argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
|
|
BASEBAND_FILTER_BW_MIN,
|
|
(float) (BASEBAND_FILTER_BW_MIN / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* Compute nearest freq for bw filter */
|
|
baseband_filter_bw_hz =
|
|
hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
|
|
}
|
|
|
|
if (requested_mode_count > 1) {
|
|
fprintf(stderr, "specify only one of: -t, -c, -r, -w\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (requested_mode_count < 1) {
|
|
fprintf(stderr, "specify one of: -t, -c, -r, -w\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (receive) {
|
|
transceiver_mode = TRANSCEIVER_MODE_RX;
|
|
}
|
|
|
|
if (transmit) {
|
|
transceiver_mode = TRANSCEIVER_MODE_TX;
|
|
}
|
|
|
|
if (signalsource) {
|
|
transceiver_mode = TRANSCEIVER_MODE_SS;
|
|
if (amplitude > 127) {
|
|
fprintf(stderr,
|
|
"argument error: amplitude must be between 0 and 127.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (receive_wav) {
|
|
time(&rawtime);
|
|
timeinfo = localtime(&rawtime);
|
|
transceiver_mode = TRANSCEIVER_MODE_RX;
|
|
/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
|
|
strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
|
|
snprintf(
|
|
path_file,
|
|
PATH_FILE_MAX_LEN,
|
|
"HackRF_%sZ_%ukHz_IQ.wav",
|
|
date_time,
|
|
(uint32_t) (freq_hz / (1000ull)));
|
|
path = path_file;
|
|
fprintf(stderr, "Receive wav file: %s\n", path);
|
|
}
|
|
|
|
// In signal source mode, the PATH argument is neglected.
|
|
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
|
|
if (path == NULL) {
|
|
fprintf(stderr, "specify a path to a file to transmit/receive\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
// Change the freq and sample rate to correct the crystal clock error.
|
|
if (crystal_correct) {
|
|
sample_rate_hz =
|
|
(uint32_t) ((double) sample_rate_hz * (1000000 - crystal_correct_ppm) / 1000000 + 0.5);
|
|
freq_hz = freq_hz * (1000000 - crystal_correct_ppm) / 1000000;
|
|
}
|
|
|
|
result = hackrf_init();
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_init() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
result = hackrf_open_by_serial(serial_number, &device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_open() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
|
|
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
|
|
if (strcmp(path, "-") == 0) {
|
|
file = stdout;
|
|
} else {
|
|
file = fopen(path, "wb");
|
|
}
|
|
} else {
|
|
if (strcmp(path, "-") == 0) {
|
|
file = stdin;
|
|
} else {
|
|
file = fopen(path, "rb");
|
|
}
|
|
}
|
|
|
|
if (file == NULL) {
|
|
fprintf(stderr, "Failed to open file: %s\n", path);
|
|
return EXIT_FAILURE;
|
|
}
|
|
/* Change file buffer to have bigger one to store or read data on/to HDD */
|
|
result = setvbuf(file, NULL, _IOFBF, FD_BUFFER_SIZE);
|
|
if (result != 0) {
|
|
fprintf(stderr, "setvbuf() failed: %d\n", result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
/* Write Wav header */
|
|
if (receive_wav) {
|
|
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE);
|
|
#else
|
|
signal(SIGINT, &sigint_callback_handler);
|
|
signal(SIGILL, &sigint_callback_handler);
|
|
signal(SIGFPE, &sigint_callback_handler);
|
|
signal(SIGSEGV, &sigint_callback_handler);
|
|
signal(SIGTERM, &sigint_callback_handler);
|
|
signal(SIGABRT, &sigint_callback_handler);
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
interrupt_handle = CreateEvent(NULL, TRUE, FALSE, NULL);
|
|
#else
|
|
signal(SIGALRM, &sigalrm_callback_handler);
|
|
#endif
|
|
|
|
fprintf(stderr,
|
|
"call hackrf_set_sample_rate(%u Hz/%.03f MHz)\n",
|
|
sample_rate_hz,
|
|
((float) sample_rate_hz / (float) FREQ_ONE_MHZ));
|
|
result = hackrf_set_sample_rate(device, sample_rate_hz);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_sample_rate() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (baseband_filter_bw) {
|
|
fprintf(stderr,
|
|
"call hackrf_set_baseband_filter_bandwidth(%d Hz/%.03f MHz)\n",
|
|
baseband_filter_bw_hz,
|
|
((float) baseband_filter_bw_hz / (float) FREQ_ONE_MHZ));
|
|
result = hackrf_set_baseband_filter_bandwidth(
|
|
device,
|
|
baseband_filter_bw_hz);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_baseband_filter_bandwidth() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "call hackrf_set_hw_sync_mode(%d)\n", hw_sync ? 1 : 0);
|
|
result = hackrf_set_hw_sync_mode(
|
|
device,
|
|
hw_sync ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_hw_sync_mode() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_start_?x() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (automatic_tuning) {
|
|
fprintf(stderr,
|
|
"call hackrf_set_freq(%s Hz/%.03f MHz)\n",
|
|
u64toa(freq_hz, &ascii_u64_data[0]),
|
|
((double) freq_hz / (double) FREQ_ONE_MHZ));
|
|
result = hackrf_set_freq(device, freq_hz);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_freq() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
fprintf(stderr,
|
|
"call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
|
|
u64toa(if_freq_hz, &ascii_u64_data[0]),
|
|
u64toa(lo_freq_hz, &ascii_u64_data[1]),
|
|
hackrf_filter_path_name(image_reject_selection));
|
|
result = hackrf_set_freq_explicit(
|
|
device,
|
|
if_freq_hz,
|
|
lo_freq_hz,
|
|
image_reject_selection);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_freq_explicit() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (amp) {
|
|
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
|
|
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_amp_enable() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (antenna) {
|
|
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
|
|
result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_antenna_enable() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
|
|
result = hackrf_set_vga_gain(device, vga_gain);
|
|
result |= hackrf_set_lna_gain(device, lna_gain);
|
|
result |= hackrf_start_rx(device, rx_callback, NULL);
|
|
} else {
|
|
result = hackrf_set_txvga_gain(device, txvga_gain);
|
|
result |= hackrf_enable_tx_flush(device, flush_callback, NULL);
|
|
result |= hackrf_set_tx_block_complete_callback(
|
|
device,
|
|
tx_complete_callback);
|
|
result |= hackrf_start_tx(device, tx_callback, NULL);
|
|
}
|
|
|
|
if (limit_num_samples) {
|
|
fprintf(stderr,
|
|
"samples_to_xfer %s/%sMio\n",
|
|
u64toa(samples_to_xfer, &ascii_u64_data[0]),
|
|
u64toa((samples_to_xfer / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
}
|
|
|
|
gettimeofday(&t_start, NULL);
|
|
gettimeofday(&time_start, NULL);
|
|
|
|
fprintf(stderr, "Stop with Ctrl-C\n");
|
|
|
|
// Set up an interval timer which will fire once per second.
|
|
#ifdef _WIN32
|
|
HANDLE timer_handle = CreateWaitableTimer(NULL, FALSE, NULL);
|
|
LARGE_INTEGER due_time;
|
|
due_time.QuadPart = -10000000LL;
|
|
LONG period = 1000;
|
|
SetWaitableTimer(timer_handle, &due_time, period, NULL, NULL, 0);
|
|
#else
|
|
struct itimerval interval_timer = {
|
|
.it_interval = {.tv_sec = 1, .tv_usec = 0},
|
|
.it_value = {.tv_sec = 1, .tv_usec = 0}};
|
|
setitimer(ITIMER_REAL, &interval_timer, NULL);
|
|
#endif
|
|
while (!do_exit) {
|
|
struct timeval time_now;
|
|
float time_difference, rate;
|
|
if (stream_size > 0) {
|
|
#ifndef _WIN32
|
|
if (stream_head == stream_tail) {
|
|
usleep(10000); // queue empty
|
|
} else {
|
|
ssize_t len;
|
|
ssize_t bytes_written;
|
|
uint32_t _st =
|
|
__atomic_load_n(&stream_tail, __ATOMIC_ACQUIRE);
|
|
if (stream_head < _st)
|
|
len = _st - stream_head;
|
|
else
|
|
len = stream_size - stream_head;
|
|
bytes_written =
|
|
fwrite(stream_buf + stream_head, 1, len, file);
|
|
if (len != bytes_written) {
|
|
fprintf(stderr, "write failed");
|
|
do_exit = true;
|
|
};
|
|
stream_head = (stream_head + len) % stream_size;
|
|
}
|
|
if (stream_drop > 0) {
|
|
uint32_t drops = __atomic_exchange_n(
|
|
&stream_drop,
|
|
0,
|
|
__ATOMIC_SEQ_CST);
|
|
fprintf(stderr, "dropped frames: [%d]\n", drops);
|
|
}
|
|
#endif
|
|
} else {
|
|
uint64_t byte_count_now;
|
|
uint64_t stream_power_now;
|
|
#ifdef _WIN32
|
|
// Wait for interval timer event, or interrupt event.
|
|
HANDLE handles[] = {timer_handle, interrupt_handle};
|
|
WaitForMultipleObjects(2, handles, FALSE, INFINITE);
|
|
#else
|
|
// Wait for SIGALRM from interval timer, or another signal.
|
|
pause();
|
|
#endif
|
|
gettimeofday(&time_now, NULL);
|
|
|
|
/* Read and reset both totals at approximately the same time. */
|
|
byte_count_now = byte_count;
|
|
stream_power_now = stream_power;
|
|
byte_count = 0;
|
|
stream_power = 0;
|
|
|
|
time_difference = TimevalDiff(&time_now, &time_start);
|
|
rate = (float) byte_count_now / time_difference;
|
|
if ((byte_count_now == 0) && (hw_sync)) {
|
|
fprintf(stderr, "Waiting for trigger...\n");
|
|
} else if (!((byte_count_now == 0) && (flush_complete))) {
|
|
double full_scale_ratio = (double) stream_power_now /
|
|
(byte_count_now * 127 * 127);
|
|
double dB_full_scale = 10 * log10(full_scale_ratio) + 3.0;
|
|
fprintf(stderr,
|
|
"%4.1f MiB / %5.3f sec = %4.1f MiB/second, average power %3.1f dBfs",
|
|
(byte_count_now / 1e6f),
|
|
time_difference,
|
|
(rate / 1e6f),
|
|
dB_full_scale);
|
|
if (display_stats) {
|
|
bool tx = transmit || signalsource;
|
|
result = update_stats(device, &state, &stats);
|
|
if (result != HACKRF_SUCCESS)
|
|
fprintf(stderr,
|
|
"\nhackrf_get_m0_state() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
else
|
|
fprintf(stderr,
|
|
", %d bytes %s in buffer, %u %s, longest %u bytes\n",
|
|
tx ? state.m4_count -
|
|
state.m0_count :
|
|
state.m0_count -
|
|
state.m4_count,
|
|
tx ? "filled" : "free",
|
|
state.num_shortfalls,
|
|
tx ? "underruns" : "overruns",
|
|
state.longest_shortfall);
|
|
} else {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
time_start = time_now;
|
|
|
|
if ((byte_count_now == 0) && (!hw_sync) && (!flush_complete)) {
|
|
exit_code = EXIT_FAILURE;
|
|
fprintf(stderr,
|
|
"\nCouldn't transfer any bytes for one second.\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stop interval timer.
|
|
#ifdef _WIN32
|
|
CancelWaitableTimer(timer_handle);
|
|
CloseHandle(timer_handle);
|
|
#else
|
|
interval_timer.it_value.tv_sec = 0;
|
|
setitimer(ITIMER_REAL, &interval_timer, NULL);
|
|
#endif
|
|
result = hackrf_is_streaming(device);
|
|
if (do_exit) {
|
|
fprintf(stderr, "\nExiting...\n");
|
|
} else {
|
|
fprintf(stderr,
|
|
"\nExiting... hackrf_is_streaming() result: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
}
|
|
|
|
gettimeofday(&t_end, NULL);
|
|
time_diff = TimevalDiff(&t_end, &t_start);
|
|
fprintf(stderr, "Total time: %5.5f s\n", time_diff);
|
|
|
|
if (device != NULL) {
|
|
if (receive || receive_wav) {
|
|
result = hackrf_stop_rx(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_stop_rx() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_stop_rx() done\n");
|
|
}
|
|
}
|
|
|
|
if (transmit || signalsource) {
|
|
result = hackrf_stop_tx(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_stop_tx() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_stop_tx() done\n");
|
|
}
|
|
}
|
|
|
|
if (display_stats) {
|
|
result = update_stats(device, &state, &stats);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_get_m0_state() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Transfer statistics:\n"
|
|
"%" PRIu64 " bytes transferred by M0\n"
|
|
"%" PRIu64 " bytes transferred by M4\n"
|
|
"%u %s, longest %u bytes\n",
|
|
stats.m0_total,
|
|
stats.m4_total,
|
|
state.num_shortfalls,
|
|
(transmit || signalsource) ? "underruns" :
|
|
"overruns",
|
|
state.longest_shortfall);
|
|
}
|
|
}
|
|
|
|
result = hackrf_close(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_close() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_close() done\n");
|
|
}
|
|
|
|
hackrf_exit();
|
|
fprintf(stderr, "hackrf_exit() done\n");
|
|
}
|
|
|
|
if (file != NULL) {
|
|
if (receive_wav) {
|
|
/* Get size of file */
|
|
file_pos = ftell(file);
|
|
/* Update Wav Header */
|
|
wave_file_hdr.hdr.size = file_pos - 8;
|
|
wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
|
|
wave_file_hdr.fmt_chunk.dwAvgBytesPerSec =
|
|
wave_file_hdr.fmt_chunk.dwSamplesPerSec * 2;
|
|
wave_file_hdr.data_chunk.chunkSize =
|
|
file_pos - sizeof(t_wav_file_hdr);
|
|
/* Overwrite header with updated data */
|
|
rewind(file);
|
|
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
|
|
}
|
|
if (file != stdin) {
|
|
fflush(file);
|
|
}
|
|
if ((file != stdout) && (file != stdin)) {
|
|
fclose(file);
|
|
file = NULL;
|
|
fprintf(stderr, "fclose() done\n");
|
|
}
|
|
}
|
|
fprintf(stderr, "exit\n");
|
|
return exit_code;
|
|
}
|