replaced set_freq_if() with set_freq_explicit() and implemented explicit tuning option in hackrf_transfer

This commit is contained in:
Michael Ossmann
2014-03-13 16:06:51 -06:00
parent 08927ab50b
commit d4a5c2290b
9 changed files with 264 additions and 88 deletions

View File

@ -37,9 +37,9 @@ typedef enum {
void rf_path_set_direction(const rf_path_direction_t direction); void rf_path_set_direction(const rf_path_direction_t direction);
typedef enum { typedef enum {
RF_PATH_FILTER_BYPASS, RF_PATH_FILTER_BYPASS = 0,
RF_PATH_FILTER_LOW_PASS, RF_PATH_FILTER_LOW_PASS = 1,
RF_PATH_FILTER_HIGH_PASS, RF_PATH_FILTER_HIGH_PASS = 2,
} rf_path_filter_t; } rf_path_filter_t;
void rf_path_set_filter(const rf_path_filter_t filter); void rf_path_set_filter(const rf_path_filter_t filter);

View File

@ -25,8 +25,6 @@
#include <rffc5071.h> #include <rffc5071.h>
#include <max2837.h> #include <max2837.h>
#include "rf_path.h"
#define FREQ_ONE_MHZ (1000*1000) #define FREQ_ONE_MHZ (1000*1000)
#define MIN_LP_FREQ_MHZ (0) #define MIN_LP_FREQ_MHZ (0)
@ -40,6 +38,9 @@
#define MID2_HP_FREQ_MHZ (5100) #define MID2_HP_FREQ_MHZ (5100)
#define MAX_HP_FREQ_MHZ (7250) #define MAX_HP_FREQ_MHZ (7250)
#define MIN_LO_FREQ_HZ (84375000)
#define MAX_LO_FREQ_HZ (5400000000ULL)
static uint32_t max2837_freq_nominal_hz=2560000000; static uint32_t max2837_freq_nominal_hz=2560000000;
uint64_t freq_cache = 100000000; uint64_t freq_cache = 100000000;
@ -54,7 +55,6 @@ bool set_freq(const uint64_t freq)
uint32_t RFFC5071_freq_mhz; uint32_t RFFC5071_freq_mhz;
uint32_t MAX2837_freq_hz; uint32_t MAX2837_freq_hz;
uint64_t real_RFFC5071_freq_hz; uint64_t real_RFFC5071_freq_hz;
uint32_t tmp_hz;
const uint32_t freq_mhz = freq / 1000000; const uint32_t freq_mhz = freq / 1000000;
const uint32_t freq_hz = freq % 1000000; const uint32_t freq_hz = freq % 1000000;
@ -105,11 +105,27 @@ bool set_freq(const uint64_t freq)
return success; return success;
} }
bool set_freq_if(const uint32_t freq_if_hz) { bool set_freq_explicit(const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
bool success = false; const rf_path_filter_t path)
if( (freq_if_hz >= MIN_BYPASS_FREQ_MHZ) && (freq_if_hz <= MAX_BYPASS_FREQ_MHZ) ) { {
max2837_freq_nominal_hz = freq_if_hz; if ((if_freq_hz < ((uint64_t)MIN_BYPASS_FREQ_MHZ * FREQ_ONE_MHZ))
success = set_freq(freq_cache); || (if_freq_hz > ((uint64_t)MAX_BYPASS_FREQ_MHZ * FREQ_ONE_MHZ))) {
return false;
} }
return success;
if ((path != RF_PATH_FILTER_BYPASS) &&
(lo_freq_hz < MIN_LO_FREQ_HZ) || (lo_freq_hz > MAX_LO_FREQ_HZ)) {
return false;
}
if (path > 2) {
return false;
}
rf_path_set_filter(path);
max2837_set_frequency(if_freq_hz);
if (path != RF_PATH_FILTER_BYPASS) {
(void)rffc5071_set_frequency(lo_freq_hz / FREQ_ONE_MHZ);
}
return true;
} }

View File

@ -23,10 +23,13 @@
#ifndef __TUNING_H__ #ifndef __TUNING_H__
#define __TUNING_H__ #define __TUNING_H__
#include "rf_path.h"
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
bool set_freq(const uint64_t freq); bool set_freq(const uint64_t freq);
bool set_freq_if(const uint32_t freq_if_hz); bool set_freq_explicit(const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
const rf_path_filter_t path);
#endif/*__TUNING_H__*/ #endif/*__TUNING_H__*/

View File

@ -125,12 +125,13 @@ static const usb_request_handler_fn vendor_request_handler[] = {
usb_vendor_request_set_lna_gain, usb_vendor_request_set_lna_gain,
usb_vendor_request_set_vga_gain, usb_vendor_request_set_vga_gain,
usb_vendor_request_set_txvga_gain, usb_vendor_request_set_txvga_gain,
usb_vendor_request_set_if_freq, NULL, // was set_if_freq
#ifdef HACKRF_ONE #ifdef HACKRF_ONE
usb_vendor_request_set_antenna_enable, usb_vendor_request_set_antenna_enable,
#else #else
NULL, NULL,
#endif #endif
usb_vendor_request_set_freq_explicit,
}; };
static const uint32_t vendor_request_handler_count = static const uint32_t vendor_request_handler_count =

View File

@ -41,6 +41,14 @@ typedef struct {
set_freq_params_t set_freq_params; set_freq_params_t set_freq_params;
struct set_freq_explicit_params {
uint64_t if_freq_hz; /* intermediate frequency */
uint64_t lo_freq_hz; /* front-end local oscillator frequency */
uint8_t path; /* image rejection filter path */
};
struct set_freq_explicit_params explicit_params;
typedef struct { typedef struct {
uint32_t freq_hz; uint32_t freq_hz;
uint32_t divider; uint32_t divider;
@ -175,19 +183,6 @@ usb_request_status_t usb_vendor_request_set_txvga_gain(
return USB_REQUEST_STATUS_OK; return USB_REQUEST_STATUS_OK;
} }
usb_request_status_t usb_vendor_request_set_if_freq(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP ) {
if( set_freq_if((uint32_t)endpoint->setup.index * 1000 * 1000) ) {
usb_transfer_schedule_ack(endpoint->in);
} else {
return USB_REQUEST_STATUS_STALL;
}
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_set_antenna_enable( usb_request_status_t usb_vendor_request_set_antenna_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage) usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{ {
@ -208,3 +203,23 @@ usb_request_status_t usb_vendor_request_set_antenna_enable(
return USB_REQUEST_STATUS_OK; return USB_REQUEST_STATUS_OK;
} }
} }
usb_request_status_t usb_vendor_request_set_freq_explicit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(endpoint->out, &explicit_params,
sizeof(struct set_freq_explicit_params), NULL, NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
if (set_freq_explicit(explicit_params.if_freq_hz,
explicit_params.lo_freq_hz, explicit_params.path)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else {
return USB_REQUEST_STATUS_OK;
}
}

View File

@ -48,9 +48,9 @@ usb_request_status_t usb_vendor_request_set_vga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage); usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_txvga_gain( usb_request_status_t usb_vendor_request_set_txvga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage); usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_if_freq(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_antenna_enable( usb_request_status_t usb_vendor_request_set_antenna_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage); usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_freq_explicit(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
#endif/*__USB_API_TRANSCEIVER_H__*/ #endif/*__USB_API_TRANSCEIVER_H__*/

View File

@ -86,6 +86,11 @@ int gettimeofday(struct timeval *tv, void* ignored)
#define DEFAULT_FREQ_HZ (900000000ull) /* 900MHz */ #define DEFAULT_FREQ_HZ (900000000ull) /* 900MHz */
#define FREQ_MIN_HZ (0ull) /* 0 Hz */ #define FREQ_MIN_HZ (0ull) /* 0 Hz */
#define FREQ_MAX_HZ (7250000000ull) /* 7250MHz */ #define FREQ_MAX_HZ (7250000000ull) /* 7250MHz */
#define IF_MIN_HZ (2150000000ull)
#define IF_MAX_HZ (2750000000ull)
#define LO_MIN_HZ (84375000ull)
#define LO_MAX_HZ (5400000000ull)
#define DEFAULT_LO_HZ (1000000000ull)
#define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */ #define DEFAULT_SAMPLE_RATE_HZ (10000000) /* 10MHz default sample rate */
@ -241,9 +246,18 @@ bool transmit = false;
struct timeval time_start; struct timeval time_start;
struct timeval t_start; struct timeval t_start;
bool freq = false; bool automatic_tuning = false;
uint64_t freq_hz; uint64_t freq_hz;
bool if_freq = false;
uint64_t if_freq_hz;
bool lo_freq = false;
uint64_t lo_freq_hz = DEFAULT_LO_HZ;
bool image_reject = false;
uint32_t image_reject_selection;
bool amp = false; bool amp = false;
uint32_t amp_enable; uint32_t amp_enable;
@ -326,13 +340,16 @@ static void usage() {
printf("\t-t <filename> # Transmit data from file.\n"); printf("\t-t <filename> # Transmit data from file.\n");
printf("\t-w # Receive data into file with WAV header and automatic name.\n"); printf("\t-w # Receive data into file with WAV header and automatic name.\n");
printf("\t # This is for SDR# compatibility and may not work with other software.\n"); printf("\t # This is for SDR# compatibility and may not work with other software.\n");
printf("\t[-f set_freq_hz] # Set Freq in Hz between [%lluMHz, %lluMHz].\n", FREQ_MIN_HZ/FREQ_ONE_MHZ, FREQ_MAX_HZ/FREQ_ONE_MHZ); printf("\t[-f freq_hz] # Frequency in Hz between [%lluMHz, %lluMHz].\n", FREQ_MIN_HZ/FREQ_ONE_MHZ, FREQ_MAX_HZ/FREQ_ONE_MHZ);
printf("\t[-a set_amp] # Set Amp 1=Enable, 0=Disable.\n"); printf("\t[-e if_freq_hz] # Intermediate Frequency (IF) in Hz [%lluMHz to %lluMHz].\n", IF_MIN_HZ/FREQ_ONE_MHZ, IF_MAX_HZ/FREQ_ONE_MHZ);
printf("\t[-p set_antenna] # Set antenna port power, 1=Enable, 0=Disable.\n"); printf("\t[-o lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [%lluMHz to %lluMHz].\n", LO_MIN_HZ/FREQ_ONE_MHZ, LO_MAX_HZ/FREQ_ONE_MHZ);
printf("\t[-l gain_db] # Set lna gain, 0-40dB, 8dB steps\n"); printf("\t[-m image_reject] # Image rejection filter selection, 0=bypass, 1=low pass, 2=high pass.\n");
printf("\t[-i gain_db] # Set vga(if) gain, 0-62dB, 2dB steps\n"); printf("\t[-a amp_enable] # Amplifier 1=Enable, 0=Disable.\n");
printf("\t[-x gain_db] # Set TX vga gain, 0-47dB, 1dB steps\n"); printf("\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable.\n");
printf("\t[-s sample_rate_hz] # Set sample rate in Hz (8/10/12.5/16/20MHz, default %lldMHz).\n", DEFAULT_SAMPLE_RATE_HZ/FREQ_ONE_MHZ); printf("\t[-l gain_db] # LNA gain, 0-40dB, 8dB steps\n");
printf("\t[-i gain_db] # VGA(IF) gain, 0-62dB, 2dB steps\n");
printf("\t[-x gain_db] # TX VGA gain, 0-47dB, 1dB steps\n");
printf("\t[-s sample_rate_hz] # Sample rate in Hz (8/10/12.5/16/20MHz, default %lldMHz).\n", DEFAULT_SAMPLE_RATE_HZ/FREQ_ONE_MHZ);
printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n"); printf("\t[-n num_samples] # Number of samples to transfer (default is unlimited).\n");
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in MHz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default < sample_rate_hz.\n" ); printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in MHz.\n\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default < sample_rate_hz.\n" );
} }
@ -375,7 +392,7 @@ int main(int argc, char** argv) {
float time_diff; float time_diff;
unsigned int lna_gain=8, vga_gain=20, txvga_gain=0; unsigned int lna_gain=8, vga_gain=20, txvga_gain=0;
while( (opt = getopt(argc, argv, "wr:t:f:a:p:s:n:b:l:i:x:")) != EOF ) while( (opt = getopt(argc, argv, "wr:t:f:e:o:m:a:p:s:n:b:l:i:x:")) != EOF )
{ {
result = HACKRF_SUCCESS; result = HACKRF_SUCCESS;
switch( opt ) switch( opt )
@ -395,10 +412,25 @@ int main(int argc, char** argv) {
break; break;
case 'f': case 'f':
freq = true; automatic_tuning = true;
result = parse_u64(optarg, &freq_hz); result = parse_u64(optarg, &freq_hz);
break; break;
case 'e':
if_freq = true;
result = parse_u64(optarg, &if_freq_hz);
break;
case 'o':
lo_freq = true;
result = parse_u64(optarg, &lo_freq_hz);
break;
case 'm':
image_reject = true;
result = parse_u32(optarg, &image_reject_selection);
break;
case 'a': case 'a':
amp = true; amp = true;
result = parse_u32(optarg, &amp_enable); result = parse_u32(optarg, &amp_enable);
@ -457,23 +489,74 @@ int main(int argc, char** argv) {
return EXIT_FAILURE; return EXIT_FAILURE;
} }
if( freq ) { if (if_freq || lo_freq || image_reject) {
if( (freq_hz >= FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) ) /* explicit tuning selected */
{ if (!if_freq) {
printf("argument error: set_freq_hz shall be between [%llu, %llu[.\n", FREQ_MIN_HZ, FREQ_MAX_HZ); printf("argument error: if_freq_hz must be specified for explicit tuning.\n");
usage(); usage();
return EXIT_FAILURE; return EXIT_FAILURE;
} }
}else if (!image_reject) {
{ printf("argument error: image_reject must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
printf("argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
usage();
return EXIT_FAILURE;
}
if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) {
printf("argument error: if_freq_hz shall be between %llu and %llu.\n", IF_MIN_HZ, IF_MAX_HZ);
usage();
return EXIT_FAILURE;
}
if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
printf("argument error: lo_freq_hz shall be between %llu and %llu.\n", LO_MIN_HZ, LO_MAX_HZ);
usage();
return EXIT_FAILURE;
}
if (image_reject_selection > 2) {
printf("argument error: image_reject must be 0, 1, or 2 .\n");
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
printf("warning: freq_hz ignored by explicit tuning selection.\n");
automatic_tuning = false;
}
switch (image_reject_selection) {
case RF_PATH_FILTER_BYPASS:
freq_hz = if_freq_hz;
break;
case RF_PATH_FILTER_LOW_PASS:
freq_hz = abs(if_freq_hz - lo_freq_hz);
break;
case RF_PATH_FILTER_HIGH_PASS:
freq_hz = if_freq_hz + lo_freq_hz;
break;
default:
freq_hz = DEFAULT_FREQ_HZ;
break;
}
printf("explicit tuning specified for %lu Hz.\n", freq_hz);
} else if (automatic_tuning) {
if( (freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) )
{
printf("argument error: freq_hz shall be between %llu and %llu.\n", FREQ_MIN_HZ, FREQ_MAX_HZ);
usage();
return EXIT_FAILURE;
}
} else {
/* Use default freq */ /* Use default freq */
freq_hz = DEFAULT_FREQ_HZ; freq_hz = DEFAULT_FREQ_HZ;
automatic_tuning = true;
} }
if( amp ) { if( amp ) {
if( amp_enable > 1 ) if( amp_enable > 1 )
{ {
printf("argument error: set_amp shall be 0 or 1.\n"); printf("argument error: amp_enable shall be 0 or 1.\n");
usage(); usage();
return EXIT_FAILURE; return EXIT_FAILURE;
} }
@ -481,7 +564,7 @@ int main(int argc, char** argv) {
if (antenna) { if (antenna) {
if (antenna_enable > 1) { if (antenna_enable > 1) {
printf("argument error: set_antenna shall be 0 or 1.\n"); printf("argument error: antenna_enable shall be 0 or 1.\n");
usage(); usage();
return EXIT_FAILURE; return EXIT_FAILURE;
} }
@ -645,12 +728,25 @@ int main(int argc, char** argv) {
return EXIT_FAILURE; return EXIT_FAILURE;
} }
printf("call hackrf_set_freq(%lu Hz/%.03f MHz)\n", freq_hz, ((double)freq_hz/(double)FREQ_ONE_MHZ) ); if (automatic_tuning) {
result = hackrf_set_freq(device, freq_hz); printf("call hackrf_set_freq(%lu Hz/%.03f MHz)\n", freq_hz, ((double)freq_hz/(double)FREQ_ONE_MHZ) );
if( result != HACKRF_SUCCESS ) { result = hackrf_set_freq(device, freq_hz);
printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); if( result != HACKRF_SUCCESS ) {
usage(); printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE; usage();
return EXIT_FAILURE;
}
} else {
printf("call hackrf_set_freq_explicit() with %lu Hz IF, %lu Hz LO, %s\n",
if_freq_hz, lo_freq_hz, hackrf_filter_path_name(image_reject_selection));
result = hackrf_set_freq_explicit(device, if_freq_hz, lo_freq_hz,
image_reject_selection);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_freq_explicit() failed: %s (%d)\n",
hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
} }
if( amp ) { if( amp ) {

View File

@ -36,8 +36,10 @@ typedef int bool;
#ifdef HACKRF_BIG_ENDIAN #ifdef HACKRF_BIG_ENDIAN
#define TO_LE(x) __builtin_bswap32(x) #define TO_LE(x) __builtin_bswap32(x)
#define TO_LE64(x) __builtin_bswap64(x)
#else #else
#define TO_LE(x) x #define TO_LE(x) x
#define TO_LE64(x) x
#endif #endif
// TODO: Factor this into a shared #include so that firmware can use // TODO: Factor this into a shared #include so that firmware can use
@ -63,8 +65,8 @@ typedef enum {
HACKRF_VENDOR_REQUEST_SET_LNA_GAIN = 19, HACKRF_VENDOR_REQUEST_SET_LNA_GAIN = 19,
HACKRF_VENDOR_REQUEST_SET_VGA_GAIN = 20, HACKRF_VENDOR_REQUEST_SET_VGA_GAIN = 20,
HACKRF_VENDOR_REQUEST_SET_TXVGA_GAIN = 21, HACKRF_VENDOR_REQUEST_SET_TXVGA_GAIN = 21,
HACKRF_VENDOR_REQUEST_SET_IF_FREQ = 22,
HACKRF_VENDOR_REQUEST_ANTENNA_ENABLE = 23, HACKRF_VENDOR_REQUEST_ANTENNA_ENABLE = 23,
HACKRF_VENDOR_REQUEST_SET_FREQ_EXPLICIT = 24,
} hackrf_vendor_request; } hackrf_vendor_request;
typedef enum { typedef enum {
@ -724,7 +726,7 @@ int ADDCALL hackrf_version_string_read(hackrf_device* device, char* version,
} }
typedef struct { typedef struct {
uint32_t freq_mhz; /* From 30 to 6000MHz */ uint32_t freq_mhz; /* From 0 to 6000+MHz */
uint32_t freq_hz; /* From 0 to 999999Hz */ uint32_t freq_hz; /* From 0 to 999999Hz */
/* Final Freq = freq_mhz+freq_hz */ /* Final Freq = freq_mhz+freq_hz */
} set_freq_params_t; } set_freq_params_t;
@ -764,6 +766,56 @@ int ADDCALL hackrf_set_freq(hackrf_device* device, const uint64_t freq_hz)
} }
} }
struct set_freq_explicit_params {
uint64_t if_freq_hz; /* intermediate frequency */
uint64_t lo_freq_hz; /* front-end local oscillator frequency */
uint8_t path; /* image rejection filter path */
};
int ADDCALL hackrf_set_freq_explicit(hackrf_device* device,
const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
const enum rf_path_filter path)
{
struct set_freq_explicit_params params;
uint8_t length;
int result;
if (if_freq_hz < 2150000000 || if_freq_hz > 2750000000) {
return HACKRF_ERROR_INVALID_PARAM;
}
if ((path != RF_PATH_FILTER_BYPASS) &&
(lo_freq_hz < 84375000 || lo_freq_hz > 5400000000)) {
return HACKRF_ERROR_INVALID_PARAM;
}
if (path > 2) {
return HACKRF_ERROR_INVALID_PARAM;
}
params.if_freq_hz = TO_LE(if_freq_hz);
params.lo_freq_hz = TO_LE(lo_freq_hz);
params.path = (uint8_t)path;
length = sizeof(struct set_freq_explicit_params);
result = libusb_control_transfer(
device->usb_device,
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
HACKRF_VENDOR_REQUEST_SET_FREQ_EXPLICIT,
0,
0,
(unsigned char*)&params,
length,
0
);
if (result < length)
{
return HACKRF_ERROR_LIBUSB;
} else {
return HACKRF_SUCCESS;
}
}
typedef struct { typedef struct {
uint32_t freq_hz; uint32_t freq_hz;
@ -983,34 +1035,6 @@ int ADDCALL hackrf_set_txvga_gain(hackrf_device* device, uint32_t value)
} }
} }
int ADDCALL hackrf_set_if_freq(hackrf_device* device, const uint32_t freq_mhz)
{
int result;
if(freq_mhz < 2300 || freq_mhz > 2700)
{
return HACKRF_ERROR_INVALID_PARAM;
}
result = libusb_control_transfer(
device->usb_device,
LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE,
HACKRF_VENDOR_REQUEST_SET_IF_FREQ,
0,
freq_mhz,
NULL,
0,
0
);
if( result != 0 )
{
return HACKRF_ERROR_LIBUSB;
} else {
return HACKRF_SUCCESS;
}
}
int ADDCALL hackrf_set_antenna_enable(hackrf_device* device, const uint8_t value) int ADDCALL hackrf_set_antenna_enable(hackrf_device* device, const uint8_t value)
{ {
int result; int result;
@ -1317,6 +1341,20 @@ const char* ADDCALL hackrf_board_id_name(enum hackrf_board_id board_id)
} }
} }
const char* ADDCALL hackrf_filter_path_name(const enum rf_path_filter path)
{
switch(path) {
case RF_PATH_FILTER_BYPASS:
return "mixer bypass";
case RF_PATH_FILTER_LOW_PASS:
return "low pass filter";
case RF_PATH_FILTER_HIGH_PASS:
return "high pass filter";
default:
return "invalid filter path";
}
}
/* Return final bw round down and less than expected bw. */ /* Return final bw round down and less than expected bw. */
uint32_t ADDCALL hackrf_compute_baseband_filter_bw_round_down_lt(const uint32_t bandwidth_hz) uint32_t ADDCALL hackrf_compute_baseband_filter_bw_round_down_lt(const uint32_t bandwidth_hz)
{ {

View File

@ -69,6 +69,12 @@ enum hackrf_board_id {
BOARD_ID_INVALID = 0xFF, BOARD_ID_INVALID = 0xFF,
}; };
enum rf_path_filter {
RF_PATH_FILTER_BYPASS = 0,
RF_PATH_FILTER_LOW_PASS = 1,
RF_PATH_FILTER_HIGH_PASS = 2,
};
typedef struct hackrf_device hackrf_device; typedef struct hackrf_device hackrf_device;
typedef struct { typedef struct {
@ -130,9 +136,9 @@ extern ADDAPI int ADDCALL hackrf_board_id_read(hackrf_device* device, uint8_t* v
extern ADDAPI int ADDCALL hackrf_version_string_read(hackrf_device* device, char* version, uint8_t length); extern ADDAPI int ADDCALL hackrf_version_string_read(hackrf_device* device, char* version, uint8_t length);
extern ADDAPI int ADDCALL hackrf_set_freq(hackrf_device* device, const uint64_t freq_hz); extern ADDAPI int ADDCALL hackrf_set_freq(hackrf_device* device, const uint64_t freq_hz);
extern ADDAPI int ADDCALL hackrf_set_freq_explicit(hackrf_device* device,
/* range 2300-2700 Mhz */ const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
extern ADDAPI int ADDCALL hackrf_set_if_freq(hackrf_device* device, const uint32_t freq_mhz); const enum rf_path_filter path);
/* currently 8-20Mhz - either as a fraction, i.e. freq 20000000hz divider 2 -> 10Mhz or as plain old 10000000hz (double) /* currently 8-20Mhz - either as a fraction, i.e. freq 20000000hz divider 2 -> 10Mhz or as plain old 10000000hz (double)
preferred rates are 8, 10, 12.5, 16, 20Mhz due to less jitter */ preferred rates are 8, 10, 12.5, 16, 20Mhz due to less jitter */
@ -158,6 +164,7 @@ extern ADDAPI int ADDCALL hackrf_set_antenna_enable(hackrf_device* device, const
extern ADDAPI const char* ADDCALL hackrf_error_name(enum hackrf_error errcode); extern ADDAPI const char* ADDCALL hackrf_error_name(enum hackrf_error errcode);
extern ADDAPI const char* ADDCALL hackrf_board_id_name(enum hackrf_board_id board_id); extern ADDAPI const char* ADDCALL hackrf_board_id_name(enum hackrf_board_id board_id);
extern ADDAPI const char* ADDCALL hackrf_filter_path_name(const enum rf_path_filter path);
/* Compute nearest freq for bw filter (manual filter) */ /* Compute nearest freq for bw filter (manual filter) */
extern ADDAPI uint32_t ADDCALL hackrf_compute_baseband_filter_bw_round_down_lt(const uint32_t bandwidth_hz); extern ADDAPI uint32_t ADDCALL hackrf_compute_baseband_filter_bw_round_down_lt(const uint32_t bandwidth_hz);