/* * Copyright 2012 Jared Boone * Copyright 2013-2014 Benjamin Vernoux * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #define _FILE_OFFSET_BITS 64 #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #ifdef _WIN32 #include #ifdef _MSC_VER #ifdef _WIN64 typedef int64_t ssize_t; #else typedef int32_t ssize_t; #endif #define strtoull _strtoui64 #define snprintf _snprintf int gettimeofday(struct timeval *tv, void* ignored) { FILETIME ft; unsigned __int64 tmp = 0; if (NULL != tv) { GetSystemTimeAsFileTime(&ft); tmp |= ft.dwHighDateTime; tmp <<= 32; tmp |= ft.dwLowDateTime; tmp /= 10; tmp -= 11644473600000000Ui64; tv->tv_sec = (long)(tmp / 1000000UL); tv->tv_usec = (long)(tmp % 1000000UL); } return 0; } #endif #endif #if defined(__GNUC__) #include #include #endif #include #define FD_BUFFER_SIZE (8*1024) #define FREQ_ONE_MHZ (1000000ll) #define DEFAULT_FREQ_HZ (900000000ll) /* 900MHz */ #define FREQ_MIN_HZ (0ull) /* 0 Hz */ #define FREQ_MAX_HZ (7250000000ll) /* 7250MHz */ #define IF_MIN_HZ (2150000000ll) #define IF_MAX_HZ (2750000000ll) #define LO_MIN_HZ (84375000ll) #define LO_MAX_HZ (5400000000ll) #define DEFAULT_LO_HZ (1000000000ll) #define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */ #define DEFAULT_BASEBAND_FILTER_BANDWIDTH (5000000) /* 5MHz default */ #define SAMPLES_TO_XFER_MAX (0x8000000000000000ull) /* Max value */ #define BASEBAND_FILTER_BW_MIN (1750000) /* 1.75 MHz min value */ #define BASEBAND_FILTER_BW_MAX (28000000) /* 28 MHz max value */ #if defined _WIN32 #define sleep(a) Sleep( (a*1000) ) #endif typedef enum { TRANSCEIVER_MODE_OFF = 0, TRANSCEIVER_MODE_RX = 1, TRANSCEIVER_MODE_TX = 2, TRANSCEIVER_MODE_SS = 3, } transceiver_mode_t; typedef enum { HW_SYNC_MODE_OFF = 0, HW_SYNC_MODE_ON = 1, } hw_sync_mode_t; /* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */ typedef struct { char groupID[4]; /* 'RIFF' */ uint32_t size; /* File size + 8bytes */ char riffType[4]; /* 'WAVE'*/ } t_WAVRIFF_hdr; #define FormatID "fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */ typedef struct { char chunkID[4]; /* 'fmt ' */ uint32_t chunkSize; /* 16 fixed */ uint16_t wFormatTag; /* 1 fixed */ uint16_t wChannels; /* 2 fixed */ uint32_t dwSamplesPerSec; /* Freq Hz sampling */ uint32_t dwAvgBytesPerSec; /* Freq Hz sampling x 2 */ uint16_t wBlockAlign; /* 2 fixed */ uint16_t wBitsPerSample; /* 8 fixed */ } t_FormatChunk; typedef struct { char chunkID[4]; /* 'data' */ uint32_t chunkSize; /* Size of data in bytes */ /* Samples I(8bits) then Q(8bits), I, Q ... */ } t_DataChunk; typedef struct { t_WAVRIFF_hdr hdr; t_FormatChunk fmt_chunk; t_DataChunk data_chunk; } t_wav_file_hdr; t_wav_file_hdr wave_file_hdr = { /* t_WAVRIFF_hdr */ { { 'R', 'I', 'F', 'F' }, /* groupID */ 0, /* size to update later */ { 'W', 'A', 'V', 'E' } }, /* t_FormatChunk */ { { 'f', 'm', 't', ' ' }, /* char chunkID[4]; */ 16, /* uint32_t chunkSize; */ 1, /* uint16_t wFormatTag; 1 fixed */ 2, /* uint16_t wChannels; 2 fixed */ 0, /* uint32_t dwSamplesPerSec; Freq Hz sampling to update later */ 0, /* uint32_t dwAvgBytesPerSec; Freq Hz sampling x 2 to update later */ 2, /* uint16_t wBlockAlign; 2 fixed */ 8, /* uint16_t wBitsPerSample; 8 fixed */ }, /* t_DataChunk */ { { 'd', 'a', 't', 'a' }, /* char chunkID[4]; */ 0, /* uint32_t chunkSize; to update later */ } }; static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX; #define U64TOA_MAX_DIGIT (31) typedef struct { char data[U64TOA_MAX_DIGIT+1]; } t_u64toa; t_u64toa ascii_u64_data1; t_u64toa ascii_u64_data2; static float TimevalDiff(const struct timeval *a, const struct timeval *b) { return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec); } int parse_u64(char* s, uint64_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t u64_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; u64_value = strtoull(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = u64_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int parse_u32(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; uint64_t ulong_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; ulong_value = strtoul(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = (uint32_t)ulong_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } static char *stringrev(char *str) { char *p1, *p2; if(! str || ! *str) return str; for(p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2) { *p1 ^= *p2; *p2 ^= *p1; *p1 ^= *p2; } return str; } char* u64toa(uint64_t val, t_u64toa* str) { #define BASE (10ull) /* Base10 by default */ uint64_t sum; int pos; int digit; int max_len; char* res; sum = val; max_len = U64TOA_MAX_DIGIT; pos = 0; do { digit = (sum % BASE); str->data[pos] = digit + '0'; pos++; sum /= BASE; }while( (sum>0) && (pos < max_len) ); if( (pos == max_len) && (sum>0) ) return NULL; str->data[pos] = '\0'; res = stringrev(str->data); return res; } static volatile bool do_exit = false; FILE* fd = NULL; volatile uint32_t byte_count = 0; bool signalsource = false; uint32_t amplitude = 0; bool hw_sync = false; bool receive = false; bool receive_wav = false; uint64_t stream_size = 0; uint32_t stream_head = 0; uint32_t stream_tail = 0; uint32_t stream_drop = 0; uint8_t *stream_buf = NULL; bool transmit = false; struct timeval time_start; struct timeval t_start; bool automatic_tuning = false; int64_t freq_hz; bool if_freq = false; int64_t if_freq_hz; bool lo_freq = false; int64_t lo_freq_hz = DEFAULT_LO_HZ; bool image_reject = false; uint32_t image_reject_selection; bool amp = false; uint32_t amp_enable; bool antenna = false; uint32_t antenna_enable; bool sample_rate = false; uint32_t sample_rate_hz; bool limit_num_samples = false; uint64_t samples_to_xfer = 0; size_t bytes_to_xfer = 0; bool baseband_filter_bw = false; uint32_t baseband_filter_bw_hz = 0; bool repeat = false; bool crystal_correct = false; uint32_t crystal_correct_ppm ; int rx_callback(hackrf_transfer* transfer) { size_t bytes_to_write; size_t bytes_written; unsigned int i; if( fd != NULL ) { byte_count += transfer->valid_length; bytes_to_write = transfer->valid_length; if (limit_num_samples) { if (bytes_to_write >= bytes_to_xfer) { bytes_to_write = bytes_to_xfer; } bytes_to_xfer -= bytes_to_write; } if (receive_wav) { /* convert .wav contents from signed to unsigned */ for (i = 0; i < bytes_to_write; i++) { transfer->buffer[i] ^= (uint8_t)0x80; } } if (stream_size>0){ #ifndef _WIN32 if ((stream_size-1+stream_head-stream_tail)%stream_size buffer,bytes_to_write); } else { memcpy(stream_buf+stream_tail,transfer->buffer,(stream_size-stream_tail)); memcpy(stream_buf,transfer->buffer+(stream_size-stream_tail),bytes_to_write-(stream_size-stream_tail)); }; __atomic_store_n(&stream_tail,(stream_tail+bytes_to_write)%stream_size,__ATOMIC_RELEASE); } #endif return 0; } else { bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, fd); if ((bytes_written != bytes_to_write) || (limit_num_samples && (bytes_to_xfer == 0))) { return -1; } else { return 0; } } } else { return -1; } } int tx_callback(hackrf_transfer* transfer) { size_t bytes_to_read; size_t bytes_read; unsigned int i; if( fd != NULL ) { byte_count += transfer->valid_length; bytes_to_read = transfer->valid_length; if (limit_num_samples) { if (bytes_to_read >= bytes_to_xfer) { /* * In this condition, we probably tx some of the previous * buffer contents at the end. :-( */ bytes_to_read = bytes_to_xfer; } bytes_to_xfer -= bytes_to_read; } bytes_read = fread(transfer->buffer, 1, bytes_to_read, fd); if (limit_num_samples && (bytes_to_xfer == 0)) { return -1; } if (bytes_read != bytes_to_read) { if (repeat) { printf("Input file end reached. Rewind to beginning.\n"); rewind(fd); fread(transfer->buffer + bytes_read, 1, bytes_to_read - bytes_read, fd); return 0; } else { return -1; /* not repeat mode, end of file */ } } else { return 0; } } else if (transceiver_mode == TRANSCEIVER_MODE_SS) { /* Transmit continuous wave with specific amplitude */ byte_count += transfer->valid_length; bytes_to_read = transfer->valid_length; if (limit_num_samples) { if (bytes_to_read >= bytes_to_xfer) { bytes_to_read = bytes_to_xfer; } bytes_to_xfer -= bytes_to_read; } for(i = 0;ibuffer[i] = amplitude; if (limit_num_samples && (bytes_to_xfer == 0)) { return -1; } else { return 0; } } else { return -1; } } static void usage() { printf("Usage:\n"); printf("\t[-d serial_number] # Serial number of desired HackRF.\n"); printf("\t-r # Receive data into file (use '-' for stdout).\n"); printf("\t-t # Transmit data from file (use '-' for stdin).\n"); printf("\t-w # Receive data into file with WAV header and automatic name.\n"); printf("\t # This is for SDR# compatibility and may not work with other software.\n"); printf("\t[-f freq_hz] # Frequency in Hz [%sMHz to %sMHz].\n", u64toa((FREQ_MIN_HZ/FREQ_ONE_MHZ),&ascii_u64_data1), u64toa((FREQ_MAX_HZ/FREQ_ONE_MHZ),&ascii_u64_data2)); printf("\t[-i if_freq_hz] # Intermediate Frequency (IF) in Hz [%sMHz to %sMHz].\n", u64toa((IF_MIN_HZ/FREQ_ONE_MHZ),&ascii_u64_data1), u64toa((IF_MAX_HZ/FREQ_ONE_MHZ),&ascii_u64_data2)); printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%sMHz to %sMHz].\n", u64toa((LO_MIN_HZ/FREQ_ONE_MHZ),&ascii_u64_data1), u64toa((LO_MAX_HZ/FREQ_ONE_MHZ),&ascii_u64_data2)); printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n"); printf("\t[-a amp_enable] # RX/TX RF amplifier 1=Enable, 0=Disable.\n"); printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n"); printf("\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n"); printf("\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n"); printf("\t[-x gain_db] # TX VGA (IF) gain, 0-47dB, 1dB steps\n"); printf("\t[-s sample_rate_hz] # Sample rate in Hz (4/8/10/12.5/16/20MHz, default %sMHz).\n", u64toa((DEFAULT_SAMPLE_RATE_HZ/FREQ_ONE_MHZ),&ascii_u64_data1)); printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n"); #ifndef _WIN32 /* The required atomic load/store functions aren't available when using C with MSVC */ printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n"); #endif printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n"); printf("\t[-R] # Repeat TX mode (default is off) \n"); printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default < sample_rate_hz.\n" ); printf("\t[-C ppm] # Set Internal crystal clock error in ppm.\n"); printf("\t[-H] # Synchronise USB transfer using GPIO pins.\n"); } static hackrf_device* device = NULL; #ifdef _MSC_VER BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stdout, "Caught signal %d\n", signum); do_exit = true; return TRUE; } return FALSE; } #else void sigint_callback_handler(int signum) { fprintf(stdout, "Caught signal %d\n", signum); do_exit = true; } #endif #define PATH_FILE_MAX_LEN (FILENAME_MAX) #define DATE_TIME_MAX_LEN (32) int main(int argc, char** argv) { int opt; char path_file[PATH_FILE_MAX_LEN]; char date_time[DATE_TIME_MAX_LEN]; const char* path = NULL; const char* serial_number = NULL; char* endptr; double f_hz; int result; time_t rawtime; struct tm * timeinfo; long int file_pos; int exit_code = EXIT_SUCCESS; struct timeval t_end; float time_diff; unsigned int lna_gain=8, vga_gain=20, txvga_gain=0; while( (opt = getopt(argc, argv, "Hwr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'H': hw_sync = true; break; case 'w': receive_wav = true; break; case 'r': receive = true; path = optarg; break; case 't': transmit = true; path = optarg; break; case 'd': serial_number = optarg; break; case 'S': result = parse_u64(optarg, &stream_size); stream_buf = calloc(1,stream_size); break; case 'f': f_hz = strtod(optarg, &endptr); if (optarg == endptr) { result = HACKRF_ERROR_INVALID_PARAM; break; } freq_hz = f_hz; automatic_tuning = true; break; case 'i': f_hz = strtod(optarg, &endptr); if (optarg == endptr) { result = HACKRF_ERROR_INVALID_PARAM; break; } if_freq_hz = f_hz; if_freq = true; break; case 'o': f_hz = strtod(optarg, &endptr); if (optarg == endptr) { result = HACKRF_ERROR_INVALID_PARAM; break; } lo_freq_hz = f_hz; lo_freq = true; break; case 'm': image_reject = true; result = parse_u32(optarg, &image_reject_selection); break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'p': antenna = true; result = parse_u32(optarg, &antenna_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'g': result = parse_u32(optarg, &vga_gain); break; case 'x': result = parse_u32(optarg, &txvga_gain); break; case 's': f_hz = strtod(optarg, &endptr); if (optarg == endptr) { result = HACKRF_ERROR_INVALID_PARAM; break; } sample_rate_hz = f_hz; sample_rate = true; break; case 'n': limit_num_samples = true; result = parse_u64(optarg, &samples_to_xfer); bytes_to_xfer = samples_to_xfer * 2ull; break; case 'b': f_hz = strtod(optarg, &endptr); if (optarg == endptr) { result = HACKRF_ERROR_INVALID_PARAM; break; } baseband_filter_bw_hz = f_hz; baseband_filter_bw = true; break; case 'c': transmit = true; signalsource = true; result = parse_u32(optarg, &litude); break; case 'R': repeat = true; break; case 'C': crystal_correct = true; result = parse_u32(optarg, &crystal_correct_ppm); break; default: fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if( result != HACKRF_SUCCESS ) { fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (lna_gain % 8) fprintf(stderr, "warning: lna_gain (-l) must be a multiple of 8\n"); if (vga_gain % 2) fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n"); if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) { fprintf(stderr, "argument error: num_samples must be less than %s/%sMio\n", u64toa(SAMPLES_TO_XFER_MAX,&ascii_u64_data1), u64toa((SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ),&ascii_u64_data2)); usage(); return EXIT_FAILURE; } if (if_freq || lo_freq || image_reject) { /* explicit tuning selected */ if (!if_freq) { fprintf(stderr, "argument error: if_freq_hz must be specified for explicit tuning.\n"); usage(); return EXIT_FAILURE; } if (!image_reject) { fprintf(stderr, "argument error: image_reject must be specified for explicit tuning.\n"); usage(); return EXIT_FAILURE; } if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) { fprintf(stderr, "argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n"); usage(); return EXIT_FAILURE; } if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) { fprintf(stderr, "argument error: if_freq_hz shall be between %s and %s.\n", u64toa(IF_MIN_HZ,&ascii_u64_data1), u64toa(IF_MAX_HZ,&ascii_u64_data2)); usage(); return EXIT_FAILURE; } if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) { fprintf(stderr, "argument error: lo_freq_hz shall be between %s and %s.\n", u64toa(LO_MIN_HZ,&ascii_u64_data1), u64toa(LO_MAX_HZ,&ascii_u64_data2)); usage(); return EXIT_FAILURE; } if (image_reject_selection > 2) { fprintf(stderr, "argument error: image_reject must be 0, 1, or 2 .\n"); usage(); return EXIT_FAILURE; } if (automatic_tuning) { fprintf(stderr, "warning: freq_hz ignored by explicit tuning selection.\n"); automatic_tuning = false; } switch (image_reject_selection) { case RF_PATH_FILTER_BYPASS: freq_hz = if_freq_hz; break; case RF_PATH_FILTER_LOW_PASS: freq_hz = labs(if_freq_hz - lo_freq_hz); break; case RF_PATH_FILTER_HIGH_PASS: freq_hz = if_freq_hz + lo_freq_hz; break; default: freq_hz = DEFAULT_FREQ_HZ; break; } fprintf(stderr, "explicit tuning specified for %s Hz.\n", u64toa(freq_hz,&ascii_u64_data1)); } else if (automatic_tuning) { if(freq_hz > FREQ_MAX_HZ) { fprintf(stderr, "argument error: freq_hz shall be between %s and %s.\n", u64toa(FREQ_MIN_HZ,&ascii_u64_data1), u64toa(FREQ_MAX_HZ,&ascii_u64_data2)); usage(); return EXIT_FAILURE; } } else { /* Use default freq */ freq_hz = DEFAULT_FREQ_HZ; automatic_tuning = true; } if( amp ) { if( amp_enable > 1 ) { fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (antenna) { if (antenna_enable > 1) { fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if( sample_rate == false ) { sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ; } if( baseband_filter_bw ) { /* Compute nearest freq for bw filter */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz); }else { /* Compute default value depending on sample rate */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz); } if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) { fprintf(stderr, "argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) { fprintf(stderr, "argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if( (transmit == false) && (receive == receive_wav) ) { fprintf(stderr, "receive -r and receive_wav -w options are mutually exclusive\n"); usage(); return EXIT_FAILURE; } if( receive_wav == false ) { if( transmit == receive ) { if( transmit == true ) { fprintf(stderr, "receive -r and transmit -t options are mutually exclusive\n"); } else { fprintf(stderr, "specify either transmit -t or receive -r or receive_wav -w option\n"); } usage(); return EXIT_FAILURE; } } if( receive ) { transceiver_mode = TRANSCEIVER_MODE_RX; } if( transmit ) { transceiver_mode = TRANSCEIVER_MODE_TX; } if (signalsource) { transceiver_mode = TRANSCEIVER_MODE_SS; if (amplitude >127) { fprintf(stderr, "argument error: amplitude shall be in between 0 and 128.\n"); usage(); return EXIT_FAILURE; } } if( receive_wav ) { time (&rawtime); timeinfo = localtime (&rawtime); transceiver_mode = TRANSCEIVER_MODE_RX; /* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */ strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo); snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) ); path = path_file; fprintf(stderr, "Receive wav file: %s\n", path); } // In signal source mode, the PATH argument is neglected. if (transceiver_mode != TRANSCEIVER_MODE_SS) { if( path == NULL ) { fprintf(stderr, "specify a path to a file to transmit/receive\n"); usage(); return EXIT_FAILURE; } } // Change the freq and sample rate to correct the crystal clock error. if( crystal_correct ) { sample_rate_hz = (uint32_t)((double)sample_rate_hz * (1000000 - crystal_correct_ppm)/1000000+0.5); freq_hz = freq_hz * (1000000 - crystal_correct_ppm)/1000000; } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (transceiver_mode != TRANSCEIVER_MODE_SS) { if( transceiver_mode == TRANSCEIVER_MODE_RX ) { if (strcmp(path, "-") == 0) { fd = stdout; } else { fd = fopen(path, "wb"); } } else { if (strcmp(path, "-") == 0) { fd = stdin; } else { fd = fopen(path, "rb"); } } if( fd == NULL ) { fprintf(stderr, "Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change fd buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE); if( result != 0 ) { fprintf(stderr, "setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } } /* Write Wav header */ if( receive_wav ) { fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } #ifdef _MSC_VER SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif fprintf(stderr, "call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ)); result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n", baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } fprintf(stderr, "call hackrf_set_hw_sync_mode(%d)\n", hw_sync); result = hackrf_set_hw_sync_mode(device, hw_sync ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_set_hw_sync_mode() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); result |= hackrf_start_rx(device, rx_callback, NULL); } else { result = hackrf_set_txvga_gain(device, txvga_gain); result |= hackrf_start_tx(device, tx_callback, NULL); } if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (automatic_tuning) { fprintf(stderr, "call hackrf_set_freq(%s Hz/%.03f MHz)\n", u64toa(freq_hz, &ascii_u64_data1),((double)freq_hz/(double)FREQ_ONE_MHZ) ); result = hackrf_set_freq(device, freq_hz); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } else { fprintf(stderr, "call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n", u64toa(if_freq_hz,&ascii_u64_data1), u64toa(lo_freq_hz,&ascii_u64_data2), hackrf_filter_path_name(image_reject_selection)); result = hackrf_set_freq_explicit(device, if_freq_hz, lo_freq_hz, image_reject_selection); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_freq_explicit() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( amp ) { fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (antenna) { fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable); result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable); if (result != HACKRF_SUCCESS) { fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( limit_num_samples ) { fprintf(stderr, "samples_to_xfer %s/%sMio\n", u64toa(samples_to_xfer,&ascii_u64_data1), u64toa((samples_to_xfer/FREQ_ONE_MHZ),&ascii_u64_data2) ); } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); fprintf(stderr, "Stop with Ctrl-C\n"); while( (hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false) ) { uint32_t byte_count_now; struct timeval time_now; float time_difference, rate; if (stream_size>0) { #ifndef _WIN32 if(stream_head==stream_tail) { usleep(10000); // queue empty } else { ssize_t len; ssize_t bytes_written; uint32_t _st= __atomic_load_n(&stream_tail,__ATOMIC_ACQUIRE); if(stream_head<_st) len=_st-stream_head; else len=stream_size-stream_head; bytes_written = fwrite(stream_buf+stream_head, 1, len, fd); if (len != bytes_written) { printf("write failed"); do_exit=true; }; stream_head=(stream_head+len)%stream_size; } if(stream_drop>0) { uint32_t drops= __atomic_exchange_n (&stream_drop,0,__ATOMIC_SEQ_CST); printf("dropped frames: [%d]\n",drops); } #endif } else { sleep(1); gettimeofday(&time_now, NULL); byte_count_now = byte_count; byte_count = 0; time_difference = TimevalDiff(&time_now, &time_start); rate = (float)byte_count_now / time_difference; fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second\n", (byte_count_now / 1e6f), time_difference, (rate / 1e6f) ); time_start = time_now; if (byte_count_now == 0) { exit_code = EXIT_FAILURE; fprintf(stderr, "\nCouldn't transfer any bytes for one second.\n"); break; } } } result = hackrf_is_streaming(device); if (do_exit) { fprintf(stderr, "\nUser cancel, exiting...\n"); } else { fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&t_end, NULL); time_diff = TimevalDiff(&t_end, &t_start); fprintf(stderr, "Total time: %5.5f s\n", time_diff); if(device != NULL) { if( receive ) { result = hackrf_stop_rx(device); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { fprintf(stderr, "hackrf_stop_rx() done\n"); } } if( transmit ) { result = hackrf_stop_tx(device); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { fprintf(stderr, "hackrf_stop_tx() done\n"); } } result = hackrf_close(device); if( result != HACKRF_SUCCESS ) { fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); }else { fprintf(stderr, "hackrf_close() done\n"); } hackrf_exit(); fprintf(stderr, "hackrf_exit() done\n"); } if(fd != NULL) { if( receive_wav ) { /* Get size of file */ file_pos = ftell(fd); /* Update Wav Header */ wave_file_hdr.hdr.size = file_pos-8; wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz; wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2; wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr); /* Overwrite header with updated data */ rewind(fd); fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } fclose(fd); fd = NULL; fprintf(stderr, "fclose(fd) done\n"); } fprintf(stderr, "exit\n"); return exit_code; }