
The power measurement depends on the number of bytes that were valid from the previous use of the transfer buffer. The number of bytes to be read to fill the next transfer, is the full size of the buffer.
1517 lines
38 KiB
C
1517 lines
38 KiB
C
/*
|
|
* Copyright 2012 Jared Boone <jared@sharebrained.com>
|
|
* Copyright 2013-2014 Benjamin Vernoux <titanmkd@gmail.com>
|
|
*
|
|
* This file is part of HackRF.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#define _FILE_OFFSET_BITS 64
|
|
|
|
#include <hackrf.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <getopt.h>
|
|
#include <time.h>
|
|
#include <math.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
|
|
#ifndef bool
|
|
typedef int bool;
|
|
#define true 1
|
|
#define false 0
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#ifdef _WIN64
|
|
typedef int64_t ssize_t;
|
|
#else
|
|
typedef int32_t ssize_t;
|
|
#endif
|
|
|
|
#define strtoull _strtoui64
|
|
#define snprintf _snprintf
|
|
|
|
int gettimeofday(struct timeval* tv, void* ignored)
|
|
{
|
|
FILETIME ft;
|
|
unsigned __int64 tmp = 0;
|
|
if (NULL != tv) {
|
|
GetSystemTimeAsFileTime(&ft);
|
|
tmp |= ft.dwHighDateTime;
|
|
tmp <<= 32;
|
|
tmp |= ft.dwLowDateTime;
|
|
tmp /= 10;
|
|
tmp -= 11644473600000000Ui64;
|
|
tv->tv_sec = (long) (tmp / 1000000UL);
|
|
tv->tv_usec = (long) (tmp % 1000000UL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#include <signal.h>
|
|
|
|
#define FD_BUFFER_SIZE (8 * 1024)
|
|
|
|
#define FREQ_ONE_MHZ (1000000ll)
|
|
|
|
#define DEFAULT_FREQ_HZ (900000000ll) /* 900MHz */
|
|
#define FREQ_ABS_MIN_HZ (0ull) /* 0 Hz */
|
|
#define FREQ_MIN_HZ (1000000ll) /* 1MHz */
|
|
#define FREQ_MAX_HZ (6000000000ll) /* 6000MHz */
|
|
#define FREQ_ABS_MAX_HZ (7250000000ll) /* 7250MHz */
|
|
#define IF_MIN_HZ (2150000000ll)
|
|
#define IF_MAX_HZ (2750000000ll)
|
|
#define LO_MIN_HZ (84375000ll)
|
|
#define LO_MAX_HZ (5400000000ll)
|
|
#define DEFAULT_LO_HZ (1000000000ll)
|
|
|
|
#define SAMPLE_RATE_MIN_HZ (2000000) /* 2MHz min sample rate */
|
|
#define SAMPLE_RATE_MAX_HZ (20000000) /* 20MHz max sample rate */
|
|
#define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */
|
|
|
|
#define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */
|
|
|
|
#define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */
|
|
|
|
#define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */
|
|
#define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */
|
|
|
|
typedef enum {
|
|
TRANSCEIVER_MODE_OFF = 0,
|
|
TRANSCEIVER_MODE_RX = 1,
|
|
TRANSCEIVER_MODE_TX = 2,
|
|
TRANSCEIVER_MODE_SS = 3,
|
|
} transceiver_mode_t;
|
|
|
|
typedef enum {
|
|
HW_SYNC_MODE_OFF = 0,
|
|
HW_SYNC_MODE_ON = 1,
|
|
} hw_sync_mode_t;
|
|
|
|
typedef struct {
|
|
uint64_t m0_total;
|
|
uint64_t m4_total;
|
|
} stats_t;
|
|
|
|
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
|
|
typedef struct {
|
|
char groupID[4]; /* 'RIFF' */
|
|
uint32_t size; /* File size + 8bytes */
|
|
char riffType[4]; /* 'WAVE'*/
|
|
} t_WAVRIFF_hdr;
|
|
|
|
#define FormatID \
|
|
"fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */
|
|
|
|
typedef struct {
|
|
char chunkID[4]; /* 'fmt ' */
|
|
uint32_t chunkSize; /* 16 fixed */
|
|
uint16_t wFormatTag; /* 1 fixed */
|
|
uint16_t wChannels; /* 2 fixed */
|
|
uint32_t dwSamplesPerSec; /* Freq Hz sampling */
|
|
uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */
|
|
uint16_t wBlockAlign; /* 2 fixed */
|
|
uint16_t wBitsPerSample; /* 8 fixed */
|
|
} t_FormatChunk;
|
|
|
|
typedef struct {
|
|
char chunkID[4]; /* 'data' */
|
|
uint32_t chunkSize; /* Size of data in bytes */
|
|
|
|
/* Samples I(8bits) then Q(8bits), I, Q ... */
|
|
} t_DataChunk;
|
|
|
|
typedef struct {
|
|
t_WAVRIFF_hdr hdr;
|
|
t_FormatChunk fmt_chunk;
|
|
t_DataChunk data_chunk;
|
|
} t_wav_file_hdr;
|
|
|
|
t_wav_file_hdr wave_file_hdr = {
|
|
/* t_WAVRIFF_hdr */
|
|
{/* groupID */
|
|
{'R', 'I', 'F', 'F'},
|
|
0, /* size to update later */
|
|
{'W', 'A', 'V', 'E'}},
|
|
/* t_FormatChunk */
|
|
{
|
|
/* char chunkID[4]; */
|
|
{'f', 'm', 't', ' '},
|
|
16, /* uint32_t chunkSize; */
|
|
1, /* uint16_t wFormatTag; 1 fixed */
|
|
2, /* uint16_t wChannels; 2 fixed */
|
|
0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */
|
|
0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */
|
|
2, /* uint16_t wBlockAlign; 2 fixed */
|
|
8, /* uint16_t wBitsPerSample; 8 fixed */
|
|
},
|
|
/* t_DataChunk */
|
|
{
|
|
/* char chunkID[4]; */
|
|
{'d', 'a', 't', 'a'},
|
|
0, /* uint32_t chunkSize; to update later */
|
|
}};
|
|
|
|
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX;
|
|
|
|
#define U64TOA_MAX_DIGIT (31)
|
|
|
|
typedef struct {
|
|
char data[U64TOA_MAX_DIGIT + 1];
|
|
} t_u64toa;
|
|
|
|
t_u64toa ascii_u64_data[4];
|
|
|
|
static float TimevalDiff(const struct timeval* a, const struct timeval* b)
|
|
{
|
|
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
|
|
}
|
|
|
|
int parse_u64(char* s, uint64_t* const value)
|
|
{
|
|
uint_fast8_t base = 10;
|
|
char* s_end;
|
|
uint64_t u64_value;
|
|
|
|
if (strlen(s) > 2) {
|
|
if (s[0] == '0') {
|
|
if ((s[1] == 'x') || (s[1] == 'X')) {
|
|
base = 16;
|
|
s += 2;
|
|
} else if ((s[1] == 'b') || (s[1] == 'B')) {
|
|
base = 2;
|
|
s += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
s_end = s;
|
|
u64_value = strtoull(s, &s_end, base);
|
|
if ((s != s_end) && (*s_end == 0)) {
|
|
*value = u64_value;
|
|
return HACKRF_SUCCESS;
|
|
} else {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
int parse_u32(char* s, uint32_t* const value)
|
|
{
|
|
uint_fast8_t base = 10;
|
|
char* s_end;
|
|
uint64_t ulong_value;
|
|
|
|
if (strlen(s) > 2) {
|
|
if (s[0] == '0') {
|
|
if ((s[1] == 'x') || (s[1] == 'X')) {
|
|
base = 16;
|
|
s += 2;
|
|
} else if ((s[1] == 'b') || (s[1] == 'B')) {
|
|
base = 2;
|
|
s += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
s_end = s;
|
|
ulong_value = strtoul(s, &s_end, base);
|
|
if ((s != s_end) && (*s_end == 0)) {
|
|
*value = (uint32_t) ulong_value;
|
|
return HACKRF_SUCCESS;
|
|
} else {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
}
|
|
|
|
/* Parse frequencies as doubles to take advantage of notation parsing */
|
|
int parse_frequency_i64(char* optarg, char* endptr, int64_t* value)
|
|
{
|
|
*value = (int64_t) strtod(optarg, &endptr);
|
|
if (optarg == endptr) {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
return HACKRF_SUCCESS;
|
|
}
|
|
|
|
int parse_frequency_u32(char* optarg, char* endptr, uint32_t* value)
|
|
{
|
|
*value = (uint32_t) strtod(optarg, &endptr);
|
|
if (optarg == endptr) {
|
|
return HACKRF_ERROR_INVALID_PARAM;
|
|
}
|
|
return HACKRF_SUCCESS;
|
|
}
|
|
|
|
static char* stringrev(char* str)
|
|
{
|
|
char *p1, *p2;
|
|
|
|
if (!str || !*str)
|
|
return str;
|
|
|
|
for (p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2) {
|
|
*p1 ^= *p2;
|
|
*p2 ^= *p1;
|
|
*p1 ^= *p2;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
char* u64toa(uint64_t val, t_u64toa* str)
|
|
{
|
|
#define BASE (10ull) /* Base10 by default */
|
|
uint64_t sum;
|
|
int pos;
|
|
int digit;
|
|
int max_len;
|
|
char* res;
|
|
|
|
sum = val;
|
|
max_len = U64TOA_MAX_DIGIT;
|
|
pos = 0;
|
|
|
|
do {
|
|
digit = (sum % BASE);
|
|
str->data[pos] = digit + '0';
|
|
pos++;
|
|
|
|
sum /= BASE;
|
|
} while ((sum > 0) && (pos < max_len));
|
|
|
|
if ((pos == max_len) && (sum > 0))
|
|
return NULL;
|
|
|
|
str->data[pos] = '\0';
|
|
res = stringrev(str->data);
|
|
|
|
return res;
|
|
}
|
|
|
|
static volatile bool do_exit = false;
|
|
static volatile bool interrupted = false;
|
|
#ifdef _WIN32
|
|
static HANDLE interrupt_handle;
|
|
#endif
|
|
|
|
FILE* file = NULL;
|
|
volatile uint32_t byte_count = 0;
|
|
|
|
bool signalsource = false;
|
|
uint32_t amplitude = 0;
|
|
|
|
bool hw_sync = false;
|
|
uint32_t hw_sync_enable = 0;
|
|
|
|
bool receive = false;
|
|
bool receive_wav = false;
|
|
uint64_t stream_size = 0;
|
|
uint32_t stream_head = 0;
|
|
uint32_t stream_tail = 0;
|
|
uint32_t stream_drop = 0;
|
|
uint8_t* stream_buf = NULL;
|
|
|
|
/* sum of power of all samples, reset on the periodic report */
|
|
volatile uint64_t stream_power = 0;
|
|
|
|
bool transmit = false;
|
|
struct timeval time_start;
|
|
struct timeval t_start;
|
|
|
|
bool automatic_tuning = false;
|
|
int64_t freq_hz;
|
|
|
|
bool if_freq = false;
|
|
int64_t if_freq_hz;
|
|
|
|
bool lo_freq = false;
|
|
int64_t lo_freq_hz = DEFAULT_LO_HZ;
|
|
|
|
bool image_reject = false;
|
|
uint32_t image_reject_selection;
|
|
|
|
bool amp = false;
|
|
uint32_t amp_enable;
|
|
|
|
bool antenna = false;
|
|
uint32_t antenna_enable;
|
|
|
|
bool sample_rate = false;
|
|
uint32_t sample_rate_hz;
|
|
|
|
bool force_ranges = false;
|
|
|
|
bool limit_num_samples = false;
|
|
uint64_t samples_to_xfer = 0;
|
|
size_t bytes_to_xfer = 0;
|
|
|
|
bool display_stats = false;
|
|
|
|
bool baseband_filter_bw = false;
|
|
uint32_t baseband_filter_bw_hz = 0;
|
|
|
|
bool repeat = false;
|
|
|
|
bool crystal_correct = false;
|
|
uint32_t crystal_correct_ppm;
|
|
|
|
int requested_mode_count = 0;
|
|
|
|
void stop_main_loop(void)
|
|
{
|
|
do_exit = true;
|
|
#ifdef _WIN32
|
|
SetEvent(interrupt_handle);
|
|
#else
|
|
kill(0, SIGALRM);
|
|
#endif
|
|
}
|
|
|
|
int rx_callback(hackrf_transfer* transfer)
|
|
{
|
|
size_t bytes_to_write;
|
|
size_t bytes_written;
|
|
unsigned int i;
|
|
|
|
if (file == NULL) {
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
|
|
/* Accumulate power (magnitude squared). */
|
|
bytes_to_write = transfer->valid_length;
|
|
uint64_t sum = 0;
|
|
for (i = 0; i < bytes_to_write; i++) {
|
|
int8_t value = transfer->buffer[i];
|
|
sum += value * value;
|
|
}
|
|
|
|
/* Update both running totals at approximately the same time. */
|
|
byte_count += transfer->valid_length;
|
|
stream_power += sum;
|
|
|
|
if (limit_num_samples) {
|
|
if (bytes_to_write >= bytes_to_xfer) {
|
|
bytes_to_write = bytes_to_xfer;
|
|
}
|
|
bytes_to_xfer -= bytes_to_write;
|
|
}
|
|
|
|
if (receive_wav) {
|
|
/* convert .wav contents from signed to unsigned */
|
|
for (i = 0; i < bytes_to_write; i++) {
|
|
transfer->buffer[i] ^= (uint8_t) 0x80;
|
|
}
|
|
}
|
|
|
|
if (stream_size == 0) {
|
|
bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, file);
|
|
if ((bytes_written != bytes_to_write) ||
|
|
(limit_num_samples && (bytes_to_xfer == 0))) {
|
|
stop_main_loop();
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
if ((stream_size - 1 + stream_head - stream_tail) % stream_size <
|
|
bytes_to_write) {
|
|
stream_drop++;
|
|
} else {
|
|
if (stream_tail + bytes_to_write <= stream_size) {
|
|
memcpy(stream_buf + stream_tail,
|
|
transfer->buffer,
|
|
bytes_to_write);
|
|
} else {
|
|
memcpy(stream_buf + stream_tail,
|
|
transfer->buffer,
|
|
(stream_size - stream_tail));
|
|
memcpy(stream_buf,
|
|
transfer->buffer + (stream_size - stream_tail),
|
|
bytes_to_write - (stream_size - stream_tail));
|
|
};
|
|
__atomic_store_n(
|
|
&stream_tail,
|
|
(stream_tail + bytes_to_write) % stream_size,
|
|
__ATOMIC_RELEASE);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int tx_callback(hackrf_transfer* transfer)
|
|
{
|
|
size_t bytes_to_read;
|
|
size_t bytes_read;
|
|
unsigned int i;
|
|
|
|
if (file == NULL && transceiver_mode != TRANSCEIVER_MODE_SS) {
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
|
|
/* Accumulate power (magnitude squared). */
|
|
uint64_t sum = 0;
|
|
for (i = 0; i < transfer->valid_length; i++) {
|
|
int8_t value = transfer->buffer[i];
|
|
sum += value * value;
|
|
}
|
|
|
|
/* Update both running totals at approximately the same time. */
|
|
byte_count += transfer->valid_length;
|
|
stream_power += sum;
|
|
|
|
bytes_to_read = transfer->buffer_length;
|
|
if (file == NULL) { // transceiver_mode == TRANSCEIVER_MODE_SS
|
|
/* Transmit continuous wave with specific amplitude */
|
|
if (limit_num_samples) {
|
|
if (bytes_to_read >= bytes_to_xfer) {
|
|
bytes_to_read = bytes_to_xfer;
|
|
}
|
|
bytes_to_xfer -= bytes_to_read;
|
|
}
|
|
|
|
for (i = 0; i < bytes_to_read; i++)
|
|
transfer->buffer[i] = -(uint8_t) amplitude;
|
|
|
|
if (limit_num_samples && (bytes_to_xfer == 0)) {
|
|
stop_main_loop();
|
|
return -1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (limit_num_samples) {
|
|
if (bytes_to_read >= bytes_to_xfer) {
|
|
/*
|
|
* In this condition, we probably tx some of the previous
|
|
* buffer contents at the end. :-(
|
|
*/
|
|
bytes_to_read = bytes_to_xfer;
|
|
}
|
|
bytes_to_xfer -= bytes_to_read;
|
|
}
|
|
bytes_read = fread(transfer->buffer, 1, bytes_to_read, file);
|
|
if (limit_num_samples && (bytes_to_xfer == 0)) {
|
|
stop_main_loop();
|
|
return -1;
|
|
}
|
|
|
|
if (bytes_read == bytes_to_read) {
|
|
return 0;
|
|
}
|
|
|
|
if (!repeat) {
|
|
stop_main_loop();
|
|
return -1; /* not repeat mode, end of file */
|
|
}
|
|
|
|
while (bytes_read < bytes_to_read) {
|
|
rewind(file);
|
|
bytes_read +=
|
|
fread(transfer->buffer + bytes_read,
|
|
1,
|
|
bytes_to_read - bytes_read,
|
|
file);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int update_stats(hackrf_device* device, hackrf_m0_state* state, stats_t* stats)
|
|
{
|
|
int result = hackrf_get_m0_state(device, state);
|
|
|
|
if (result == HACKRF_SUCCESS) {
|
|
/*
|
|
* Update 64-bit running totals, to handle wrapping of the 32-bit fields
|
|
* for M0 and M4 byte counts.
|
|
*
|
|
* The logic for handling wrapping works as follows:
|
|
*
|
|
* If a 32-bit count read from the HackRF is less than the lower 32 bits of
|
|
* the previous 64-bit running total, this indicates the 32-bit counter has
|
|
* wrapped since it was last read. Add 2^32 to the 64-bit total to account
|
|
* for this.
|
|
*
|
|
* Then, having accounted for the possible wrap, mask off the bottom 32
|
|
* bits of the 64-bit total, and replace them with the new 32-bit count.
|
|
*
|
|
* This should result in correct results as long as the 32-bit counter
|
|
* cannot wrap more than once between reads.
|
|
*
|
|
* We read the M0 state every second, and the counters will wrap every 107
|
|
* seconds at 20Msps, so this should be a safe assumption.
|
|
*/
|
|
if (state->m0_count < (stats->m0_total & 0xFFFFFFFF))
|
|
stats->m0_total += 0x100000000;
|
|
if (state->m4_count < (stats->m4_total & 0xFFFFFFFF))
|
|
stats->m4_total += 0x100000000;
|
|
stats->m0_total =
|
|
(stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
|
|
stats->m4_total =
|
|
(stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void usage()
|
|
{
|
|
printf("Usage:\n");
|
|
printf("\t-h # this help\n");
|
|
printf("\t[-d serial_number] # Serial number of desired HackRF.\n");
|
|
printf("\t-r <filename> # Receive data into file (use '-' for stdout).\n");
|
|
printf("\t-t <filename> # Transmit data from file (use '-' for stdin).\n");
|
|
printf("\t-w # Receive data into file with WAV header and automatic name.\n");
|
|
printf("\t # This is for SDR# compatibility and may not work with other software.\n");
|
|
printf("\t[-f freq_hz] # Frequency in Hz [%sMHz to %sMHz supported, %sMHz to %sMHz forceable].\n",
|
|
u64toa((FREQ_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((FREQ_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
|
|
u64toa((FREQ_ABS_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]),
|
|
u64toa((FREQ_ABS_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[3]));
|
|
printf("\t[-i if_freq_hz] # Intermediate Frequency (IF) in Hz [%sMHz to %sMHz].\n",
|
|
u64toa((IF_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((IF_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%sMHz to %sMHz].\n",
|
|
u64toa((LO_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((LO_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n");
|
|
printf("\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n");
|
|
printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n");
|
|
printf("\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
|
|
printf("\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
|
|
printf("\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n");
|
|
printf("\t[-s sample_rate_hz] # Sample rate in Hz (%s-%sMHz supported, default %sMHz).\n",
|
|
u64toa((SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ), &ascii_u64_data[0]),
|
|
u64toa((SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ), &ascii_u64_data[1]),
|
|
u64toa((DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ), &ascii_u64_data[2]));
|
|
printf("\t[-F force] # Force use of parameters outside supported ranges.\n");
|
|
printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n");
|
|
#ifndef _WIN32
|
|
/* The required atomic load/store functions aren't available when using C with MSVC */
|
|
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
|
|
#endif
|
|
printf("\t[-B] # Print buffer statistics during transfer\n");
|
|
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-128 (DC value to DAC).\n");
|
|
printf("\t[-R] # Repeat TX mode (default is off) \n");
|
|
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n");
|
|
printf("\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n");
|
|
printf("\t[-C ppm] # Set Internal crystal clock error in ppm.\n");
|
|
printf("\t[-H hw_sync_enable] # Synchronise USB transfer using GPIO pins.\n");
|
|
}
|
|
|
|
static hackrf_device* device = NULL;
|
|
|
|
#ifdef _WIN32
|
|
BOOL WINAPI sighandler(int signum)
|
|
{
|
|
if (CTRL_C_EVENT == signum) {
|
|
interrupted = true;
|
|
fprintf(stderr, "Caught signal %d\n", signum);
|
|
stop_main_loop();
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
#else
|
|
void sigint_callback_handler(int signum)
|
|
{
|
|
interrupted = true;
|
|
fprintf(stderr, "Caught signal %d\n", signum);
|
|
do_exit = true;
|
|
}
|
|
#endif
|
|
|
|
#ifndef _WIN32
|
|
void sigalrm_callback_handler(int signum)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#define PATH_FILE_MAX_LEN (FILENAME_MAX)
|
|
#define DATE_TIME_MAX_LEN (32)
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
int opt;
|
|
char path_file[PATH_FILE_MAX_LEN];
|
|
char date_time[DATE_TIME_MAX_LEN];
|
|
const char* path = NULL;
|
|
const char* serial_number = NULL;
|
|
char* endptr = NULL;
|
|
int result;
|
|
time_t rawtime;
|
|
struct tm* timeinfo;
|
|
long int file_pos;
|
|
int exit_code = EXIT_SUCCESS;
|
|
struct timeval t_end;
|
|
float time_diff;
|
|
unsigned int lna_gain = 8, vga_gain = 20, txvga_gain = 0;
|
|
hackrf_m0_state state;
|
|
stats_t stats = {0, 0};
|
|
static int32_t preload_bytes = 0;
|
|
|
|
while ((opt =
|
|
getopt(argc,
|
|
argv,
|
|
"H:wr:t:f:i:o:m:a:p:s:Fn:b:l:g:x:c:d:C:RS:Bh?")) != EOF) {
|
|
result = HACKRF_SUCCESS;
|
|
switch (opt) {
|
|
case 'H':
|
|
hw_sync = true;
|
|
result = parse_u32(optarg, &hw_sync_enable);
|
|
break;
|
|
case 'w':
|
|
receive_wav = true;
|
|
requested_mode_count++;
|
|
break;
|
|
|
|
case 'r':
|
|
receive = true;
|
|
requested_mode_count++;
|
|
path = optarg;
|
|
break;
|
|
|
|
case 't':
|
|
transmit = true;
|
|
requested_mode_count++;
|
|
path = optarg;
|
|
break;
|
|
|
|
case 'd':
|
|
serial_number = optarg;
|
|
break;
|
|
|
|
case 'S':
|
|
result = parse_u64(optarg, &stream_size);
|
|
stream_buf = calloc(1, stream_size);
|
|
break;
|
|
|
|
case 'f':
|
|
result = parse_frequency_i64(optarg, endptr, &freq_hz);
|
|
automatic_tuning = true;
|
|
break;
|
|
|
|
case 'i':
|
|
result = parse_frequency_i64(optarg, endptr, &if_freq_hz);
|
|
if_freq = true;
|
|
break;
|
|
|
|
case 'o':
|
|
result = parse_frequency_i64(optarg, endptr, &lo_freq_hz);
|
|
lo_freq = true;
|
|
break;
|
|
|
|
case 'm':
|
|
image_reject = true;
|
|
result = parse_u32(optarg, &image_reject_selection);
|
|
break;
|
|
|
|
case 'a':
|
|
amp = true;
|
|
result = parse_u32(optarg, &_enable);
|
|
break;
|
|
|
|
case 'p':
|
|
antenna = true;
|
|
result = parse_u32(optarg, &antenna_enable);
|
|
break;
|
|
|
|
case 'l':
|
|
result = parse_u32(optarg, &lna_gain);
|
|
break;
|
|
|
|
case 'g':
|
|
result = parse_u32(optarg, &vga_gain);
|
|
break;
|
|
|
|
case 'x':
|
|
result = parse_u32(optarg, &txvga_gain);
|
|
break;
|
|
|
|
case 's':
|
|
result = parse_frequency_u32(optarg, endptr, &sample_rate_hz);
|
|
sample_rate = true;
|
|
break;
|
|
|
|
case 'F':
|
|
force_ranges = true;
|
|
break;
|
|
|
|
case 'n':
|
|
limit_num_samples = true;
|
|
result = parse_u64(optarg, &samples_to_xfer);
|
|
bytes_to_xfer = samples_to_xfer * 2ull;
|
|
break;
|
|
|
|
case 'B':
|
|
display_stats = true;
|
|
break;
|
|
|
|
case 'b':
|
|
result = parse_frequency_u32(
|
|
optarg,
|
|
endptr,
|
|
&baseband_filter_bw_hz);
|
|
baseband_filter_bw = true;
|
|
break;
|
|
|
|
case 'c':
|
|
signalsource = true;
|
|
requested_mode_count++;
|
|
result = parse_u32(optarg, &litude);
|
|
break;
|
|
|
|
case 'R':
|
|
repeat = true;
|
|
break;
|
|
|
|
case 'C':
|
|
crystal_correct = true;
|
|
result = parse_u32(optarg, &crystal_correct_ppm);
|
|
break;
|
|
|
|
case 'h':
|
|
case '?':
|
|
usage();
|
|
return EXIT_SUCCESS;
|
|
|
|
default:
|
|
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"argument error: '-%c %s' %s (%d)\n",
|
|
opt,
|
|
optarg,
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (lna_gain % 8)
|
|
fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n");
|
|
|
|
if (vga_gain % 2)
|
|
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
|
|
|
|
if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
|
|
fprintf(stderr,
|
|
"argument error: num_samples must be less than %s/%sMio\n",
|
|
u64toa(SAMPLES_TO_XFER_MAX, &ascii_u64_data[0]),
|
|
u64toa((SAMPLES_TO_XFER_MAX / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (if_freq || lo_freq || image_reject) {
|
|
/* explicit tuning selected */
|
|
if (!if_freq) {
|
|
fprintf(stderr,
|
|
"argument error: if_freq_hz must be specified for explicit tuning.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (!image_reject) {
|
|
fprintf(stderr,
|
|
"argument error: image_reject must be specified for explicit tuning.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
|
|
fprintf(stderr,
|
|
"argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) {
|
|
fprintf(stderr,
|
|
"argument error: if_freq_hz shall be between %s and %s.\n",
|
|
u64toa(IF_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(IF_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
|
|
fprintf(stderr,
|
|
"argument error: lo_freq_hz shall be between %s and %s.\n",
|
|
u64toa(LO_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(LO_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (image_reject_selection > 2) {
|
|
fprintf(stderr,
|
|
"argument error: image_reject must be 0, 1, or 2 .\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (automatic_tuning) {
|
|
fprintf(stderr,
|
|
"warning: freq_hz ignored by explicit tuning selection.\n");
|
|
automatic_tuning = false;
|
|
}
|
|
switch (image_reject_selection) {
|
|
case RF_PATH_FILTER_BYPASS:
|
|
freq_hz = if_freq_hz;
|
|
break;
|
|
case RF_PATH_FILTER_LOW_PASS:
|
|
freq_hz = (int64_t) labs((long int) (if_freq_hz - lo_freq_hz));
|
|
break;
|
|
case RF_PATH_FILTER_HIGH_PASS:
|
|
freq_hz = if_freq_hz + lo_freq_hz;
|
|
break;
|
|
default:
|
|
freq_hz = DEFAULT_FREQ_HZ;
|
|
break;
|
|
}
|
|
fprintf(stderr,
|
|
"explicit tuning specified for %s Hz.\n",
|
|
u64toa(freq_hz, &ascii_u64_data[0]));
|
|
|
|
} else if (automatic_tuning) {
|
|
if (((freq_hz > FREQ_MAX_HZ) | (freq_hz < FREQ_MIN_HZ)) &&
|
|
!force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: freq_hz should be between %s and %s.\n",
|
|
u64toa(FREQ_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(FREQ_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (freq_hz > FREQ_ABS_MAX_HZ) {
|
|
fprintf(stderr,
|
|
"argument error: freq_hz must be between %s and %s.\n",
|
|
u64toa(FREQ_ABS_MIN_HZ, &ascii_u64_data[0]),
|
|
u64toa(FREQ_ABS_MAX_HZ, &ascii_u64_data[1]));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
/* Use default freq */
|
|
freq_hz = DEFAULT_FREQ_HZ;
|
|
automatic_tuning = true;
|
|
}
|
|
|
|
if (amp) {
|
|
if (amp_enable > 1) {
|
|
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (antenna) {
|
|
if (antenna_enable > 1) {
|
|
fprintf(stderr,
|
|
"argument error: antenna_enable shall be 0 or 1.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (sample_rate) {
|
|
if (sample_rate_hz > SAMPLE_RATE_MAX_HZ && !force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: sample_rate_hz should be less than or equal to %u Hz/%.03f MHz\n",
|
|
SAMPLE_RATE_MAX_HZ,
|
|
(float) (SAMPLE_RATE_MAX_HZ / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
if (sample_rate_hz < SAMPLE_RATE_MIN_HZ && !force_ranges) {
|
|
fprintf(stderr,
|
|
"argument error: sample_rate_hz should be greater than or equal to %u Hz/%.03f MHz\n",
|
|
SAMPLE_RATE_MIN_HZ,
|
|
(float) (SAMPLE_RATE_MIN_HZ / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
|
|
}
|
|
|
|
if (baseband_filter_bw) {
|
|
if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
|
|
fprintf(stderr,
|
|
"argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
|
|
BASEBAND_FILTER_BW_MAX,
|
|
(float) (BASEBAND_FILTER_BW_MAX / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
|
|
fprintf(stderr,
|
|
"argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
|
|
BASEBAND_FILTER_BW_MIN,
|
|
(float) (BASEBAND_FILTER_BW_MIN / FREQ_ONE_MHZ));
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* Compute nearest freq for bw filter */
|
|
baseband_filter_bw_hz =
|
|
hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
|
|
}
|
|
|
|
if (requested_mode_count > 1) {
|
|
fprintf(stderr, "specify only one of: -t, -c, -r, -w\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (requested_mode_count < 1) {
|
|
fprintf(stderr, "specify one of: -t, -c, -r, -w\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (receive) {
|
|
transceiver_mode = TRANSCEIVER_MODE_RX;
|
|
}
|
|
|
|
if (transmit) {
|
|
transceiver_mode = TRANSCEIVER_MODE_TX;
|
|
}
|
|
|
|
if (signalsource) {
|
|
transceiver_mode = TRANSCEIVER_MODE_SS;
|
|
if (amplitude > 128) {
|
|
fprintf(stderr,
|
|
"argument error: amplitude must be between 0 and 128.\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (receive_wav) {
|
|
time(&rawtime);
|
|
timeinfo = localtime(&rawtime);
|
|
transceiver_mode = TRANSCEIVER_MODE_RX;
|
|
/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
|
|
strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
|
|
snprintf(
|
|
path_file,
|
|
PATH_FILE_MAX_LEN,
|
|
"HackRF_%sZ_%ukHz_IQ.wav",
|
|
date_time,
|
|
(uint32_t) (freq_hz / (1000ull)));
|
|
path = path_file;
|
|
fprintf(stderr, "Receive wav file: %s\n", path);
|
|
}
|
|
|
|
// In signal source mode, the PATH argument is neglected.
|
|
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
|
|
if (path == NULL) {
|
|
fprintf(stderr, "specify a path to a file to transmit/receive\n");
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
// Change the freq and sample rate to correct the crystal clock error.
|
|
if (crystal_correct) {
|
|
sample_rate_hz =
|
|
(uint32_t) ((double) sample_rate_hz * (1000000 - crystal_correct_ppm) / 1000000 + 0.5);
|
|
freq_hz = freq_hz * (1000000 - crystal_correct_ppm) / 1000000;
|
|
}
|
|
|
|
result = hackrf_init();
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_init() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
result = hackrf_open_by_serial(serial_number, &device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_open() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
|
|
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
|
|
if (strcmp(path, "-") == 0) {
|
|
file = stdout;
|
|
} else {
|
|
file = fopen(path, "wb");
|
|
}
|
|
} else {
|
|
if (strcmp(path, "-") == 0) {
|
|
file = stdin;
|
|
} else {
|
|
file = fopen(path, "rb");
|
|
}
|
|
}
|
|
|
|
if (file == NULL) {
|
|
fprintf(stderr, "Failed to open file: %s\n", path);
|
|
return EXIT_FAILURE;
|
|
}
|
|
/* Change file buffer to have bigger one to store or read data on/to HDD */
|
|
result = setvbuf(file, NULL, _IOFBF, FD_BUFFER_SIZE);
|
|
if (result != 0) {
|
|
fprintf(stderr, "setvbuf() failed: %d\n", result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
/* Write Wav header */
|
|
if (receive_wav) {
|
|
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
SetConsoleCtrlHandler((PHANDLER_ROUTINE) sighandler, TRUE);
|
|
#else
|
|
signal(SIGINT, &sigint_callback_handler);
|
|
signal(SIGILL, &sigint_callback_handler);
|
|
signal(SIGFPE, &sigint_callback_handler);
|
|
signal(SIGSEGV, &sigint_callback_handler);
|
|
signal(SIGTERM, &sigint_callback_handler);
|
|
signal(SIGABRT, &sigint_callback_handler);
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
interrupt_handle = CreateEvent(NULL, TRUE, FALSE, NULL);
|
|
#else
|
|
signal(SIGALRM, &sigalrm_callback_handler);
|
|
#endif
|
|
|
|
fprintf(stderr,
|
|
"call hackrf_set_sample_rate(%u Hz/%.03f MHz)\n",
|
|
sample_rate_hz,
|
|
((float) sample_rate_hz / (float) FREQ_ONE_MHZ));
|
|
result = hackrf_set_sample_rate(device, sample_rate_hz);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_sample_rate() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (baseband_filter_bw) {
|
|
fprintf(stderr,
|
|
"call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n",
|
|
baseband_filter_bw_hz,
|
|
((float) baseband_filter_bw_hz / (float) FREQ_ONE_MHZ));
|
|
result = hackrf_set_baseband_filter_bandwidth(
|
|
device,
|
|
baseband_filter_bw_hz);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "call hackrf_set_hw_sync_mode(%d)\n", hw_sync_enable);
|
|
result = hackrf_set_hw_sync_mode(
|
|
device,
|
|
hw_sync_enable ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_hw_sync_mode() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
|
|
result = hackrf_set_vga_gain(device, vga_gain);
|
|
result |= hackrf_set_lna_gain(device, lna_gain);
|
|
result |= hackrf_start_rx(device, rx_callback, NULL);
|
|
} else {
|
|
result = hackrf_set_txvga_gain(device, txvga_gain);
|
|
result |= hackrf_enable_tx_flush(device, 1);
|
|
result |= hackrf_start_tx(device, tx_callback, NULL);
|
|
}
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_start_?x() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (automatic_tuning) {
|
|
fprintf(stderr,
|
|
"call hackrf_set_freq(%s Hz/%.03f MHz)\n",
|
|
u64toa(freq_hz, &ascii_u64_data[0]),
|
|
((double) freq_hz / (double) FREQ_ONE_MHZ));
|
|
result = hackrf_set_freq(device, freq_hz);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_freq() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
fprintf(stderr,
|
|
"call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
|
|
u64toa(if_freq_hz, &ascii_u64_data[0]),
|
|
u64toa(lo_freq_hz, &ascii_u64_data[1]),
|
|
hackrf_filter_path_name(image_reject_selection));
|
|
result = hackrf_set_freq_explicit(
|
|
device,
|
|
if_freq_hz,
|
|
lo_freq_hz,
|
|
image_reject_selection);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_freq_explicit() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (amp) {
|
|
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
|
|
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_amp_enable() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (antenna) {
|
|
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
|
|
result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_set_antenna_enable() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
usage();
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (limit_num_samples) {
|
|
fprintf(stderr,
|
|
"samples_to_xfer %s/%sMio\n",
|
|
u64toa(samples_to_xfer, &ascii_u64_data[0]),
|
|
u64toa((samples_to_xfer / FREQ_ONE_MHZ), &ascii_u64_data[1]));
|
|
}
|
|
|
|
gettimeofday(&t_start, NULL);
|
|
gettimeofday(&time_start, NULL);
|
|
|
|
fprintf(stderr, "Stop with Ctrl-C\n");
|
|
|
|
// Set up an interval timer which will fire once per second.
|
|
#ifdef _WIN32
|
|
HANDLE timer_handle = CreateWaitableTimer(NULL, FALSE, NULL);
|
|
LARGE_INTEGER due_time;
|
|
due_time.QuadPart = -10000000LL;
|
|
LONG period = 1000;
|
|
SetWaitableTimer(timer_handle, &due_time, period, NULL, NULL, 0);
|
|
#else
|
|
struct itimerval interval_timer = {
|
|
.it_interval = {.tv_sec = 1, .tv_usec = 0},
|
|
.it_value = {.tv_sec = 1, .tv_usec = 0}};
|
|
setitimer(ITIMER_REAL, &interval_timer, NULL);
|
|
#endif
|
|
preload_bytes = hackrf_get_transfer_queue_depth(device) *
|
|
hackrf_get_transfer_buffer_size(device);
|
|
|
|
while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
|
|
uint64_t byte_count_now;
|
|
struct timeval time_now;
|
|
float time_difference, rate;
|
|
if (stream_size > 0) {
|
|
#ifndef _WIN32
|
|
if (stream_head == stream_tail) {
|
|
usleep(10000); // queue empty
|
|
} else {
|
|
ssize_t len;
|
|
ssize_t bytes_written;
|
|
uint32_t _st =
|
|
__atomic_load_n(&stream_tail, __ATOMIC_ACQUIRE);
|
|
if (stream_head < _st)
|
|
len = _st - stream_head;
|
|
else
|
|
len = stream_size - stream_head;
|
|
bytes_written =
|
|
fwrite(stream_buf + stream_head, 1, len, file);
|
|
if (len != bytes_written) {
|
|
fprintf(stderr, "write failed");
|
|
do_exit = true;
|
|
};
|
|
stream_head = (stream_head + len) % stream_size;
|
|
}
|
|
if (stream_drop > 0) {
|
|
uint32_t drops = __atomic_exchange_n(
|
|
&stream_drop,
|
|
0,
|
|
__ATOMIC_SEQ_CST);
|
|
fprintf(stderr, "dropped frames: [%d]\n", drops);
|
|
}
|
|
#endif
|
|
} else {
|
|
uint64_t stream_power_now;
|
|
#ifdef _WIN32
|
|
// Wait for interval timer event, or interrupt event.
|
|
HANDLE handles[] = {timer_handle, interrupt_handle};
|
|
WaitForMultipleObjects(2, handles, FALSE, INFINITE);
|
|
#else
|
|
// Wait for SIGALRM from interval timer, or another signal.
|
|
pause();
|
|
#endif
|
|
gettimeofday(&time_now, NULL);
|
|
|
|
/* Read and reset both totals at approximately the same time. */
|
|
byte_count_now = byte_count;
|
|
stream_power_now = stream_power;
|
|
byte_count = 0;
|
|
stream_power = 0;
|
|
|
|
/*
|
|
* The TX callback is called to preload the USB
|
|
* transfer buffers at the start of TX. This results in
|
|
* invalid statistics collected about the empty buffers
|
|
* before any USB transfer is completed. We skip these
|
|
* statistics and do not report them to the user.
|
|
*/
|
|
if (preload_bytes > 0) {
|
|
if (preload_bytes > byte_count_now) {
|
|
preload_bytes -= byte_count_now;
|
|
byte_count_now = 0;
|
|
} else {
|
|
byte_count_now -= preload_bytes;
|
|
preload_bytes = 0;
|
|
}
|
|
}
|
|
|
|
time_difference = TimevalDiff(&time_now, &time_start);
|
|
rate = (float) byte_count_now / time_difference;
|
|
if (byte_count_now == 0 && hw_sync == true &&
|
|
hw_sync_enable != 0) {
|
|
fprintf(stderr, "Waiting for sync...\n");
|
|
} else {
|
|
double full_scale_ratio = (double) stream_power_now /
|
|
(byte_count_now * 128 * 128);
|
|
double dB_full_scale = 10 * log10(full_scale_ratio);
|
|
fprintf(stderr,
|
|
"%4.1f MiB / %5.3f sec = %4.1f MiB/second, average power %3.1f dBfs",
|
|
(byte_count_now / 1e6f),
|
|
time_difference,
|
|
(rate / 1e6f),
|
|
dB_full_scale);
|
|
if (display_stats) {
|
|
bool tx = transmit || signalsource;
|
|
result = update_stats(device, &state, &stats);
|
|
if (result != HACKRF_SUCCESS)
|
|
fprintf(stderr,
|
|
"\nhackrf_get_m0_state() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
else
|
|
fprintf(stderr,
|
|
", %d bytes %s in buffer, %u %s, longest %u bytes\n",
|
|
tx ? state.m4_count -
|
|
state.m0_count :
|
|
state.m0_count -
|
|
state.m4_count,
|
|
tx ? "filled" : "free",
|
|
state.num_shortfalls,
|
|
tx ? "underruns" : "overruns",
|
|
state.longest_shortfall);
|
|
} else {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
time_start = time_now;
|
|
|
|
if (byte_count_now == 0 &&
|
|
(hw_sync == false || hw_sync_enable == 0)) {
|
|
exit_code = EXIT_FAILURE;
|
|
fprintf(stderr,
|
|
"\nCouldn't transfer any bytes for one second.\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stop interval timer.
|
|
#ifdef _WIN32
|
|
CancelWaitableTimer(timer_handle);
|
|
CloseHandle(timer_handle);
|
|
#else
|
|
interval_timer.it_value.tv_sec = 0;
|
|
setitimer(ITIMER_REAL, &interval_timer, NULL);
|
|
#endif
|
|
if ((transmit || signalsource) && !interrupted) {
|
|
// Wait for TX to finish.
|
|
hackrf_await_tx_flush(device);
|
|
}
|
|
|
|
result = hackrf_is_streaming(device);
|
|
if (do_exit) {
|
|
fprintf(stderr, "\nExiting...\n");
|
|
} else {
|
|
fprintf(stderr,
|
|
"\nExiting... hackrf_is_streaming() result: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
}
|
|
|
|
gettimeofday(&t_end, NULL);
|
|
time_diff = TimevalDiff(&t_end, &t_start);
|
|
fprintf(stderr, "Total time: %5.5f s\n", time_diff);
|
|
|
|
if (device != NULL) {
|
|
if (receive || receive_wav) {
|
|
result = hackrf_stop_rx(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_stop_rx() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_stop_rx() done\n");
|
|
}
|
|
}
|
|
|
|
if (transmit || signalsource) {
|
|
result = hackrf_stop_tx(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_stop_tx() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_stop_tx() done\n");
|
|
}
|
|
}
|
|
|
|
if (display_stats) {
|
|
result = update_stats(device, &state, &stats);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_get_m0_state() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr,
|
|
"Transfer statistics:\n"
|
|
"%" PRIu64 " bytes transferred by M0\n"
|
|
"%" PRIu64 " bytes transferred by M4\n"
|
|
"%u %s, longest %u bytes\n",
|
|
stats.m0_total,
|
|
stats.m4_total,
|
|
state.num_shortfalls,
|
|
(transmit || signalsource) ? "underruns" :
|
|
"overruns",
|
|
state.longest_shortfall);
|
|
}
|
|
}
|
|
|
|
result = hackrf_close(device);
|
|
if (result != HACKRF_SUCCESS) {
|
|
fprintf(stderr,
|
|
"hackrf_close() failed: %s (%d)\n",
|
|
hackrf_error_name(result),
|
|
result);
|
|
} else {
|
|
fprintf(stderr, "hackrf_close() done\n");
|
|
}
|
|
|
|
hackrf_exit();
|
|
fprintf(stderr, "hackrf_exit() done\n");
|
|
}
|
|
|
|
if (file != NULL) {
|
|
if (receive_wav) {
|
|
/* Get size of file */
|
|
file_pos = ftell(file);
|
|
/* Update Wav Header */
|
|
wave_file_hdr.hdr.size = file_pos - 8;
|
|
wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
|
|
wave_file_hdr.fmt_chunk.dwAvgBytesPerSec =
|
|
wave_file_hdr.fmt_chunk.dwSamplesPerSec * 2;
|
|
wave_file_hdr.data_chunk.chunkSize =
|
|
file_pos - sizeof(t_wav_file_hdr);
|
|
/* Overwrite header with updated data */
|
|
rewind(file);
|
|
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
|
|
}
|
|
if (file != stdin) {
|
|
fflush(file);
|
|
}
|
|
if ((file != stdout) && (file != stdin)) {
|
|
fclose(file);
|
|
file = NULL;
|
|
fprintf(stderr, "fclose() done\n");
|
|
}
|
|
}
|
|
fprintf(stderr, "exit\n");
|
|
return exit_code;
|
|
}
|