hackrf/firmware/hackrf_usb/usb_api_transceiver.c
Martin Ling 3618a5352f Add a counter threshold at which the M0 will change to a new mode.
This lays the groundwork for implementing timed operations (#86). The M0
can be configured to automatically change modes when its byte count
reaches a specific value.

Checking the counter against the threshold and dispatching to the next
mode is handled by a new `jump_next_mode` macro, which replaces the
unconditional branches back to the start of the TX and RX loops.

Making this change work requires some rearrangement of the code, such
that the destinations of all conditional branch instructions are within
reach. These branch instructions (`b[cond] label`) have a range of -256
to +254 bytes from the current program counter.

For this reason, the TX shortfall handling is moved earlier in the file,
and branches in the idle loop are restructured to use an unconditional
branch to rx_start, which is furthest away.

The additional code for switching modes adds 9 cycles to the normal RX
path, and 10 to the TX path (the difference is because the dispatch in
`jump_next_mode` is optimised for the longer RX path).
2022-02-13 16:46:12 +00:00

475 lines
13 KiB
C

/*
* Copyright 2012 Jared Boone
* Copyright 2013 Benjamin Vernoux
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "usb_api_transceiver.h"
#include "hackrf_ui.h"
#include "operacake_sctimer.h"
#include <libopencm3/cm3/vector.h>
#include "usb_bulk_buffer.h"
#include "m0_state.h"
#include "usb_api_cpld.h" // Remove when CPLD update is handled elsewhere
#include <max2837.h>
#include <rf_path.h>
#include <tuning.h>
#include <streaming.h>
#include <usb.h>
#include <usb_queue.h>
#include <stddef.h>
#include <string.h>
#include "usb_endpoint.h"
#include "usb_api_sweep.h"
typedef struct {
uint32_t freq_mhz;
uint32_t freq_hz;
} set_freq_params_t;
set_freq_params_t set_freq_params;
struct set_freq_explicit_params {
uint64_t if_freq_hz; /* intermediate frequency */
uint64_t lo_freq_hz; /* front-end local oscillator frequency */
uint8_t path; /* image rejection filter path */
};
struct set_freq_explicit_params explicit_params;
typedef struct {
uint32_t freq_hz;
uint32_t divider;
} set_sample_r_params_t;
set_sample_r_params_t set_sample_r_params;
usb_request_status_t usb_vendor_request_set_baseband_filter_bandwidth(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint32_t bandwidth = (endpoint->setup.index << 16) | endpoint->setup.value;
if( baseband_filter_bandwidth_set(bandwidth) ) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_freq(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP)
{
usb_transfer_schedule_block(endpoint->out, &set_freq_params, sizeof(set_freq_params_t),
NULL, NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
const uint64_t freq = set_freq_params.freq_mhz * 1000000ULL + set_freq_params.freq_hz;
if( set_freq(freq) )
{
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else
{
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_sample_rate_frac(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP)
{
usb_transfer_schedule_block(endpoint->out, &set_sample_r_params, sizeof(set_sample_r_params_t),
NULL, NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
if( sample_rate_frac_set(set_sample_r_params.freq_hz * 2, set_sample_r_params.divider ) )
{
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else
{
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_amp_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
case 0:
rf_path_set_lna(&rf_path, 0);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
case 1:
rf_path_set_lna(&rf_path, 1);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_lna_gain(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint8_t value = max2837_set_lna_gain(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value;
if(value) hackrf_ui()->set_bb_lna_gain(endpoint->setup.index);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_vga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint8_t value = max2837_set_vga_gain(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value;
if(value) hackrf_ui()->set_bb_vga_gain(endpoint->setup.index);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_txvga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
const uint8_t value = max2837_set_txvga_gain(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value;
if(value) hackrf_ui()->set_bb_tx_vga_gain(endpoint->setup.index);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_antenna_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
case 0:
rf_path_set_antenna(&rf_path, 0);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
case 1:
rf_path_set_antenna(&rf_path, 1);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_freq_explicit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(endpoint->out, &explicit_params,
sizeof(struct set_freq_explicit_params), NULL, NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
if (set_freq_explicit(explicit_params.if_freq_hz,
explicit_params.lo_freq_hz, explicit_params.path)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
static volatile hw_sync_mode_t _hw_sync_mode = HW_SYNC_MODE_OFF;
static volatile uint32_t _tx_underrun_limit;
static volatile uint32_t _rx_overrun_limit;
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode) {
_hw_sync_mode = new_hw_sync_mode;
}
volatile transceiver_request_t transceiver_request = {
.mode = TRANSCEIVER_MODE_OFF,
.seq = 0,
};
// Must be called from an atomic context (normally USB ISR)
void request_transceiver_mode(transceiver_mode_t mode)
{
usb_endpoint_flush(&usb_endpoint_bulk_in);
usb_endpoint_flush(&usb_endpoint_bulk_out);
transceiver_request.mode = mode;
transceiver_request.seq++;
}
static void set_m0_mode(enum m0_mode mode) {
// All values of the threshold setting are valid. So setting a mode,
// it's necessary to set up a transition back to the same mode, for
// when the M0 counter wraps.
m0_state.mode = mode;
m0_state.next_mode = mode;
m0_state.threshold = 0;
}
void transceiver_shutdown(void)
{
baseband_streaming_disable(&sgpio_config);
operacake_sctimer_reset_state();
usb_endpoint_flush(&usb_endpoint_bulk_in);
usb_endpoint_flush(&usb_endpoint_bulk_out);
led_off(LED2);
led_off(LED3);
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_OFF);
set_m0_mode(M0_MODE_IDLE);
// The M0 may already be waiting for the next SGPIO
// exchange interrupt. In order to ensure that the M0
// switches over to its idle loop, we need to set the
// SGPIO exchange interrupt flag here.
SGPIO_SET_STATUS_1 = (1 << SGPIO_SLICE_A);
}
void transceiver_startup(const transceiver_mode_t mode) {
hackrf_ui()->set_transceiver_mode(mode);
switch (mode) {
case TRANSCEIVER_MODE_RX_SWEEP:
case TRANSCEIVER_MODE_RX:
led_off(LED3);
led_on(LED2);
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_RX);
set_m0_mode(M0_MODE_RX);
m0_state.shortfall_limit = _rx_overrun_limit;
break;
case TRANSCEIVER_MODE_TX:
led_off(LED2);
led_on(LED3);
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_TX);
set_m0_mode(M0_MODE_TX_START);
m0_state.shortfall_limit = _tx_underrun_limit;
break;
default:
break;
}
activate_best_clock_source();
hw_sync_enable(_hw_sync_mode);
}
usb_request_status_t usb_vendor_request_set_transceiver_mode(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
switch( endpoint->setup.value ) {
case TRANSCEIVER_MODE_OFF:
case TRANSCEIVER_MODE_RX:
case TRANSCEIVER_MODE_TX:
case TRANSCEIVER_MODE_RX_SWEEP:
case TRANSCEIVER_MODE_CPLD_UPDATE:
request_transceiver_mode(endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_hw_sync_mode(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if( stage == USB_TRANSFER_STAGE_SETUP ) {
set_hw_sync_mode(endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
_tx_underrun_limit = value;
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
_rx_overrun_limit = value;
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
void transceiver_bulk_transfer_complete(void *user_data, unsigned int bytes_transferred)
{
(void) user_data;
m0_state.m4_count += bytes_transferred;
}
void rx_mode(uint32_t seq) {
unsigned int phase = 1;
transceiver_startup(TRANSCEIVER_MODE_RX);
baseband_streaming_enable(&sgpio_config);
while (transceiver_request.seq == seq) {
uint32_t m0_offset = m0_state.m0_count & USB_BULK_BUFFER_MASK;
// Set up IN transfer of buffer 0.
if (16384 <= m0_offset && 1 == phase) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_in,
&usb_bulk_buffer[0x0000],
0x4000,
transceiver_bulk_transfer_complete,
NULL
);
phase = 0;
}
// Set up IN transfer of buffer 1.
if (16384 > m0_offset && 0 == phase) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_in,
&usb_bulk_buffer[0x4000],
0x4000,
transceiver_bulk_transfer_complete,
NULL
);
phase = 1;
}
}
transceiver_shutdown();
}
void tx_mode(uint32_t seq) {
unsigned int phase = 0;
transceiver_startup(TRANSCEIVER_MODE_TX);
// Set up OUT transfer of buffer 0.
usb_transfer_schedule_block(
&usb_endpoint_bulk_out,
&usb_bulk_buffer[0x0000],
0x4000,
transceiver_bulk_transfer_complete,
NULL
);
// Enable streaming. The M0 is in TX_START mode, and will automatically
// send zeroes until the host fills buffer 0. Once that buffer is filled,
// the bulk transfer completion handler will increase the M4 count, and
// the M0 will switch to TX_RUN mode and transmit the first data.
baseband_streaming_enable(&sgpio_config);
while (transceiver_request.seq == seq) {
uint32_t m0_offset = m0_state.m0_count & USB_BULK_BUFFER_MASK;
// Set up OUT transfer of buffer 0.
if (16384 <= m0_offset && 1 == phase) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_out,
&usb_bulk_buffer[0x0000],
0x4000,
transceiver_bulk_transfer_complete,
NULL
);
phase = 0;
}
// Set up OUT transfer of buffer 1.
if (16384 > m0_offset && 0 == phase) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_out,
&usb_bulk_buffer[0x4000],
0x4000,
transceiver_bulk_transfer_complete,
NULL
);
phase = 1;
}
}
transceiver_shutdown();
}
void off_mode(uint32_t seq)
{
hackrf_ui()->set_transceiver_mode(TRANSCEIVER_MODE_OFF);
while (transceiver_request.seq == seq);
}