hackrf/firmware/hackrf_usb/usb_api_transceiver.c
Martin Ling 72a0a01190 Revert "Reduce firmware USB transfer size from 16KB to 8KB."
This reverts commit fefa4f0e4592b8fb235d38e60fb5daea4974ff95.
2024-02-08 01:07:11 +00:00

476 lines
12 KiB
C

/*
* Copyright 2012-2022 Great Scott Gadgets <info@greatscottgadgets.com>
* Copyright 2012 Jared Boone
* Copyright 2013 Benjamin Vernoux
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "usb_api_transceiver.h"
#include "hackrf_ui.h"
#include "operacake_sctimer.h"
#include <libopencm3/cm3/vector.h>
#include "usb_bulk_buffer.h"
#include "usb_api_m0_state.h"
#include "usb_api_cpld.h" // Remove when CPLD update is handled elsewhere
#include "max2837.h"
#include "max2839.h"
#include "rf_path.h"
#include "tuning.h"
#include "streaming.h"
#include "usb.h"
#include "usb_queue.h"
#include "platform_detect.h"
#include <stddef.h>
#include <string.h>
#include "usb_endpoint.h"
#include "usb_api_sweep.h"
#define USB_TRANSFER_SIZE 0x4000
typedef struct {
uint32_t freq_mhz;
uint32_t freq_hz;
} set_freq_params_t;
set_freq_params_t set_freq_params;
struct set_freq_explicit_params {
uint64_t if_freq_hz; /* intermediate frequency */
uint64_t lo_freq_hz; /* front-end local oscillator frequency */
uint8_t path; /* image rejection filter path */
};
struct set_freq_explicit_params explicit_params;
typedef struct {
uint32_t freq_hz;
uint32_t divider;
} set_sample_r_params_t;
set_sample_r_params_t set_sample_r_params;
usb_request_status_t usb_vendor_request_set_baseband_filter_bandwidth(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
const uint32_t bandwidth =
(endpoint->setup.index << 16) | endpoint->setup.value;
if (baseband_filter_bandwidth_set(bandwidth)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_freq(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(
endpoint->out,
&set_freq_params,
sizeof(set_freq_params_t),
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
const uint64_t freq =
set_freq_params.freq_mhz * 1000000ULL + set_freq_params.freq_hz;
if (set_freq(freq)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_sample_rate_frac(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(
endpoint->out,
&set_sample_r_params,
sizeof(set_sample_r_params_t),
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
if (sample_rate_frac_set(
set_sample_r_params.freq_hz * 2,
set_sample_r_params.divider)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_amp_enable(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
case 0:
rf_path_set_lna(&rf_path, 0);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
case 1:
rf_path_set_lna(&rf_path, 1);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_lna_gain(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint8_t value;
value = max283x_set_lna_gain(&max283x, endpoint->setup.index);
endpoint->buffer[0] = value;
if (value) {
hackrf_ui()->set_bb_lna_gain(endpoint->setup.index);
}
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_vga_gain(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint8_t value;
value = max283x_set_vga_gain(&max283x, endpoint->setup.index);
endpoint->buffer[0] = value;
if (value) {
hackrf_ui()->set_bb_vga_gain(endpoint->setup.index);
}
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_txvga_gain(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint8_t value;
value = max283x_set_txvga_gain(&max283x, endpoint->setup.index);
endpoint->buffer[0] = value;
if (value) {
hackrf_ui()->set_bb_tx_vga_gain(endpoint->setup.index);
}
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_antenna_enable(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
case 0:
rf_path_set_antenna(&rf_path, 0);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
case 1:
rf_path_set_antenna(&rf_path, 1);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_freq_explicit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(
endpoint->out,
&explicit_params,
sizeof(struct set_freq_explicit_params),
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
if (set_freq_explicit(
explicit_params.if_freq_hz,
explicit_params.lo_freq_hz,
explicit_params.path)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}
static volatile hw_sync_mode_t _hw_sync_mode = HW_SYNC_MODE_OFF;
static volatile uint32_t _tx_underrun_limit;
static volatile uint32_t _rx_overrun_limit;
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode)
{
_hw_sync_mode = new_hw_sync_mode;
}
volatile transceiver_request_t transceiver_request = {
.mode = TRANSCEIVER_MODE_OFF,
.seq = 0,
};
// Must be called from an atomic context (normally USB ISR)
void request_transceiver_mode(transceiver_mode_t mode)
{
usb_endpoint_flush(&usb_endpoint_bulk_in);
usb_endpoint_flush(&usb_endpoint_bulk_out);
transceiver_request.mode = mode;
transceiver_request.seq++;
}
void transceiver_shutdown(void)
{
baseband_streaming_disable(&sgpio_config);
operacake_sctimer_reset_state();
usb_endpoint_flush(&usb_endpoint_bulk_in);
usb_endpoint_flush(&usb_endpoint_bulk_out);
led_off(LED2);
led_off(LED3);
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_OFF);
m0_set_mode(M0_MODE_IDLE);
}
void transceiver_startup(const transceiver_mode_t mode)
{
hackrf_ui()->set_transceiver_mode(mode);
switch (mode) {
case TRANSCEIVER_MODE_RX_SWEEP:
case TRANSCEIVER_MODE_RX:
led_off(LED3);
led_on(LED2);
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_RX);
m0_set_mode(M0_MODE_RX);
m0_state.shortfall_limit = _rx_overrun_limit;
break;
case TRANSCEIVER_MODE_TX:
led_off(LED2);
led_on(LED3);
rf_path_set_direction(&rf_path, RF_PATH_DIRECTION_TX);
m0_set_mode(M0_MODE_TX_START);
m0_state.shortfall_limit = _tx_underrun_limit;
break;
default:
break;
}
activate_best_clock_source();
hw_sync_enable(_hw_sync_mode);
}
usb_request_status_t usb_vendor_request_set_transceiver_mode(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
case TRANSCEIVER_MODE_OFF:
case TRANSCEIVER_MODE_RX:
case TRANSCEIVER_MODE_TX:
case TRANSCEIVER_MODE_RX_SWEEP:
case TRANSCEIVER_MODE_CPLD_UPDATE:
request_transceiver_mode(endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
return USB_REQUEST_STATUS_STALL;
}
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_hw_sync_mode(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
set_hw_sync_mode(endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
_tx_underrun_limit = value;
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
_rx_overrun_limit = value;
usb_transfer_schedule_ack(endpoint->in);
}
return USB_REQUEST_STATUS_OK;
}
void transceiver_bulk_transfer_complete(void* user_data, unsigned int bytes_transferred)
{
(void) user_data;
m0_state.m4_count += bytes_transferred;
}
void rx_mode(uint32_t seq)
{
uint32_t usb_count = 0;
transceiver_startup(TRANSCEIVER_MODE_RX);
baseband_streaming_enable(&sgpio_config);
while (transceiver_request.seq == seq) {
if ((m0_state.m0_count - usb_count) >= USB_TRANSFER_SIZE) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_in,
&usb_bulk_buffer[usb_count & USB_BULK_BUFFER_MASK],
USB_TRANSFER_SIZE,
transceiver_bulk_transfer_complete,
NULL);
usb_count += USB_TRANSFER_SIZE;
}
}
transceiver_shutdown();
}
void tx_mode(uint32_t seq)
{
unsigned int usb_count = 0;
bool started = false;
transceiver_startup(TRANSCEIVER_MODE_TX);
// Set up OUT transfer of buffer 0.
usb_transfer_schedule_block(
&usb_endpoint_bulk_out,
&usb_bulk_buffer[0x0000],
USB_TRANSFER_SIZE,
transceiver_bulk_transfer_complete,
NULL);
usb_count += USB_TRANSFER_SIZE;
while (transceiver_request.seq == seq) {
if (!started && (m0_state.m4_count == USB_BULK_BUFFER_SIZE)) {
// Buffer is now full, start streaming.
baseband_streaming_enable(&sgpio_config);
started = true;
}
if ((usb_count - m0_state.m0_count) <= USB_TRANSFER_SIZE) {
usb_transfer_schedule_block(
&usb_endpoint_bulk_out,
&usb_bulk_buffer[usb_count & USB_BULK_BUFFER_MASK],
USB_TRANSFER_SIZE,
transceiver_bulk_transfer_complete,
NULL);
usb_count += USB_TRANSFER_SIZE;
}
}
transceiver_shutdown();
}
void off_mode(uint32_t seq)
{
hackrf_ui()->set_transceiver_mode(TRANSCEIVER_MODE_OFF);
while (transceiver_request.seq == seq) {}
}