/* * Copyright 2012 Michael Ossmann * Copyright 2012 Jared Boone * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "si5351c.h" #include enum pll_sources active_clock_source; /* FIXME return i2c0 status from each function */ /* write to single register */ void si5351c_write_single(uint8_t reg, uint8_t val) { i2c0_tx_start(); i2c0_tx_byte(SI5351C_I2C_ADDR | I2C_WRITE); i2c0_tx_byte(reg); i2c0_tx_byte(val); i2c0_stop(); } /* read single register */ uint8_t si5351c_read_single(uint8_t reg) { uint8_t val; /* set register address with write */ i2c0_tx_start(); i2c0_tx_byte(SI5351C_I2C_ADDR | I2C_WRITE); i2c0_tx_byte(reg); /* read the value */ i2c0_tx_start(); i2c0_tx_byte(SI5351C_I2C_ADDR | I2C_READ); val = i2c0_rx_byte(); i2c0_stop(); return val; } /* * Write to one or more contiguous registers. data[0] should be the first * register number, one or more values follow. */ void si5351c_write(uint8_t* const data, const uint_fast8_t data_count) { uint_fast8_t i; i2c0_tx_start(); i2c0_tx_byte(SI5351C_I2C_ADDR | I2C_WRITE); for (i = 0; i < data_count; i++) i2c0_tx_byte(data[i]); i2c0_stop(); } /* Disable all CLKx outputs. */ void si5351c_disable_all_outputs() { uint8_t data[] = { 3, 0xFF }; si5351c_write(data, sizeof(data)); } /* Turn off OEB pin control for all CLKx */ void si5351c_disable_oeb_pin_control() { uint8_t data[] = { 9, 0xFF }; si5351c_write(data, sizeof(data)); } /* Power down all CLKx */ void si5351c_power_down_all_clocks() { uint8_t data[] = { 16 , SI5351C_CLK_POWERDOWN , SI5351C_CLK_POWERDOWN , SI5351C_CLK_POWERDOWN , SI5351C_CLK_POWERDOWN , SI5351C_CLK_POWERDOWN , SI5351C_CLK_POWERDOWN , SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE , SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE }; si5351c_write(data, sizeof(data)); } /* * Register 183: Crystal Internal Load Capacitance * Reads as 0xE4 on power-up * Set to 8pF based on crystal specs and HackRF One testing */ void si5351c_set_crystal_configuration() { uint8_t data[] = { 183, 0x80 }; si5351c_write(data, sizeof(data)); } /* * Register 187: Fanout Enable * Turn on XO and MultiSynth fanout only. */ void si5351c_enable_xo_and_ms_fanout() { uint8_t data[] = { 187, 0xD0 }; si5351c_write(data, sizeof(data)); } /* * Register 15: PLL Input Source * CLKIN_DIV=0 (Divide by 1) * PLLB_SRC=0 (XTAL input) * PLLA_SRC=0 (XTAL input) */ void si5351c_configure_pll_sources(const enum pll_sources source) { uint8_t data[] = { 15, 0x00 }; if (source == PLL_SOURCE_CLKIN) { data[1] = 0x0C; } si5351c_write(data, sizeof(data)); } /* MultiSynth NA (PLL1) */ void si5351c_configure_pll1_multisynth(const enum pll_sources source) { //init plla to (0x0e00+512)/128*25mhz xtal = 800mhz -> int mode uint8_t data[] = { 26, 0x00, 0x01, 0x00, 0x0E, 0x00, 0x00, 0x00, 0x00 }; if (source == PLL_SOURCE_CLKIN) { /* 10 MHz input on CLKIN instead of 25 MHz XTAL */ data[4] = 0x26; } si5351c_write(data, sizeof(data)); //~ data[0] =34;// pllb //~ si5351c_write(data, sizeof(data)); } void si5351c_configure_multisynth(const uint_fast8_t ms_number, const uint32_t p1, const uint32_t p2, const uint32_t p3, const uint_fast8_t r_div) { /* * TODO: Check for p3 > 0? 0 has no meaning in fractional mode? * And it makes for more jitter in integer mode. */ /* * r is the r divider value encoded: * 0 means divide by 1 * 1 means divide by 2 * 2 means divide by 4 * ... * 7 means divide by 128 */ const uint_fast8_t register_number = 42 + (ms_number * 8); uint8_t data[] = { register_number, (p3 >> 8) & 0xFF, (p3 >> 0) & 0xFF, (r_div << 4) | (0 << 2) | ((p1 >> 16) & 0x3), (p1 >> 8) & 0xFF, (p1 >> 0) & 0xFF, (((p3 >> 16) & 0xF) << 4) | (((p2 >> 16) & 0xF) << 0), (p2 >> 8) & 0xFF, (p2 >> 0) & 0xFF }; si5351c_write(data, sizeof(data)); } #ifdef JELLYBEAN /* * Registers 16 through 23: CLKx Control * CLK0: * CLK0_PDN=0 (powered up) * MS0_INT=1 (integer mode) * MS0_SRC=0 (PLLA as source for MultiSynth 0) * CLK0_INV=0 (not inverted) * CLK0_SRC=3 (MS0 as input source) * CLK0_IDRV=3 (8mA) * CLK1: * CLK1_PDN=0 (powered up) * MS1_INT=1 (integer mode) * MS1_SRC=0 (PLLA as source for MultiSynth 1) * CLK1_INV=0 (not inverted) * CLK1_SRC=2 (MS0 as input source) * CLK1_IDRV=3 (8mA) * CLK2: * CLK2_PDN=0 (powered up) * MS2_INT=1 (integer mode) * MS2_SRC=0 (PLLA as source for MultiSynth 2) * CLK2_INV=0 (not inverted) * CLK2_SRC=2 (MS0 as input source) * CLK2_IDRV=3 (8mA) * CLK3: * CLK3_PDN=0 (powered up) * MS3_INT=1 (integer mode) * MS3_SRC=0 (PLLA as source for MultiSynth 3) * CLK3_INV=0 (inverted) * CLK3_SRC=2 (MS0 as input source) * CLK3_IDRV=3 (8mA) * CLK4: * CLK4_PDN=0 (powered up) * MS4_INT=0 (fractional mode -- to support 12MHz to LPC for USB DFU) * MS4_SRC=0 (PLLA as source for MultiSynth 4) * CLK4_INV=0 (not inverted) * CLK4_SRC=3 (MS4 as input source) * CLK4_IDRV=3 (8mA) * CLK5: * CLK5_PDN=0 (powered up) * MS5_INT=1 (integer mode) * MS5_SRC=0 (PLLA as source for MultiSynth 5) * CLK5_INV=0 (not inverted) * CLK5_SRC=3 (MS5 as input source) * CLK5_IDRV=3 (8mA) */ void si5351c_configure_clock_control() { uint8_t data[] = { 16, 0x4F, 0x4B, 0x4B, 0x4B, 0x0F, 0x4F, 0xC0, 0xC0 }; si5351c_write(data, sizeof(data)); } #endif #if (defined JAWBREAKER || defined HACKRF_ONE) void si5351c_configure_clock_control() { uint8_t data[] = {16 ,SI5351C_CLK_FRAC_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA) ,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_0_4) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA) ,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_0_4) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA) ,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_8MA) ,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_6MA) ,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_4MA) ,SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE /*not connected, but: plla int mode*/ ,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(SI5351C_CLK_PLL_SRC_A) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_8MA) }; si5351c_write(data, sizeof(data)); } #endif /* Enable CLK outputs 0, 1, 2, 3, 4, 5, 7 only. */ void si5351c_enable_clock_outputs() { uint8_t data[] = { 3, 0x40 }; si5351c_write(data, sizeof(data)); } void si5351c_set_int_mode(const uint_fast8_t ms_number, const uint_fast8_t on){ uint8_t data[] = {16, 0}; if(ms_number < 8){ data[0] = 16 + ms_number; data[1] = si5351c_read_single(data[0]); if(on) data[1] |= SI5351C_CLK_INT_MODE; else data[1] &= ~(SI5351C_CLK_INT_MODE); si5351c_write(data, 2); } } void si5351c_set_clock_source(const enum pll_sources source) { si5351c_configure_pll_sources(source); si5351c_configure_pll1_multisynth(source); active_clock_source = source; } void si5351c_activate_best_clock_source(void) { uint8_t device_status = si5351c_read_single(0); if (device_status & SI5351C_LOS) { /* CLKIN not detected */ if (active_clock_source == PLL_SOURCE_CLKIN) { si5351c_set_clock_source(PLL_SOURCE_XTAL); } } else { /* CLKIN detected */ if (active_clock_source == PLL_SOURCE_XTAL) { si5351c_set_clock_source(PLL_SOURCE_CLKIN); } } }