Previously, finding the M0 in IDLE mode was ambiguous; it could indicate
either a normal outcome, or a shortfall limit having being hit.
To disambiguate, we add an error field to the M0 state. The errors
currently possible are an RX timeout or a TX timeout, both of which
can be obtained efficiently from the current operating mode due to
the values used.
This adds 3 cycles to both shortfall paths, in order to shift down
the mode to obtain the error code, and store it to the M0 state.
This lays the groundwork for implementing timed operations (#86). The M0
can be configured to automatically change modes when its byte count
reaches a specific value.
Checking the counter against the threshold and dispatching to the next
mode is handled by a new `jump_next_mode` macro, which replaces the
unconditional branches back to the start of the TX and RX loops.
Making this change work requires some rearrangement of the code, such
that the destinations of all conditional branch instructions are within
reach. These branch instructions (`b[cond] label`) have a range of -256
to +254 bytes from the current program counter.
For this reason, the TX shortfall handling is moved earlier in the file,
and branches in the idle loop are restructured to use an unconditional
branch to rx_start, which is furthest away.
The additional code for switching modes adds 9 cycles to the normal RX
path, and 10 to the TX path (the difference is because the dispatch in
`jump_next_mode` is optimised for the longer RX path).
This limit allows implementing a timeout: if a TX underrun or RX overrun
continues for the specified number of bytes, the M0 will revert to idle.
A setting of zero disables the limit.
This change adds 5 cycles to the TX & RX shortfall paths, to check if a
limit is set and to check the shortfall length against the limit.
To enable this, we keep a count of the current shortfall length. Each
time an SGPIO read/write cannot be completed due to a shortfall, we
increase this length. Each time an SGPIO read/write is completed
successfully, we reset the shortfall length to zero.
When a shortfall occurs and the existing shortfall length is zero, this
indicates a new shortfall, and the shortfall count is incremented.
This change adds one cycle to the normal RX & TX paths, to zero the
shortfall count. To enable this to be done in a single cycle, we keep a
zero handy in a high register.
The extra accounting adds 10 cycles to the TX and RX shortfall paths,
plus an additional 3 cycles to the RX shortfall path since there are
now two branches involved: one to the shortfall handler, and another
back to the main loop.
With both counters in place, the number of bytes in the buffer is now
indicated by the difference between the M0 and M4 counts.
The M4 count needs to be increased whenever the M4 produces or consumes
data in the USB bulk buffer, so that the two counts remain correctly
synchronised.
There are three places where this is done:
1. When a USB bulk transfer in or out of the buffer completes, the count
is increased by the number of bytes transferred. This is the most
common case.
2. At TX startup, the M4 effectively sends the M0 16K of zeroes to
transmit, before the first host-provided data.
This is done by zeroing the whole 32K buffer area, and then setting
up the first bulk transfer to write to the second 16K, whilst the M0
begins transmission of the first 16K.
The count is therefore increased by 16K during TX startup, to account
for the initial 16K of zeros.
3. In sweep mode, some data is discarded. When this is done, the count
is incremented by the size of the discarded data.
The USB IRQ is masked whilst doing this, since a read-modify-write is
required, and the bulk transfer completion callback may be called at
any point, which also increases the count.
Instead of this count wrapping at the buffer size, it now increments
continuously. The offset within the buffer is now obtained from the
lower bits of the count.
This makes it possible to keep track of the total number of bytes
transferred by the M0 core.
The count will wrap at 2^32 bytes, which at 20Msps will occur every
107 seconds.
This adds a `hackrf_debug [-S|--state]` option, and the necessary
plumbing to libhackrf and the M4 firmware to support it.
The USB API and libhackrf versions are bumped to reflect the changes.
* Clean up the CMake build system and improve the FindFFTW3 module.
* Fixes for Linux build
* Include winsock.h to get struct timeval
* Couple more fixes for MSVC, also add new FindMath module
* Update host build README for new CMake changes (esp. Windows)
* Try to fix Travis OS X build error
* Add docs about pthread-win32
* Whoops, AppVeyor caught a bug in FindFFTW where the includes not being found weren't generating a fatal error.
* Travis rebuild bump
* One more fix: replace hardcoded include paths with a PATH_SUFFIX to standard include paths
* Invert Windows preprocessor flag so it's only needed when using a static build. This preserves compatibility with the previous system.
* Fix copy-paste error
* Update cmake modules from amber-cmake upstream, incorporate TryLinkLibrary into FindUSB1
* Fix missing include
HackRF One supports arbitrary sample rates from 2 Msps to 20 Msps. In
early development we had ideas about preferred sample rates that we no
longer consider valid.
The checksum calculation process was causing the CPLD configuration to reload from flash. With the new SRAM loading mechanism, flash contents may not be up to date, so the CPLD bitstream may regress to the point of not working or not working correctly. This commit is a short-term fix for mossmann/hackrf issue #609.
fixes#435, osmosdr calls hackrf_exit for the last sink and the last
source. If both are in one flow graph the desctructor of the source
fails as the sink already closed the usb context.
This prevents hackrf_exit to close the context if not all devices are closed
The rad1o is the badge of the Chaos Communication Camp 2015 (CCCamp15).
The rad1o badge contains a full-featured SDR (software defined radio)
half-duplex transceiver, operating in a frequency range of about 50 MHz
- 4000 MHz, and is software compatible to the HackRF.
See https://rad1o.badge.events.ccc.de for more information.