Merge pull request #353 from mossmann/ifft

IFFT
This commit is contained in:
Dominic Spill
2017-02-23 04:29:40 -07:00
committed by GitHub

View File

@ -108,6 +108,7 @@ int gettimeofday(struct timeval *tv, void* ignored) {
uint32_t num_samples = SAMPLES_PER_BLOCK;
int num_ranges = 0;
uint16_t frequencies[MAX_SWEEP_RANGES*2];
int step_count;
static float TimevalDiff(const struct timeval *a, const struct timeval *b) {
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
@ -163,6 +164,7 @@ volatile bool do_exit = false;
FILE* fd = NULL;
volatile uint32_t byte_count = 0;
volatile uint64_t sweep_count = 0;
struct timeval time_start;
struct timeval t_start;
@ -175,6 +177,7 @@ bool antenna = false;
uint32_t antenna_enable;
bool binary_output = false;
bool ifft_output = false;
bool one_shot = false;
volatile bool sweep_started = false;
@ -183,6 +186,10 @@ double fft_bin_width;
fftwf_complex *fftwIn = NULL;
fftwf_complex *fftwOut = NULL;
fftwf_plan fftwPlan = NULL;
fftwf_complex *ifftwIn = NULL;
fftwf_complex *ifftwOut = NULL;
fftwf_plan ifftwPlan = NULL;
uint32_t ifft_idx = 0;
float* pwr;
float* window;
@ -200,7 +207,7 @@ int rx_callback(hackrf_transfer* transfer) {
uint64_t frequency; /* in Hz */
uint64_t band_edge;
uint32_t record_length;
int i, j;
int i, j, ifft_bins;
struct tm *fft_time;
char time_str[50];
struct timeval usb_transfer_time;
@ -212,6 +219,7 @@ int rx_callback(hackrf_transfer* transfer) {
gettimeofday(&usb_transfer_time, NULL);
byte_count += transfer->valid_length;
buf = (int8_t*) transfer->buffer;
ifft_bins = fftSize * step_count;
for(j=0; j<BLOCKS_PER_TRANSFER; j++) {
ubuf = (uint8_t*) buf;
if(ubuf[0] == 0x7F && ubuf[1] == 0x7F) {
@ -223,8 +231,20 @@ int rx_callback(hackrf_transfer* transfer) {
continue;
}
if (frequency == (uint64_t)(FREQ_ONE_MHZ*frequencies[0])) {
if(one_shot && sweep_started) {
do_exit = true;
if(sweep_started) {
if(ifft_output) {
fftwf_execute(ifftwPlan);
for(i=0; i < ifft_bins; i++) {
ifftwOut[i][0] *= 1.0f / ifft_bins;
ifftwOut[i][1] *= 1.0f / ifft_bins;
fwrite(&ifftwOut[i][0], sizeof(float), 1, fd);
fwrite(&ifftwOut[i][1], sizeof(float), 1, fd);
}
}
sweep_count++;
if(one_shot) {
do_exit = true;
}
}
sweep_started = true;
time_stamp = usb_transfer_time;
@ -262,19 +282,33 @@ int rx_callback(hackrf_transfer* transfer) {
record_length = 2 * sizeof(band_edge)
+ (fftSize/4) * sizeof(float);
fwrite(&record_length, sizeof(record_length), 1, stdout);
fwrite(&record_length, sizeof(record_length), 1, fd);
band_edge = frequency;
fwrite(&band_edge, sizeof(band_edge), 1, stdout);
fwrite(&band_edge, sizeof(band_edge), 1, fd);
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 4;
fwrite(&band_edge, sizeof(band_edge), 1, stdout);
fwrite(&pwr[1+(fftSize*5)/8], sizeof(float), fftSize/4, stdout);
fwrite(&band_edge, sizeof(band_edge), 1, fd);
fwrite(&pwr[1+(fftSize*5)/8], sizeof(float), fftSize/4, fd);
fwrite(&record_length, sizeof(record_length), 1, stdout);
fwrite(&record_length, sizeof(record_length), 1, fd);
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 2;
fwrite(&band_edge, sizeof(band_edge), 1, stdout);
fwrite(&band_edge, sizeof(band_edge), 1, fd);
band_edge = frequency + (DEFAULT_SAMPLE_RATE_HZ * 3) / 4;
fwrite(&band_edge, sizeof(band_edge), 1, stdout);
fwrite(&pwr[1+fftSize/8], sizeof(float), fftSize/4, stdout);
fwrite(&band_edge, sizeof(band_edge), 1, fd);
fwrite(&pwr[1+fftSize/8], sizeof(float), fftSize/4, fd);
} else if(ifft_output) {
ifft_idx = round((frequency - (uint64_t)(FREQ_ONE_MHZ*frequencies[0]))
/ fft_bin_width);
ifft_idx = (ifft_idx + ifft_bins/2) % ifft_bins;
for(i = 0; (fftSize / 4) > i; i++) {
ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize*5)/8][0];
ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize*5)/8][1];
}
ifft_idx += fftSize / 2;
ifft_idx %= ifft_bins;
for(i = 0; (fftSize / 4) > i; i++) {
ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize/8)][0];
ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize/8)][1];
}
} else {
fft_time = localtime(&time_stamp.tv_sec);
strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time);
@ -285,8 +319,8 @@ int rx_callback(hackrf_transfer* transfer) {
(uint64_t)(frequency+DEFAULT_SAMPLE_RATE_HZ/4),
fft_bin_width,
fftSize);
for(i=1+(fftSize*5)/8; (1+(fftSize*7)/8) > i; i++) {
fprintf(fd, ", %.2f", pwr[i]);
for(i = 0; (fftSize / 4) > i; i++) {
fprintf(fd, ", %.2f", pwr[i + 1 + (fftSize*5)/8]);
}
fprintf(fd, "\n");
fprintf(fd, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
@ -296,8 +330,8 @@ int rx_callback(hackrf_transfer* transfer) {
(uint64_t)(frequency+((DEFAULT_SAMPLE_RATE_HZ*3)/4)),
fft_bin_width,
fftSize);
for(i=1+fftSize/8; (1+(fftSize*3)/8) > i; i++) {
fprintf(fd, ", %.2f", pwr[i]);
for(i = 0; (fftSize / 4) > i; i++) {
fprintf(fd, ", %.2f", pwr[i + 1 + (fftSize/8)]);
}
fprintf(fd, "\n");
}
@ -318,7 +352,8 @@ static void usage() {
fprintf(stderr, "\t[-w bin_width] # FFT bin width (frequency resolution) in Hz\n");
fprintf(stderr, "\t[-1] # one shot mode\n");
fprintf(stderr, "\t[-B] # binary output\n");
fprintf(stderr, "\t-r filename # output file");
fprintf(stderr, "\t[-I] # binary inverse FFT output\n");
fprintf(stderr, "\t-r filename # output file\n");
fprintf(stderr, "\n");
fprintf(stderr, "Output fields:\n");
fprintf(stderr, "\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n");
@ -348,16 +383,16 @@ int main(int argc, char** argv) {
const char* path = NULL;
const char* serial_number = NULL;
int exit_code = EXIT_SUCCESS;
struct timeval t_end;
struct timeval time_now;
float time_diff;
float sweep_rate;
unsigned int lna_gain=16, vga_gain=20;
int step_count;
uint32_t freq_min = 0;
uint32_t freq_max = 6000;
uint32_t requested_fft_bin_width;
while( (opt = getopt(argc, argv, "a:f:p:l:g:d:n:w:1Br:h?")) != EOF ) {
while( (opt = getopt(argc, argv, "a:f:p:l:g:d:n:w:1BIr:h?")) != EOF ) {
result = HACKRF_SUCCESS;
switch( opt )
{
@ -427,6 +462,10 @@ int main(int argc, char** argv) {
binary_output = true;
break;
case 'I':
ifft_output = true;
break;
case 'r':
path = optarg;
break;
@ -487,6 +526,16 @@ int main(int argc, char** argv) {
num_ranges++;
}
if(binary_output && ifft_output) {
fprintf(stderr, "argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n");
return EXIT_FAILURE;
}
if(ifft_output && (1 < num_ranges)) {
fprintf(stderr, "argument error: only one frequency range is supported in IFFT output (-I) mode.\n");
return EXIT_FAILURE;
}
if(4 > fftSize) {
fprintf(stderr,
"argument error: FFT bin width (-w) must be no more than one quarter the sample rate\n");
@ -581,12 +630,6 @@ int main(int argc, char** argv) {
result = hackrf_set_vga_gain(device, vga_gain);
result |= hackrf_set_lna_gain(device, lna_gain);
result |= hackrf_start_rx(device, rx_callback, NULL);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
/*
* For each range, plan a whole number of tuning steps of a certain
@ -601,6 +644,19 @@ int main(int argc, char** argv) {
frequencies[2*i], frequencies[2*i+1]);
}
if(ifft_output) {
ifftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count);
ifftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count);
ifftwPlan = fftwf_plan_dft_1d(fftSize * step_count, ifftwIn, ifftwOut, FFTW_BACKWARD, FFTW_MEASURE);
}
result |= hackrf_start_rx(device, rx_callback, NULL);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
result = hackrf_init_sweep(device, frequencies, num_ranges, num_samples * 2,
TUNE_STEP * FREQ_ONE_MHZ, OFFSET, INTERLEAVED);
if( result != HACKRF_SUCCESS ) {
@ -632,32 +688,25 @@ int main(int argc, char** argv) {
}
gettimeofday(&t_start, NULL);
gettimeofday(&time_start, NULL);
fprintf(stderr, "Stop with Ctrl-C\n");
while((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
uint32_t byte_count_now;
struct timeval time_now;
float time_difference, rate;
float time_difference;
sleep(1);
gettimeofday(&time_now, NULL);
byte_count_now = byte_count;
byte_count = 0;
time_difference = TimevalDiff(&time_now, &t_start);
sweep_rate = (float)sweep_count / time_difference;
fprintf(stderr, "%" PRIu64 " total sweeps completed, %.2f sweeps/second\n",
sweep_count, sweep_rate);
time_difference = TimevalDiff(&time_now, &time_start);
rate = (float)byte_count_now / time_difference;
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second\n",
(byte_count_now / 1e6f), time_difference, (rate / 1e6f) );
time_start = time_now;
if (byte_count_now == 0) {
if (byte_count == 0) {
exit_code = EXIT_FAILURE;
fprintf(stderr, "\nCouldn't transfer any bytes for one second.\n");
fprintf(stderr, "\nCouldn't transfer any data for one second.\n");
break;
}
byte_count = 0;
}
result = hackrf_is_streaming(device);
@ -668,9 +717,10 @@ int main(int argc, char** argv) {
hackrf_error_name(result), result);
}
gettimeofday(&t_end, NULL);
time_diff = TimevalDiff(&t_end, &t_start);
fprintf(stderr, "Total time: %5.5f s\n", time_diff);
gettimeofday(&time_now, NULL);
time_diff = TimevalDiff(&time_now, &t_start);
fprintf(stderr, "Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n",
sweep_count, time_diff, sweep_rate);
if(device != NULL) {
result = hackrf_stop_rx(device);
@ -702,6 +752,8 @@ int main(int argc, char** argv) {
fftwf_free(fftwOut);
fftwf_free(pwr);
fftwf_free(window);
fftwf_free(ifftwIn);
fftwf_free(ifftwOut);
fprintf(stderr, "exit\n");
return exit_code;
}