hackrf/firmware
Martin Ling 3618a5352f Add a counter threshold at which the M0 will change to a new mode.
This lays the groundwork for implementing timed operations (#86). The M0
can be configured to automatically change modes when its byte count
reaches a specific value.

Checking the counter against the threshold and dispatching to the next
mode is handled by a new `jump_next_mode` macro, which replaces the
unconditional branches back to the start of the TX and RX loops.

Making this change work requires some rearrangement of the code, such
that the destinations of all conditional branch instructions are within
reach. These branch instructions (`b[cond] label`) have a range of -256
to +254 bytes from the current program counter.

For this reason, the TX shortfall handling is moved earlier in the file,
and branches in the idle loop are restructured to use an unconditional
branch to rx_start, which is furthest away.

The additional code for switching modes adds 9 cycles to the normal RX
path, and 10 to the TX path (the difference is because the dispatch in
`jump_next_mode` is optimised for the longer RX path).
2022-02-13 16:46:12 +00:00
..
2018-03-22 12:29:27 -06:00

The primary firmware source code for USB HackRF devices is hackrf_usb.  Most of
the other directories contain firmware source code for test and development.
The common directory contains source code shared by multiple HackRF firmware
projects.  The cpld directory contains HDL source for the CPLD.


The firmware is set up for compilation with the GCC toolchain available here:

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

Required dependency:

https://github.com/mossmann/libopencm3

If you are using git, the preferred way to install libopencm3 is to use the
submodule:

$ cd ..
$ git submodule init
$ git submodule update

To build and install a standard firmware image for HackRF One:

$ cd hackrf_usb
$ mkdir build
$ cd build
$ cmake ..
$ make
$ hackrf_spiflash -w hackrf_usb.bin

If you have a Jawbreaker, add -DBOARD=JAWBREAKER to the cmake command.
If you have a rad1o, use -DBOARD=RAD1O instead.

It is possible to use a USB Device Firmware Upgrade (DFU) method to load
firmware into RAM.  This is normally only required to recover a device that has
had faulty firmware loaded, but it can also be useful for firmware developers.

For loading firmware into RAM with DFU you will need:

http://dfu-util.sourceforge.net/

To start up HackRF One in DFU mode, hold down the DFU button while powering it
on or while pressing and releasing the RESET button.  Release the DFU button
after the 3V3 LED illuminates.

A .dfu file is built by default when building firmware.  Alternatively you can
use a known good .dfu file from a release package.  Load the firmware into RAM
with:

$ dfu-util --device 1fc9:000c --alt 0 --download hackrf_usb.dfu