/* * Copyright 2012 Jared Boone * Copyright 2013 Benjamin Vernoux * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #ifdef _WIN32 #include #else #include #endif #include #include #define FREQ_ONE_MHZ (1000000) #define FREQ_MIN_HZ (30000000ull) /* 30MHz */ #define FREQ_MAX_HZ (6000000000ull) /* 6000MHz */ #define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */ #define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */ #define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */ #define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */ #if defined _WIN32 #define sleep(a) Sleep( (a*1000) ) #endif typedef struct { uint32_t bandwidth_hz; } max2837_ft_t; static const max2837_ft_t max2837_ft[] = { { 1750000 }, { 2500000 }, { 3500000 }, { 5000000 }, { 5500000 }, { 6000000 }, { 7000000 }, { 8000000 }, { 9000000 }, { 10000000 }, { 12000000 }, { 14000000 }, { 15000000 }, { 20000000 }, { 24000000 }, { 28000000 }, { 0 }, }; typedef enum { TRANSCEIVER_MODE_OFF = 0, TRANSCEIVER_MODE_RX = 1, TRANSCEIVER_MODE_TX = 2 } transceiver_mode_t; static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX; static float TimevalDiff(const struct timeval *a, const struct timeval *b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u64(char* s, uint64_t* const value) { uint_fast8_t base = 10; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } char* s_end = s; const unsigned long long u64_value = strtoull(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = u64_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } char* s_end = s; const unsigned long ulong_value = strtoul(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } /* Return final bw round down and less than expected bw. */ uint32_t compute_baseband_filter_bw_round_down_lt(const uint32_t bandwidth_hz) { const max2837_ft_t* p = max2837_ft; while( p->bandwidth_hz != 0 ) { if( p->bandwidth_hz >= bandwidth_hz ) { break; } p++; } /* Round down (if no equal to first entry) */ if(p != max2837_ft) { p--; } return p->bandwidth_hz; } /* Return final bw. */ uint32_t compute_baseband_filter_bw(const uint32_t bandwidth_hz) { const max2837_ft_t* p = max2837_ft; while( p->bandwidth_hz != 0 ) { if( p->bandwidth_hz >= bandwidth_hz ) { break; } p++; } /* Round down (if no equal to first entry) and if > bandwidth_hz */ if(p != max2837_ft) { if(p->bandwidth_hz > bandwidth_hz) p--; } return p->bandwidth_hz; } volatile bool do_exit = false; FILE* fd = NULL; volatile uint32_t byte_count = 0; bool receive = false; bool transmit = false; struct timeval time_start; struct timeval t_start; bool freq = false; uint64_t freq_hz; bool amp = false; uint32_t amp_enable; bool sample_rate = false; uint32_t sample_rate_hz; bool limit_num_samples = false; uint64_t samples_to_xfer = 0; uint64_t bytes_to_xfer = 0; bool baseband_filter_bw = false; uint32_t baseband_filter_bw_hz = 0; int rx_callback(hackrf_transfer* transfer) { int bytes_to_write; if( fd != NULL ) { byte_count += transfer->valid_length; bytes_to_write = transfer->valid_length; if (limit_num_samples) { if (bytes_to_write >= bytes_to_xfer) { bytes_to_write = bytes_to_xfer; } bytes_to_xfer -= bytes_to_write; } const ssize_t bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, fd); if ((bytes_written != bytes_to_write) || (limit_num_samples && (bytes_to_xfer == 0))) { fclose(fd); fd = NULL; return -1; } else { return 0; } } else { return -1; } } int tx_callback(hackrf_transfer* transfer) { int bytes_to_read; if( fd != NULL ) { byte_count += transfer->valid_length; bytes_to_read = transfer->valid_length; if (limit_num_samples) { if (bytes_to_read >= bytes_to_xfer) { /* * In this condition, we probably tx some of the previous * buffer contents at the end. :-( */ bytes_to_read = bytes_to_xfer; } bytes_to_xfer -= bytes_to_read; } const ssize_t bytes_read = fread(transfer->buffer, 1, bytes_to_read, fd); if ((bytes_read != bytes_to_read) || (limit_num_samples && (bytes_to_xfer == 0))) { fclose(fd); fd = NULL; return -1; } else { return 0; } } else { return -1; } } static void usage() { printf("Usage:\n"); printf("\t-r # Receive data into file.\n"); printf("\t-t # Transmit data from file.\n"); printf("\t[-f set_freq_hz] # Set Freq in Hz between [%lluMHz, %lluMHz[.\n", FREQ_MIN_HZ/FREQ_ONE_MHZ, FREQ_MAX_HZ/FREQ_ONE_MHZ); printf("\t[-a set_amp] # Set Amp 1=Enable, 0=Disable.\n"); printf("\t[-s sample_rate_hz] # Set sample rate in Hz (5/10/12.5/16/20MHz, default %dMHz).\n", DEFAULT_SAMPLE_RATE_HZ/FREQ_ONE_MHZ); printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n"); printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in MHz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default < sample_rate_hz.\n" ); } static hackrf_device* device = NULL; void sigint_callback_handler(int signum) { fprintf(stdout, "Caught signal %d\n", signum); do_exit = true; } int main(int argc, char** argv) { int opt; const char* path = NULL; int result; while( (opt = getopt(argc, argv, "r:t:f:a:s:n:b:")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'r': receive = true; path = optarg; break; case 't': transmit = true; path = optarg; break; case 'f': freq = true; result = parse_u64(optarg, &freq_hz); break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 's': sample_rate = true; result = parse_u32(optarg, &sample_rate_hz); break; case 'n': limit_num_samples = true; result = parse_u64(optarg, &samples_to_xfer); bytes_to_xfer = samples_to_xfer * 2ull; break; case 'b': baseband_filter_bw = true; result = parse_u32(optarg, &baseband_filter_bw_hz); break; default: usage(); return EXIT_FAILURE; } if( result != HACKRF_SUCCESS ) { printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) { printf("argument error: num_samples must be less than %llu/%lluMio\n", SAMPLES_TO_XFER_MAX, SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ); usage(); return EXIT_FAILURE; } if( freq ) { if( (freq_hz >= FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) ) { printf("argument error: set_freq_hz shall be between [%llu, %llu[.\n", FREQ_MIN_HZ, FREQ_MAX_HZ); usage(); return EXIT_FAILURE; } } if( amp ) { if( amp_enable > 1 ) { printf("argument error: set_amp shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if( sample_rate == false ) { sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ; } if( baseband_filter_bw ) { /* Compute nearest freq for bw filter */ baseband_filter_bw_hz = compute_baseband_filter_bw(baseband_filter_bw_hz); }else { /* Compute default value depending on sample rate */ baseband_filter_bw_hz = compute_baseband_filter_bw_round_down_lt(sample_rate_hz); } if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) { printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) { printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if( transmit == receive ) { if( transmit == true ) { fprintf(stderr, "receive and transmit options are mutually exclusive\n"); } else { fprintf(stderr, "specify either transmit or receive option\n"); } usage(); return EXIT_FAILURE; } if( receive ) { transceiver_mode = TRANSCEIVER_MODE_RX; } if( transmit ) { transceiver_mode = TRANSCEIVER_MODE_TX; } if( path == NULL ) { fprintf(stderr, "specify a path to a file to transmit/receive\n"); usage(); return EXIT_FAILURE; } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open(&device); if( result != HACKRF_SUCCESS ) { printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { fd = fopen(path, "wb"); } else { fd = fopen(path, "rb"); } if( fd == NULL ) { printf("Failed to open file: %s\n", path); return EXIT_FAILURE; } signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); printf("call hackrf_sample_rate_set(%u Hz/%.02f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ)); result = hackrf_sample_rate_set(device, sample_rate_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.02f MHz)\n", baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ)); result = hackrf_baseband_filter_bandwidth_set(device, baseband_filter_bw_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { result = hackrf_start_rx(device, rx_callback); } else { result = hackrf_start_tx(device, tx_callback); } if( result != HACKRF_SUCCESS ) { printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( freq ) { printf("call hackrf_set_freq(%llu Hz/%llu MHz)\n", freq_hz, (freq_hz/FREQ_ONE_MHZ) ); result = hackrf_set_freq(device, freq_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( amp ) { printf("call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( limit_num_samples ) { printf("samples_to_xfer %llu/%lluMio\n", samples_to_xfer, (samples_to_xfer/FREQ_ONE_MHZ) ); } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); printf("Stop with Ctrl-C\n"); while( (hackrf_is_streaming(device)) && (do_exit == false) ) { sleep(1); struct timeval time_now; gettimeofday(&time_now, NULL); uint32_t byte_count_now = byte_count; byte_count = 0; const float time_difference = TimevalDiff(&time_now, &time_start); const float rate = (float)byte_count_now / time_difference; printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n", (byte_count_now / 1e6f), time_difference, (rate / 1e6f) ); time_start = time_now; } if (do_exit) printf("\nUser cancel, exiting...\n"); else printf("\nExiting...\n"); struct timeval t_end; gettimeofday(&t_end, NULL); const float time_diff = TimevalDiff(&t_end, &t_start); printf("Total time: %5.5f s\n", time_diff); if(device != NULL) { if( receive ) { result = hackrf_stop_rx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_rx() done\n"); } } if( transmit ) { result = hackrf_stop_tx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_tx() done\n"); } } result = hackrf_close(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_close() done\n"); } hackrf_exit(); printf("hackrf_exit() done\n"); } if(fd != NULL) { fclose(fd); fd = NULL; printf("fclose(fd) done\n"); } printf("exit\n"); return EXIT_SUCCESS; }