hackrf/firmware/hackrf_usb/usb_api_sweep.c
Martin Ling 7057235a14 Increment a sequence number when transceiver mode changes.
This fixes bug #1042, which occured when an RX->OFF->RX sequence
happened quickly enough that the loop in rx_mode() did not see the
change. As a result, the enable_baseband_streaming() call at the start
of that function was not repeated for the new RX operation, so RX
progress stalled.

To solve this, the vendor request handler now increments a sequence
number when it changes the transceiver mode. Instead of the RX loop
checking whether the transceiver mode is still RX, it now checks whether
the current sequence number is the same as when it was started. If not,
there must have been at least one mode change, so the loop exits, and
the main loop starts the necessary loop for the new mode. The same
behaviour is implemented for the TX and sweep loops.

For this approach to be reliable, we must ensure that when deciding
which mode and sequence number to use, we take both values from the same
set_transceiver_mode request.

To achieve this, we briefly disable the USB0 interrupt to stop the
vendor request handler from running whilst reading the mode and sequence
number together. Then the loop dispatch proceeds using those pre-read
values.
2022-02-03 07:36:34 +00:00

169 lines
4.9 KiB
C

/*
* Copyright 2016 Mike Walters, Dominic Spill
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "usb_api_sweep.h"
#include "usb_queue.h"
#include <stddef.h>
#include <hackrf_core.h>
#include "usb_api_transceiver.h"
#include "usb_bulk_buffer.h"
#include "m0_state.h"
#include "tuning.h"
#include "usb_endpoint.h"
#include "streaming.h"
#include <libopencm3/lpc43xx/m4/nvic.h>
#define MIN(x,y) ((x)<(y)?(x):(y))
#define MAX(x,y) ((x)>(y)?(x):(y))
#define FREQ_GRANULARITY 1000000
#define MAX_RANGES 10
#define THROWAWAY_BUFFERS 2
static uint64_t sweep_freq;
static uint16_t frequencies[MAX_RANGES * 2];
static unsigned char data[9 + MAX_RANGES * 2 * sizeof(frequencies[0])];
static uint16_t num_ranges = 0;
static uint32_t dwell_blocks = 0;
static uint32_t step_width = 0;
static uint32_t offset = 0;
static enum sweep_style style = LINEAR;
/* Do this before starting sweep mode with set_transceiver_mode(). */
usb_request_status_t usb_vendor_request_init_sweep(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
uint32_t num_bytes;
int i;
if (stage == USB_TRANSFER_STAGE_SETUP) {
num_bytes = (endpoint->setup.index << 16) | endpoint->setup.value;
dwell_blocks = num_bytes / 0x4000;
if(1 > dwell_blocks) {
return USB_REQUEST_STATUS_STALL;
}
num_ranges = (endpoint->setup.length - 9) / (2 * sizeof(frequencies[0]));
if((1 > num_ranges) || (MAX_RANGES < num_ranges)) {
return USB_REQUEST_STATUS_STALL;
}
usb_transfer_schedule_block(endpoint->out, &data,
endpoint->setup.length, NULL, NULL);
} else if (stage == USB_TRANSFER_STAGE_DATA) {
step_width = ((uint32_t)(data[3]) << 24) | ((uint32_t)(data[2]) << 16)
| ((uint32_t)(data[1]) << 8) | data[0];
if(1 > step_width) {
return USB_REQUEST_STATUS_STALL;
}
offset = ((uint32_t)(data[7]) << 24) | ((uint32_t)(data[6]) << 16)
| ((uint32_t)(data[5]) << 8) | data[4];
style = data[8];
if(INTERLEAVED < style) {
return USB_REQUEST_STATUS_STALL;
}
for(i=0; i<(num_ranges*2); i++) {
frequencies[i] = ((uint16_t)(data[10+i*2]) << 8) + data[9+i*2];
}
sweep_freq = (uint64_t)frequencies[0] * FREQ_GRANULARITY;
set_freq(sweep_freq + offset);
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
void sweep_mode(uint32_t seq) {
unsigned int blocks_queued = 0;
unsigned int phase = 1;
bool odd = true;
uint16_t range = 0;
uint8_t *buffer;
bool transfer = false;
baseband_streaming_enable(&sgpio_config);
while (transceiver_mode_seq() == seq) {
// Set up IN transfer of buffer 0.
if ( m0_state.offset >= 16384 && phase == 1) {
transfer = true;
buffer = &usb_bulk_buffer[0x0000];
phase = 0;
blocks_queued++;
}
// Set up IN transfer of buffer 1.
if ( m0_state.offset < 16384 && phase == 0) {
transfer = true;
buffer = &usb_bulk_buffer[0x4000];
phase = 1;
blocks_queued++;
}
if (transfer) {
*buffer = 0x7f;
*(buffer+1) = 0x7f;
*(buffer+2) = sweep_freq & 0xff;
*(buffer+3) = (sweep_freq >> 8) & 0xff;
*(buffer+4) = (sweep_freq >> 16) & 0xff;
*(buffer+5) = (sweep_freq >> 24) & 0xff;
*(buffer+6) = (sweep_freq >> 32) & 0xff;
*(buffer+7) = (sweep_freq >> 40) & 0xff;
*(buffer+8) = (sweep_freq >> 48) & 0xff;
*(buffer+9) = (sweep_freq >> 56) & 0xff;
if (blocks_queued > THROWAWAY_BUFFERS) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_in,
buffer,
0x4000,
NULL, NULL
);
}
transfer = false;
}
if ((dwell_blocks + THROWAWAY_BUFFERS) <= blocks_queued) {
if(INTERLEAVED == style) {
if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
} else {
if(odd) {
sweep_freq += step_width/4;
} else {
sweep_freq += 3*step_width/4;
}
}
odd = !odd;
} else {
if((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY)) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
} else {
sweep_freq += step_width;
}
}
nvic_disable_irq(NVIC_USB0_IRQ);
set_freq(sweep_freq + offset);
nvic_enable_irq(NVIC_USB0_IRQ);
blocks_queued = 0;
}
}
}