/* * Copyright 2016 Dominic Spill * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #ifdef _WIN32 #include #ifdef _MSC_VER #ifdef _WIN64 typedef int64_t ssize_t; #else typedef int32_t ssize_t; #endif #define strtoull _strtoui64 #define snprintf _snprintf int gettimeofday(struct timeval *tv, void* ignored) { FILETIME ft; unsigned __int64 tmp = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmp |= ft.dwHighDateTime; tmp <<= 32; tmp |= ft.dwLowDateTime; tmp /= 10; tmp -= 11644473600000000Ui64; tv->tv_sec = (long)(tmp / 1000000UL); tv->tv_usec = (long)(tmp % 1000000UL); } return 0; } #endif #endif #if defined(__GNUC__) #include #include #endif #include #define FD_BUFFER_SIZE (8*1024) #define FREQ_ONE_MHZ (1000000ull) #define FREQ_MIN_HZ (0ull) /* 0 Hz */ #define FREQ_MAX_HZ (7250000000ull) /* 7250MHz */ #define DEFAULT_SAMPLE_RATE_HZ (20000000) /* 20MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (15000000) /* 5MHz default */ #if defined _WIN32 #define sleep(a) Sleep( (a*1000) ) #endif static float TimevalDiff(const struct timeval *a, const struct timeval *b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t ulong_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; ulong_value = strtoul(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = (uint32_t)ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } volatile bool do_exit = false; FILE* fd = NULL; volatile uint32_t byte_count = 0; struct timeval time_start; struct timeval t_start; bool amp = false; uint32_t amp_enable; bool antenna = false; uint32_t antenna_enable; bool sample_rate = false; uint32_t sample_rate_hz; int rx_callback(hackrf_transfer* transfer) { /* This is where we need to do interesting things with the samples * FFT * Throw away unused bins * write output to pipe */ ssize_t bytes_to_write; ssize_t bytes_written; if( fd != NULL ) { byte_count += transfer->valid_length; bytes_to_write = transfer->valid_length; bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, fd); if (bytes_written != bytes_to_write) { return -1; } else { return 0; } } else { return -1; } } static void usage() { fprintf(stderr, "Usage:\n"); fprintf(stderr, "\t[-d serial_number] # Serial number of desired HackRF.\n"); fprintf(stderr, "\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n"); fprintf(stderr, "\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n"); fprintf(stderr, "\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n"); fprintf(stderr, "\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n"); fprintf(stderr, "\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n"); } static hackrf_device* device = NULL; #ifdef _MSC_VER BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; return TRUE; } return FALSE; } #else void sigint_callback_handler(int signum) { fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; } #endif int main(int argc, char** argv) { int opt; const char* path = "/dev/null"; const char* serial_number = NULL; int result; int exit_code = EXIT_SUCCESS; struct timeval t_end; float time_diff; unsigned int lna_gain=8, vga_gain=20, txvga_gain=0; while( (opt = getopt(argc, argv, "a:p:l:g:x:d:")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'd': serial_number = optarg; break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'p': antenna = true; result = parse_u32(optarg, &antenna_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'g': result = parse_u32(optarg, &vga_gain); break; case 'x': result = parse_u32(optarg, &txvga_gain); break; default: fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if( result != HACKRF_SUCCESS ) { fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (lna_gain % 8) fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n"); if (vga_gain % 2) fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n"); if( amp ) { if( amp_enable > 1 ) { fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (antenna) { if (antenna_enable > 1) { fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } fd = fopen(path, "wb"); if( fd == NULL ) { fprintf(stderr, "Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change fd buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE); if( result != 0 ) { fprintf(stderr, "setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } #ifdef _MSC_VER SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif fprintf(stderr, "call hackrf_sample_rate_set(%.03f MHz)\n", ((float)DEFAULT_SAMPLE_RATE_HZ/(float)FREQ_ONE_MHZ)); result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n", ((float)DEFAULT_BASEBAND_FILTER_BANDWIDTH/(float)FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth(device, DEFAULT_BASEBAND_FILTER_BANDWIDTH); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); result |= hackrf_start_rx(device, rx_callback, NULL); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } /* DGS FIXME: allow upper and lower frequencies to be set */ result = hackrf_init_sweep(device, 50, 6000, 10); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_init_scan() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (amp) { fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (antenna) { fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable); result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); fprintf(stderr, "Stop with Ctrl-C\n"); while((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) { uint32_t byte_count_now; struct timeval time_now; float time_difference, rate; sleep(1); gettimeofday(&time_now, NULL); byte_count_now = byte_count; byte_count = 0; time_difference = TimevalDiff(&time_now, &time_start); rate = (float)byte_count_now / time_difference; fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second\n", (byte_count_now / 1e6f), time_difference, (rate / 1e6f) ); time_start = time_now; if (byte_count_now == 0) { exit_code = EXIT_FAILURE; fprintf(stderr, "\nCouldn't transfer any bytes for one second.\n"); break; } } result = hackrf_is_streaming(device); if (do_exit) { fprintf(stderr, "\nUser cancel, exiting...\n"); } else { fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&t_end, NULL); time_diff = TimevalDiff(&t_end, &t_start); fprintf(stderr, "Total time: %5.5f s\n", time_diff); if(device != NULL) { result = hackrf_stop_rx(device); if(result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_stop_rx() done\n"); } result = hackrf_close(device); if(result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_close() done\n"); } hackrf_exit(); fprintf(stderr, "hackrf_exit() done\n"); } if(fd != NULL) { fclose(fd); fd = NULL; fprintf(stderr, "fclose(fd) done\n"); } fprintf(stderr, "exit\n"); return exit_code; }