I believe this was safe before, because this code is only called from
the transfer thread, and the condition being protected is just whether
the count is zero, not the actual value of the count.
However, this isn't performance critical and it's a lot easier to
reason about the code if we just hold the lock for this whole section.
This simplifies the code required to wait for cancellations to complete.
The condition variable now reflects whether `active_transfers == 0`, and
the associated lock must be held to decrement that count to zero.
These were added in #805, as a workaround to prevent their parent
functions from returning before transfer cancellations had completed.
This has since been fixed properly in #1029.
There are now only two possible outcomes to this function: either we
successfully resubmitted a transfer, or the transfer is finished and we
end up calling transfer_finished().
So we can go ahead and simplify it accordingly.
If a transfer was cancelled, we are on our way to shutdown.
If hackrf_stop_tx() or hackrf_stop_rx() were called, they will already
have cleared this flag, but it is not cleared in hackrf_close(), and
for consistency with other paths it makes sense to clear it here.
If result < 0 here, libusb_submit_transfer returned an error, so we
need to shut down.
If !resubmit, then cancel_transfers() was already called by one of the
stop or close functions, so streaming is already false.
In the case of a libusb error, we still need the transfer thread
running, in order to handle outstanding cancellations and to signal the
condition variable when that is done.
transfer_threadproc has a timeout of half a second, so
when kill_transfer_thread tries to pthread_join, it often
has to wait until the timeout kicks in.
With this fix, we ensure that a final request is made after
request_exit has been called, so that transfer_threadproc can exit its
loop in a fast and clean manner.
This change avoids various possible races in which an autonomous mode
change by the M0 might clobber a mode change made from the M4, as well
as related races on other state fields that can be written by the M4.
The previous mode field is replaced by two separate ones:
- active_mode, which is written only by the M0, and indicates the
current operating mode.
- requested_mode, which is written by the M4 to request a change.
This field includes both the requested mode, and a flag bit. The M4
writes the field with the flag bit set, and must then wait for the
M0 to signal completion of the request by clearing the flag bit.
Whilst the M4 is blocked waiting for the flag bit to be cleared, the
M0 can safely make all the required changes to the state that are
needed for the transition to the requested mode. Once the transition
is complete, the M0 clears the flag bit and the M4 continues execution.
Request handling is implemented in the idle loop. To handle requests,
mode-specific loops simply need to check the request flag and branch to
idle if it is set.
A request from the M4 to change modes will always require passing
through the idle loop, and is not subject to timing guarantees. Only
transitions made autonomously by the M0 have guaranteed timing
constraints.
The work previously done in reset_counts is now implemented as part of
the request handling, so the tx_start, rx_start and wait_start labels
are no longer required.
An extra two cycles are required in the TX shortfall path because we
must now load the active mode to check whether we are in TX_START.
Two cycles are saved in the normal TX path because updating the active
mode to TX_RUN can now be done without checking the previous value.
Previously, finding the M0 in IDLE mode was ambiguous; it could indicate
either a normal outcome, or a shortfall limit having being hit.
To disambiguate, we add an error field to the M0 state. The errors
currently possible are an RX timeout or a TX timeout, both of which
can be obtained efficiently from the current operating mode due to
the values used.
This adds 3 cycles to both shortfall paths, in order to shift down
the mode to obtain the error code, and store it to the M0 state.
This lays the groundwork for implementing timed operations (#86). The M0
can be configured to automatically change modes when its byte count
reaches a specific value.
Checking the counter against the threshold and dispatching to the next
mode is handled by a new `jump_next_mode` macro, which replaces the
unconditional branches back to the start of the TX and RX loops.
Making this change work requires some rearrangement of the code, such
that the destinations of all conditional branch instructions are within
reach. These branch instructions (`b[cond] label`) have a range of -256
to +254 bytes from the current program counter.
For this reason, the TX shortfall handling is moved earlier in the file,
and branches in the idle loop are restructured to use an unconditional
branch to rx_start, which is furthest away.
The additional code for switching modes adds 9 cycles to the normal RX
path, and 10 to the TX path (the difference is because the dispatch in
`jump_next_mode` is optimised for the longer RX path).
In TX_START mode, a lack of data to send is not treated as a shortfall.
Zeroes are written to SGPIO, but no shortfall is recorded in the stats.
Using this mode helps avoid spurious shortfalls at startup.
As soon as there is data to transmit, the M0 switches to TX_RUN mode.
This change adds five cycles to the normal TX path, in order to check
for TX_START mode before sending data, and to switch to TX_RUN in that
case.
It also adds two cycles to the TX shortfall path, to check for TX_START
mode and skip shortfall processing in that mode.
Note the allocation of r3 to store the mode setting, such that this
value is still available after the tx_zeros routine.
This limit allows implementing a timeout: if a TX underrun or RX overrun
continues for the specified number of bytes, the M0 will revert to idle.
A setting of zero disables the limit.
This change adds 5 cycles to the TX & RX shortfall paths, to check if a
limit is set and to check the shortfall length against the limit.
To enable this, we keep a count of the current shortfall length. Each
time an SGPIO read/write cannot be completed due to a shortfall, we
increase this length. Each time an SGPIO read/write is completed
successfully, we reset the shortfall length to zero.
When a shortfall occurs and the existing shortfall length is zero, this
indicates a new shortfall, and the shortfall count is incremented.
This change adds one cycle to the normal RX & TX paths, to zero the
shortfall count. To enable this to be done in a single cycle, we keep a
zero handy in a high register.
The extra accounting adds 10 cycles to the TX and RX shortfall paths,
plus an additional 3 cycles to the RX shortfall path since there are
now two branches involved: one to the shortfall handler, and another
back to the main loop.
In the idle mode, the M0 simply waits for a different mode to be set.
No SGPIO access is done.
One extra cycle is added to both TX code paths, to check whether the
M0 should return to the idle loop based on the mode setting. The RX
paths are unaffected as the branch to RX is handled first.
This adds the `hackrf_transfer -B` option, which displays the number of
bytes currently in the buffer along with the existing per-second stats.
The number of bytes in the buffer is indicated by the difference between
the M0 and M4 byte counters. In TX, the M4 count should lead the M0 count.
In RX, the M0 count should lead the M4 count.
With both counters in place, the number of bytes in the buffer is now
indicated by the difference between the M0 and M4 counts.
The M4 count needs to be increased whenever the M4 produces or consumes
data in the USB bulk buffer, so that the two counts remain correctly
synchronised.
There are three places where this is done:
1. When a USB bulk transfer in or out of the buffer completes, the count
is increased by the number of bytes transferred. This is the most
common case.
2. At TX startup, the M4 effectively sends the M0 16K of zeroes to
transmit, before the first host-provided data.
This is done by zeroing the whole 32K buffer area, and then setting
up the first bulk transfer to write to the second 16K, whilst the M0
begins transmission of the first 16K.
The count is therefore increased by 16K during TX startup, to account
for the initial 16K of zeros.
3. In sweep mode, some data is discarded. When this is done, the count
is incremented by the size of the discarded data.
The USB IRQ is masked whilst doing this, since a read-modify-write is
required, and the bulk transfer completion callback may be called at
any point, which also increases the count.
Instead of this count wrapping at the buffer size, it now increments
continuously. The offset within the buffer is now obtained from the
lower bits of the count.
This makes it possible to keep track of the total number of bytes
transferred by the M0 core.
The count will wrap at 2^32 bytes, which at 20Msps will occur every
107 seconds.
This adds a `hackrf_debug [-S|--state]` option, and the necessary
plumbing to libhackrf and the M4 firmware to support it.
The USB API and libhackrf versions are bumped to reflect the changes.