Jared Boone 5363ec3672 Use new GPIO API to abstract GPIO in various drivers.
Had to do it all at once due to name conflicts with API exposed in libopencm3.
Quite invasive patch! Also precipitated an LED API...
2014-11-15 16:26:59 -08:00

207 lines
5.3 KiB
C

/*
* Copyright 2010 - 2012 Michael Ossmann
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <libopencm3/lpc43xx/m4/nvic.h>
#include <libopencm3/cm3/systick.h>
#include <libopencm3/cm3/scs.h>
#include "hackrf_core.h"
/* Global counter incremented by SysTick Interrupt each millisecond */
volatile uint32_t g_ulSysTickCount;
uint32_t g_NbCyclePerSecond;
void systick_setup(void)
{
uint32_t systick_reload_val;
g_ulSysTickCount = 0;
/* Disable IRQ globally */
__asm__("cpsid i");
/* Set processor Clock as Source Clock */
systick_set_clocksource(STK_CTRL_CLKSOURCE);
/* Get SysTick calibration value to obtain by default 1 tick = 10ms */
systick_reload_val = systick_get_calib();
/*
* Calibration seems wrong on LPC43xx(TBC) for default Freq it assume System Clock is 12MHz but it is 12*17=204MHz
* Fix the Calibration value bu multiplication by 17
*/
systick_reload_val = (systick_reload_val*17);
/* To obtain 1ms per tick just divide by 10 the 10ms base tick and set the reload */
systick_reload_val = systick_reload_val/10;
systick_set_reload(systick_reload_val);
systick_interrupt_enable();
/* Start counting. */
systick_counter_enable();
/* Set SysTick Priority to maximum */
nvic_set_priority(NVIC_SYSTICK_IRQ, 0xFF);
/* Enable IRQ globally */
__asm__("cpsie i");
}
void scs_dwt_cycle_counter_enabled(void)
{
SCS_DEMCR |= SCS_DEMCR_TRCENA;
SCS_DWT_CTRL |= SCS_DWT_CTRL_CYCCNTENA;
}
uint32_t sys_tick_get_time_ms(void)
{
return g_ulSysTickCount;
}
uint32_t sys_tick_delta_time_ms(uint32_t start, uint32_t end)
{
#define MAX_T_U32 ((2^32)-1)
uint32_t diff;
if(end > start)
{
diff=end-start;
}else
{
diff=MAX_T_U32-(start-end)+1;
}
return diff;
}
void sys_tick_wait_time_ms(uint32_t wait_ms)
{
uint32_t start, end;
uint32_t tickms;
start = sys_tick_get_time_ms();
do
{
end = sys_tick_get_time_ms();
tickms = sys_tick_delta_time_ms(start, end);
}while(tickms < wait_ms);
}
/* Called each 1ms/1000Hz by interrupt
1) Count the number of cycle per second.
2) Increment g_ulSysTickCount counter.
*/
void sys_tick_handler(void)
{
if(g_ulSysTickCount==0)
{
/* Clear Cycle Counter*/
SCS_DWT_CYCCNT = 0;
}else if(g_ulSysTickCount==1000)
{
/* Capture number of cycle elapsed during 1 second */
g_NbCyclePerSecond = SCS_DWT_CYCCNT;
}
g_ulSysTickCount++;
}
uint32_t nb_inst_per_sec[16];
extern uint32_t test_nb_instruction_per_sec_100_nop_asm();
extern uint32_t test_nb_instruction_per_sec_105_nop_asm();
extern uint32_t test_nb_instruction_per_sec_110_nop_asm();
extern uint32_t test_nb_instruction_per_sec_115_nop_asm();
extern uint32_t test_nb_instruction_per_sec_120_nop_asm();
extern uint32_t test_nb_instruction_per_sec_150_nop_asm();
extern uint32_t test_nb_instruction_per_sec_200_nop_asm();
extern uint32_t test_nb_instruction_per_sec_1000_nop_asm();
#define LED1_TOGGLE() (led_toggle(LED1))
int main(void)
{
pin_setup();
enable_1v8_power();
cpu_clock_init();
scs_dwt_cycle_counter_enabled();
systick_setup();
led_off(LED1);
/* Test number of instruction per second (MIPS) slow blink ON 1s, OFF 1s */
LED1_TOGGLE();
nb_inst_per_sec[0] = test_nb_instruction_per_sec_100_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[1]= test_nb_instruction_per_sec_105_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[2]= test_nb_instruction_per_sec_110_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[3]= test_nb_instruction_per_sec_115_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[4] = test_nb_instruction_per_sec_120_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[5] = test_nb_instruction_per_sec_150_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[6] = test_nb_instruction_per_sec_200_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[7] = test_nb_instruction_per_sec_1000_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[8] = test_nb_instruction_per_sec_100_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[9]= test_nb_instruction_per_sec_105_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[10]= test_nb_instruction_per_sec_110_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[11]= test_nb_instruction_per_sec_115_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[12] = test_nb_instruction_per_sec_120_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[13] = test_nb_instruction_per_sec_150_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[14] = test_nb_instruction_per_sec_200_nop_asm();
LED1_TOGGLE();
nb_inst_per_sec[15] = test_nb_instruction_per_sec_1000_nop_asm();
LED1_TOGGLE();
/* Test finished fast blink */
while (1)
{
led_on(LED1);
led_on(LED2);
led_on(LED3);
sys_tick_wait_time_ms(250);
led_off(LED1);
led_off(LED2);
led_off(LED3);
sys_tick_wait_time_ms(250);
}
return 0;
}