/* * Copyright 2012 Jared Boone * Copyright 2013 Benjamin Vernoux * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #ifdef _WIN32 #include #ifdef _MSC_VER #ifdef _WIN64 typedef int64_t ssize_t; #else typedef int32_t ssize_t; #endif #define strtoull _strtoui64 #define snprintf _snprintf int gettimeofday(struct timeval *tv, void* ignored) { FILETIME ft; unsigned __int64 tmp = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmp |= ft.dwHighDateTime; tmp <<= 32; tmp |= ft.dwLowDateTime; tmp /= 10; tmp -= 11644473600000000Ui64; tv->tv_sec = (long)(tmp / 1000000UL); tv->tv_usec = (long)(tmp % 1000000UL); } return 0; } #endif #else #include #include #endif #include #define FD_BUFFER_SIZE (8*1024) #define FREQ_ONE_MHZ (1000000ull) #define DEFAULT_FREQ_HZ (900000000ull) /* 900MHz */ #define FREQ_MIN_HZ (5000000ull) /* 5MHz */ #define FREQ_MAX_HZ (6800000000ull) /* 6800MHz */ #define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */ #define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */ #define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */ #define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */ #if defined _WIN32 #define sleep(a) Sleep( (a*1000) ) #endif /* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */ typedef struct { char groupID[4]; /* 'RIFF' */ uint32_t size; /* File size + 8bytes */ char riffType[4]; /* 'WAVE'*/ } t_WAVRIFF_hdr; #define FormatID "fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */ typedef struct { char chunkID[4]; /* 'fmt ' */ uint32_t chunkSize; /* 16 fixed */ uint16_t wFormatTag; /* 1 fixed */ uint16_t wChannels; /* 2 fixed */ uint32_t dwSamplesPerSec; /* Freq Hz sampling */ uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */ uint16_t wBlockAlign; /* 2 fixed */ uint16_t wBitsPerSample; /* 8 fixed */ } t_FormatChunk; typedef struct { char chunkID[4]; /* 'data' */ uint32_t chunkSize; /* Size of data in bytes */ /* Samples I(8bits) then Q(8bits), I, Q ... */ } t_DataChunk; typedef struct { t_WAVRIFF_hdr hdr; t_FormatChunk fmt_chunk; t_DataChunk data_chunk; } t_wav_file_hdr; t_wav_file_hdr wave_file_hdr = { /* t_WAVRIFF_hdr */ { { 'R', 'I', 'F', 'F' }, /* groupID */ 0, /* size to update later */ { 'W', 'A', 'V', 'E' } }, /* t_FormatChunk */ { { 'f', 'm', 't', ' ' }, /* char chunkID[4]; */ 16, /* uint32_t chunkSize; */ 1, /* uint16_t wFormatTag; 1 fixed */ 2, /* uint16_t wChannels; 2 fixed */ 0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */ 0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */ 2, /* uint16_t wBlockAlign; 2 fixed */ 8, /* uint16_t wBitsPerSample; 8 fixed */ }, /* t_DataChunk */ { { 'd', 'a', 't', 'a' }, /* char chunkID[4]; */ 0, /* uint32_t chunkSize; to update later */ } }; typedef enum { TRANSCEIVER_MODE_OFF = 0, TRANSCEIVER_MODE_RX = 1, TRANSCEIVER_MODE_TX = 2 } transceiver_mode_t; static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX; static float TimevalDiff(const struct timeval *a, const struct timeval *b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u64(char* s, uint64_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t u64_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; u64_value = strtoull(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = u64_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t ulong_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; ulong_value = strtoul(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = (uint32_t)ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } volatile bool do_exit = false; FILE* fd = NULL; volatile uint32_t byte_count = 0; bool receive = false; bool receive_wav = false; bool transmit = false; struct timeval time_start; struct timeval t_start; bool freq = false; uint64_t freq_hz; bool amp = false; uint32_t amp_enable; bool sample_rate = false; uint32_t sample_rate_hz; bool limit_num_samples = false; uint64_t samples_to_xfer = 0; uint64_t bytes_to_xfer = 0; bool baseband_filter_bw = false; uint32_t baseband_filter_bw_hz = 0; int rx_callback(hackrf_transfer* transfer) { int bytes_to_write; if( fd != NULL ) { ssize_t bytes_written; byte_count += transfer->valid_length; bytes_to_write = transfer->valid_length; if (limit_num_samples) { if (bytes_to_write >= bytes_to_xfer) { bytes_to_write = (int)bytes_to_xfer; } bytes_to_xfer -= bytes_to_write; } bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, fd); if ((bytes_written != bytes_to_write) || (limit_num_samples && (bytes_to_xfer == 0))) { fclose(fd); fd = NULL; return -1; } else { return 0; } } else { return -1; } } int tx_callback(hackrf_transfer* transfer) { int bytes_to_read; if( fd != NULL ) { ssize_t bytes_read; byte_count += transfer->valid_length; bytes_to_read = transfer->valid_length; if (limit_num_samples) { if (bytes_to_read >= bytes_to_xfer) { /* * In this condition, we probably tx some of the previous * buffer contents at the end. :-( */ bytes_to_read = (int)bytes_to_xfer; } bytes_to_xfer -= bytes_to_read; } bytes_read = fread(transfer->buffer, 1, bytes_to_read, fd); if ((bytes_read != bytes_to_read) || (limit_num_samples && (bytes_to_xfer == 0))) { fclose(fd); fd = NULL; return -1; } else { return 0; } } else { return -1; } } static void usage() { printf("Usage:\n"); printf("\t-w # Receive data into file with WAV header and automatic name.\n"); printf("\t-r # Receive data into file.\n"); printf("\t-t # Transmit data from file.\n"); printf("\t[-f set_freq_hz] # Set Freq in Hz between [%lluMHz, %lluMHz].\n", FREQ_MIN_HZ/FREQ_ONE_MHZ, FREQ_MAX_HZ/FREQ_ONE_MHZ); printf("\t[-a set_amp] # Set Amp 1=Enable, 0=Disable.\n"); printf("\t[-l gain_db] # Set lna gain, 0-40dB, 8dB steps\n"); printf("\t[-i gain_db] # Set vga(if) gain, 0-62dB, 2dB steps\n"); printf("\t[-x gain_db] # Set TX vga gain, 0-47dB, 1dB steps\n"); printf("\t[-s sample_rate_hz] # Set sample rate in Hz (8/10/12.5/16/20MHz, default %lldMHz).\n", DEFAULT_SAMPLE_RATE_HZ/FREQ_ONE_MHZ); printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n"); printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in MHz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default < sample_rate_hz.\n" ); } static hackrf_device* device = NULL; #ifdef _MSC_VER BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stdout, "Caught signal %d\n", signum); do_exit = true; return TRUE; } return FALSE; } #else void sigint_callback_handler(int signum) { fprintf(stdout, "Caught signal %d\n", signum); do_exit = true; } #endif #define PATH_FILE_MAX_LEN (FILENAME_MAX) #define DATE_TIME_MAX_LEN (32) int main(int argc, char** argv) { int opt; char path_file[PATH_FILE_MAX_LEN]; char date_time[DATE_TIME_MAX_LEN]; const char* path = NULL; int result; time_t rawtime; struct tm * timeinfo; long int file_pos; int exit_code = EXIT_SUCCESS; struct timeval t_end; float time_diff; unsigned int lna_gain=8, vga_gain=20, txvga_gain=0; while( (opt = getopt(argc, argv, "wr:t:f:a:s:n:b:l:i:x:")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'w': receive_wav = true; break; case 'r': receive = true; path = optarg; break; case 't': transmit = true; path = optarg; break; case 'f': freq = true; result = parse_u64(optarg, &freq_hz); break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'i': result = parse_u32(optarg, &vga_gain); break; case 'x': result = parse_u32(optarg, &txvga_gain); break; case 's': sample_rate = true; result = parse_u32(optarg, &sample_rate_hz); break; case 'n': limit_num_samples = true; result = parse_u64(optarg, &samples_to_xfer); bytes_to_xfer = samples_to_xfer * 2ull; break; case 'b': baseband_filter_bw = true; result = parse_u32(optarg, &baseband_filter_bw_hz); break; default: printf("unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if( result != HACKRF_SUCCESS ) { printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) { printf("argument error: num_samples must be less than %llu/%lluMio\n", SAMPLES_TO_XFER_MAX, SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ); usage(); return EXIT_FAILURE; } if( freq ) { if( (freq_hz >= FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) ) { printf("argument error: set_freq_hz shall be between [%llu, %llu[.\n", FREQ_MIN_HZ, FREQ_MAX_HZ); usage(); return EXIT_FAILURE; } }else { /* Use default freq */ freq_hz = DEFAULT_FREQ_HZ; } if( amp ) { if( amp_enable > 1 ) { printf("argument error: set_amp shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if( sample_rate == false ) { sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ; } if( baseband_filter_bw ) { /* Compute nearest freq for bw filter */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz); }else { /* Compute default value depending on sample rate */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz); } if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) { printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) { printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if( (transmit == false) && (receive == receive_wav) ) { printf("receive -r and receive_wav -w options are mutually exclusive\n"); usage(); return EXIT_FAILURE; } if( receive_wav == false ) { if( transmit == receive ) { if( transmit == true ) { printf("receive -r and transmit -t options are mutually exclusive\n"); } else { printf("specify either transmit -t or receive -r or receive_wav -w option\n"); } usage(); return EXIT_FAILURE; } } if( receive ) { transceiver_mode = TRANSCEIVER_MODE_RX; } if( transmit ) { transceiver_mode = TRANSCEIVER_MODE_TX; } if( receive_wav ) { time (&rawtime); timeinfo = localtime (&rawtime); transceiver_mode = TRANSCEIVER_MODE_RX; /* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */ strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo); snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) ); path = path_file; printf("Receive wav file: %s\n", path); } if( path == NULL ) { printf("specify a path to a file to transmit/receive\n"); usage(); return EXIT_FAILURE; } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open(&device); if( result != HACKRF_SUCCESS ) { printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { fd = fopen(path, "wb"); } else { fd = fopen(path, "rb"); } if( fd == NULL ) { printf("Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change fd buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE); if( result != 0 ) { printf("setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } /* Write Wav header */ if( receive_wav ) { fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } #ifdef _MSC_VER SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif printf("call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ)); result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1); if( result != HACKRF_SUCCESS ) { printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n", baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); result |= hackrf_start_rx(device, rx_callback, NULL); } else { result = hackrf_set_txvga_gain(device, txvga_gain); result |= hackrf_start_tx(device, tx_callback, NULL); } if( result != HACKRF_SUCCESS ) { printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } printf("call hackrf_set_freq(%lu Hz/%.03f MHz)\n", freq_hz, ((double)freq_hz/(double)FREQ_ONE_MHZ) ); result = hackrf_set_freq(device, freq_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( amp ) { printf("call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( limit_num_samples ) { printf("samples_to_xfer %lu/%lluMio\n", samples_to_xfer, (samples_to_xfer/FREQ_ONE_MHZ) ); } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); printf("Stop with Ctrl-C\n"); while( (hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false) ) { uint32_t byte_count_now; struct timeval time_now; float time_difference, rate; sleep(1); gettimeofday(&time_now, NULL); byte_count_now = byte_count; byte_count = 0; time_difference = TimevalDiff(&time_now, &time_start); rate = (float)byte_count_now / time_difference; printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n", (byte_count_now / 1e6f), time_difference, (rate / 1e6f) ); time_start = time_now; if (byte_count_now == 0) { exit_code = EXIT_FAILURE; printf("\nCouldn't transfer any bytes for one second.\n"); break; } } result = hackrf_is_streaming(device); if (do_exit) { printf("\nUser cancel, exiting...\n"); } else { printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&t_end, NULL); time_diff = TimevalDiff(&t_end, &t_start); printf("Total time: %5.5f s\n", time_diff); if(device != NULL) { if( receive ) { result = hackrf_stop_rx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_rx() done\n"); } } if( transmit ) { result = hackrf_stop_tx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_tx() done\n"); } } result = hackrf_close(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_close() done\n"); } hackrf_exit(); printf("hackrf_exit() done\n"); } if(fd != NULL) { if( receive_wav ) { /* Get size of file */ file_pos = ftell(fd); /* Update Wav Header */ wave_file_hdr.hdr.size = file_pos+8; wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz; wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2; wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr); /* Overwrite header with updated data */ rewind(fd); fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } fclose(fd); fd = NULL; printf("fclose(fd) done\n"); } printf("exit\n"); return exit_code; }