/* * Copyright 2016 Dominic Spill * Copyright 2016 Mike Walters * Copyright 2017 Michael Ossmann * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #define _FILE_OFFSET_BITS 64 #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #ifdef _WIN32 #define _USE_MATH_DEFINES #include #ifdef _MSC_VER #ifdef _WIN64 typedef int64_t ssize_t; #else typedef int32_t ssize_t; #endif #define strtoull _strtoui64 #define snprintf _snprintf int gettimeofday(struct timeval *tv, void* ignored) { FILETIME ft; unsigned __int64 tmp = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmp |= ft.dwHighDateTime; tmp <<= 32; tmp |= ft.dwLowDateTime; tmp /= 10; tmp -= 11644473600000000Ui64; tv->tv_sec = (long)(tmp / 1000000UL); tv->tv_usec = (long)(tmp % 1000000UL); } return 0; } #endif #endif #if defined(__GNUC__) #include #include #endif #include #include #define FD_BUFFER_SIZE (8*1024) #define FREQ_ONE_MHZ (1000000ull) #define FREQ_MIN_MHZ (0) /* 0 MHz */ #define FREQ_MAX_MHZ (7250) /* 7250 MHz */ #define DEFAULT_SAMPLE_RATE_HZ (20000000) /* 20MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (15000000) /* 15MHz default */ #define TUNE_STEP (DEFAULT_SAMPLE_RATE_HZ / FREQ_ONE_MHZ) #define OFFSET 7500000 #define BLOCKS_PER_TRANSFER 16 #define THROWAWAY_BLOCKS 2 #if defined _WIN32 #define m_sleep(a) Sleep( (a) ) #else #define m_sleep(a) usleep((a*1000)) #endif uint32_t num_samples = SAMPLES_PER_BLOCK; uint32_t num_sweeps = 0; int num_ranges = 0; uint16_t frequencies[MAX_SWEEP_RANGES*2]; int step_count; static float TimevalDiff(const struct timeval *a, const struct timeval *b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t ulong_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; ulong_value = strtoul(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = (uint32_t)ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max) { int result; char *sep = strchr(s, ':'); if (!sep) return HACKRF_ERROR_INVALID_PARAM; *sep = 0; result = parse_u32(s, value_min); if (result != HACKRF_SUCCESS) return result; result = parse_u32(sep + 1, value_max); if (result != HACKRF_SUCCESS) return result; return HACKRF_SUCCESS; } volatile bool do_exit = false; FILE* fd = NULL; volatile uint32_t byte_count = 0; volatile uint64_t sweep_count = 0; struct timeval time_start; struct timeval t_start; struct timeval time_stamp; bool amp = false; uint32_t amp_enable; bool antenna = false; uint32_t antenna_enable; bool binary_output = false; bool ifft_output = false; bool one_shot = false; bool finite_mode = false; volatile bool sweep_started = false; int fftSize = 20; double fft_bin_width; fftwf_complex *fftwIn = NULL; fftwf_complex *fftwOut = NULL; fftwf_plan fftwPlan = NULL; fftwf_complex *ifftwIn = NULL; fftwf_complex *ifftwOut = NULL; fftwf_plan ifftwPlan = NULL; uint32_t ifft_idx = 0; float* pwr; float* window; float logPower(fftwf_complex in, float scale) { float re = in[0] * scale; float im = in[1] * scale; float magsq = re * re + im * im; return (float) (log2(magsq) * 10.0f / log2(10.0f)); } int rx_callback(hackrf_transfer* transfer) { int8_t* buf; uint8_t* ubuf; uint64_t frequency; /* in Hz */ uint64_t band_edge; uint32_t record_length; int i, j, ifft_bins; struct tm *fft_time; char time_str[50]; struct timeval usb_transfer_time; if(NULL == fd) { return -1; } gettimeofday(&usb_transfer_time, NULL); byte_count += transfer->valid_length; buf = (int8_t*) transfer->buffer; ifft_bins = fftSize * step_count; for(j=0; j i; i++) { ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize*5)/8][0]; ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize*5)/8][1]; } ifft_idx += fftSize / 2; ifft_idx %= ifft_bins; for(i = 0; (fftSize / 4) > i; i++) { ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize/8)][0]; ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize/8)][1]; } } else { time_t time_stamp_seconds = time_stamp.tv_sec; fft_time = localtime(&time_stamp_seconds); strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time); fprintf(fd, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u", time_str, (long int)time_stamp.tv_usec, (uint64_t)(frequency), (uint64_t)(frequency+DEFAULT_SAMPLE_RATE_HZ/4), fft_bin_width, fftSize); for(i = 0; (fftSize / 4) > i; i++) { fprintf(fd, ", %.2f", pwr[i + 1 + (fftSize*5)/8]); } fprintf(fd, "\n"); fprintf(fd, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u", time_str, (long int)time_stamp.tv_usec, (uint64_t)(frequency+(DEFAULT_SAMPLE_RATE_HZ/2)), (uint64_t)(frequency+((DEFAULT_SAMPLE_RATE_HZ*3)/4)), fft_bin_width, fftSize); for(i = 0; (fftSize / 4) > i; i++) { fprintf(fd, ", %.2f", pwr[i + 1 + (fftSize/8)]); } fprintf(fd, "\n"); } } return 0; } static void usage() { fprintf(stderr, "Usage:\n"); fprintf(stderr, "\t[-h] # this help\n"); fprintf(stderr, "\t[-d serial_number] # Serial number of desired HackRF\n"); fprintf(stderr, "\t[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable\n"); fprintf(stderr, "\t[-f freq_min:freq_max] # minimum and maximum frequencies in MHz\n"); fprintf(stderr, "\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable\n"); fprintf(stderr, "\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n"); fprintf(stderr, "\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n"); fprintf(stderr, "\t[-n num_samples] # Number of samples per frequency, 8192-4294967296\n"); fprintf(stderr, "\t[-w bin_width] # FFT bin width (frequency resolution) in Hz\n"); fprintf(stderr, "\t[-1] # one shot mode\n"); fprintf(stderr, "\t[-N num_sweeps] # Number of sweeps to perform\n"); fprintf(stderr, "\t[-B] # binary output\n"); fprintf(stderr, "\t[-I] # binary inverse FFT output\n"); fprintf(stderr, "\t-r filename # output file\n"); fprintf(stderr, "\n"); fprintf(stderr, "Output fields:\n"); fprintf(stderr, "\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n"); } static hackrf_device* device = NULL; #ifdef _MSC_VER BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; return TRUE; } return FALSE; } #else void sigint_callback_handler(int signum) { fprintf(stderr, "Caught signal %d\n", signum); do_exit = true; } #endif int main(int argc, char** argv) { int opt, i, result = 0; const char* path = NULL; const char* serial_number = NULL; int exit_code = EXIT_SUCCESS; struct timeval time_now; float time_diff; float sweep_rate; unsigned int lna_gain=16, vga_gain=20; uint32_t freq_min = 0; uint32_t freq_max = 6000; uint32_t requested_fft_bin_width; while( (opt = getopt(argc, argv, "a:f:p:l:g:d:n:N:w:1BIr:h?")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'd': serial_number = optarg; break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'f': result = parse_u32_range(optarg, &freq_min, &freq_max); if(freq_min >= freq_max) { fprintf(stderr, "argument error: freq_max must be greater than freq_min.\n"); usage(); return EXIT_FAILURE; } if(FREQ_MAX_MHZ 1 ) { fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (antenna) { if (antenna_enable > 1) { fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (0 == num_ranges) { frequencies[0] = (uint16_t)freq_min; frequencies[1] = (uint16_t)freq_max; num_ranges++; } if(binary_output && ifft_output) { fprintf(stderr, "argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n"); return EXIT_FAILURE; } if(ifft_output && (1 < num_ranges)) { fprintf(stderr, "argument error: only one frequency range is supported in IFFT output (-I) mode.\n"); return EXIT_FAILURE; } if(4 > fftSize) { fprintf(stderr, "argument error: FFT bin width (-w) must be no more than one quarter the sample rate\n"); return EXIT_FAILURE; } if(8184 < fftSize) { fprintf(stderr, "argument error: FFT bin width (-w) too small, resulted in more than 8184 FFT bins\n"); return EXIT_FAILURE; } /* In interleaved mode, the FFT bin selection works best if the total * number of FFT bins is equal to an odd multiple of four. * (e.g. 4, 12, 20, 28, 36, . . .) */ while((fftSize + 4) % 8) { fftSize++; } fft_bin_width = (double)DEFAULT_SAMPLE_RATE_HZ / fftSize; fftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize); fftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize); fftwPlan = fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, FFTW_MEASURE); pwr = (float*)fftwf_malloc(sizeof(float) * fftSize); window = (float*)fftwf_malloc(sizeof(float) * fftSize); for (i = 0; i < fftSize; i++) { window[i] = (float) (0.5f * (1.0f - cos(2 * M_PI * i / (fftSize - 1)))); } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if((NULL == path) || (strcmp(path, "-") == 0)) { fd = stdout; } else { fd = fopen(path, "wb"); } if(NULL == fd) { fprintf(stderr, "Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change fd buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE); if( result != 0 ) { fprintf(stderr, "setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } #ifdef _MSC_VER SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif fprintf(stderr, "call hackrf_sample_rate_set(%.03f MHz)\n", ((float)DEFAULT_SAMPLE_RATE_HZ/(float)FREQ_ONE_MHZ)); result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n", ((float)DEFAULT_BASEBAND_FILTER_BANDWIDTH/(float)FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth(device, DEFAULT_BASEBAND_FILTER_BANDWIDTH); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); /* * For each range, plan a whole number of tuning steps of a certain * bandwidth. Increase high end of range if necessary to accommodate a * whole number of steps, minimum 1. */ for(i = 0; i < num_ranges; i++) { step_count = 1 + (frequencies[2*i+1] - frequencies[2*i] - 1) / TUNE_STEP; frequencies[2*i+1] = (uint16_t) (frequencies[2*i] + step_count * TUNE_STEP); fprintf(stderr, "Sweeping from %u MHz to %u MHz\n", frequencies[2*i], frequencies[2*i+1]); } if(ifft_output) { ifftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count); ifftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count); ifftwPlan = fftwf_plan_dft_1d(fftSize * step_count, ifftwIn, ifftwOut, FFTW_BACKWARD, FFTW_MEASURE); } result = hackrf_init_sweep(device, frequencies, num_ranges, num_samples * 2, TUNE_STEP * FREQ_ONE_MHZ, OFFSET, INTERLEAVED); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_init_sweep() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } result |= hackrf_start_rx_sweep(device, rx_callback, NULL); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_start_rx_sweep() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (amp) { fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (antenna) { fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable); result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } gettimeofday(&t_start, NULL); fprintf(stderr, "Stop with Ctrl-C\n"); while((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) { float time_difference; m_sleep(50); gettimeofday(&time_now, NULL); time_difference = TimevalDiff(&time_now, &t_start); sweep_rate = (float)sweep_count / time_difference; fprintf(stderr, "%" PRIu64 " total sweeps completed, %.2f sweeps/second\n", sweep_count, sweep_rate); if (byte_count == 0) { exit_code = EXIT_FAILURE; fprintf(stderr, "\nCouldn't transfer any data for one second.\n"); break; } byte_count = 0; } result = hackrf_is_streaming(device); if (do_exit) { fprintf(stderr, "\nExiting...\n"); } else { fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&time_now, NULL); time_diff = TimevalDiff(&time_now, &t_start); fprintf(stderr, "Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n", sweep_count, time_diff, sweep_rate); if(device != NULL) { result = hackrf_stop_rx(device); if(result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_stop_rx() done\n"); } result = hackrf_close(device); if(result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); } else { fprintf(stderr, "hackrf_close() done\n"); } hackrf_exit(); fprintf(stderr, "hackrf_exit() done\n"); } if(fd != NULL) { fclose(fd); fd = NULL; fprintf(stderr, "fclose(fd) done\n"); } fftwf_free(fftwIn); fftwf_free(fftwOut); fftwf_free(pwr); fftwf_free(window); fftwf_free(ifftwIn); fftwf_free(ifftwOut); fprintf(stderr, "exit\n"); return exit_code; }