/* * Copyright 2016 Mike Walters, Dominic Spill * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "usb_api_sweep.h" #include "usb_queue.h" #include #include #include "usb_api_transceiver.h" #include "usb_bulk_buffer.h" #include "m0_state.h" #include "tuning.h" #include "usb_endpoint.h" #include "streaming.h" #include #define MIN(x,y) ((x)<(y)?(x):(y)) #define MAX(x,y) ((x)>(y)?(x):(y)) #define FREQ_GRANULARITY 1000000 #define MAX_RANGES 10 #define THROWAWAY_BUFFERS 2 static uint64_t sweep_freq; static uint16_t frequencies[MAX_RANGES * 2]; static unsigned char data[9 + MAX_RANGES * 2 * sizeof(frequencies[0])]; static uint16_t num_ranges = 0; static uint32_t dwell_blocks = 0; static uint32_t step_width = 0; static uint32_t offset = 0; static enum sweep_style style = LINEAR; /* Do this before starting sweep mode with request_transceiver_mode(). */ usb_request_status_t usb_vendor_request_init_sweep( usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage) { uint32_t num_bytes; int i; if (stage == USB_TRANSFER_STAGE_SETUP) { num_bytes = (endpoint->setup.index << 16) | endpoint->setup.value; dwell_blocks = num_bytes / 0x4000; if(1 > dwell_blocks) { return USB_REQUEST_STATUS_STALL; } num_ranges = (endpoint->setup.length - 9) / (2 * sizeof(frequencies[0])); if((1 > num_ranges) || (MAX_RANGES < num_ranges)) { return USB_REQUEST_STATUS_STALL; } usb_transfer_schedule_block(endpoint->out, &data, endpoint->setup.length, NULL, NULL); } else if (stage == USB_TRANSFER_STAGE_DATA) { step_width = ((uint32_t)(data[3]) << 24) | ((uint32_t)(data[2]) << 16) | ((uint32_t)(data[1]) << 8) | data[0]; if(1 > step_width) { return USB_REQUEST_STATUS_STALL; } offset = ((uint32_t)(data[7]) << 24) | ((uint32_t)(data[6]) << 16) | ((uint32_t)(data[5]) << 8) | data[4]; style = data[8]; if(INTERLEAVED < style) { return USB_REQUEST_STATUS_STALL; } for(i=0; i<(num_ranges*2); i++) { frequencies[i] = ((uint16_t)(data[10+i*2]) << 8) + data[9+i*2]; } sweep_freq = (uint64_t)frequencies[0] * FREQ_GRANULARITY; set_freq(sweep_freq + offset); usb_transfer_schedule_ack(endpoint->in); } return USB_REQUEST_STATUS_OK; } void sweep_bulk_transfer_complete(void *user_data, unsigned int bytes_transferred) { (void) user_data; (void) bytes_transferred; // For each buffer transferred, we need to bump the count by three buffers // worth of data, to allow for the discarded buffers. m0_state.m4_count += 3 * 0x4000; } void sweep_mode(uint32_t seq) { // Sweep mode is implemented using timed M0 operations, as follows: // // 0. M4 initially puts the M0 into RX mode, with an m0_count threshold // of 16K and a next mode of WAIT. // // 1. M4 spins until the M0 switches to WAIT mode. // // 2. M0 captures one 16K block of samples, and switches to WAIT mode. // // 3. M4 sees the mode change, advances the m0_count target by 32K, and // sets next mode to RX. // // 4. M4 adds the sweep metadata at the start of the block and // schedules a bulk transfer for the block. // // 5. M4 retunes - this takes about 760us worst-case, so should be // complete before the M0 goes back to RX. // // 6. M4 spins until the M0 mode changes to RX, then advances the // m0_count limit by 16K and sets the next mode to WAIT. // // 7. Process repeats from step 1. unsigned int phase = 0; bool odd = true; uint16_t range = 0; uint8_t *buffer; transceiver_startup(TRANSCEIVER_MODE_RX_SWEEP); // Set M0 to RX first buffer, then wait. m0_state.threshold = 0x4000; m0_state.next_mode = M0_MODE_WAIT; m0_state.mode = M0_MODE_RX; baseband_streaming_enable(&sgpio_config); while (transceiver_request.seq == seq) { // Wait for M0 to finish receiving a buffer. while (m0_state.mode != M0_MODE_WAIT) if (transceiver_request.seq != seq) goto end; // Set M0 to switch back to RX after two more buffers. m0_state.threshold += 0x8000; m0_state.next_mode = M0_MODE_RX; // Write metadata to buffer. buffer = &usb_bulk_buffer[phase * 0x4000]; *buffer = 0x7f; *(buffer+1) = 0x7f; *(buffer+2) = sweep_freq & 0xff; *(buffer+3) = (sweep_freq >> 8) & 0xff; *(buffer+4) = (sweep_freq >> 16) & 0xff; *(buffer+5) = (sweep_freq >> 24) & 0xff; *(buffer+6) = (sweep_freq >> 32) & 0xff; *(buffer+7) = (sweep_freq >> 40) & 0xff; *(buffer+8) = (sweep_freq >> 48) & 0xff; *(buffer+9) = (sweep_freq >> 56) & 0xff; // Set up IN transfer of buffer. usb_transfer_schedule_block( &usb_endpoint_bulk_in, buffer, 0x4000, sweep_bulk_transfer_complete, NULL ); // Use other buffer next time. phase = (phase + 1) % 2; // Calculate next sweep frequency. if(INTERLEAVED == style) { if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) { range = (range + 1) % num_ranges; sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY; } else { if(odd) { sweep_freq += step_width/4; } else { sweep_freq += 3*step_width/4; } } odd = !odd; } else { if((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY)) { range = (range + 1) % num_ranges; sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY; } else { sweep_freq += step_width; } } // Retune to new frequency. nvic_disable_irq(NVIC_USB0_IRQ); set_freq(sweep_freq + offset); nvic_enable_irq(NVIC_USB0_IRQ); // Wait for M0 to resume RX. while (m0_state.mode != M0_MODE_RX) if (transceiver_request.seq != seq) goto end; // Set M0 to switch back to WAIT after filling next buffer. m0_state.threshold += 0x4000; m0_state.next_mode = M0_MODE_WAIT; } end: transceiver_shutdown(); }