Reformat all code to new clang-format standard.

This commit is contained in:
Martin Ling
2022-07-06 12:50:08 +01:00
parent 7d6a524795
commit c3fdf402d7
122 changed files with 6113 additions and 4930 deletions

View File

@ -21,7 +21,10 @@
#include "bitband.h"
volatile uint32_t* peripheral_bitband_address(volatile void* const address, const uint_fast8_t bit_number) {
volatile uint32_t* peripheral_bitband_address(
volatile void* const address,
const uint_fast8_t bit_number)
{
const uint32_t bit_band_base = 0x42000000;
const uint32_t byte_offset = (uint32_t) address - 0x40000000;
const uint32_t bit_word_offset = (byte_offset * 32) + (bit_number * 4);
@ -29,17 +32,29 @@ volatile uint32_t* peripheral_bitband_address(volatile void* const address, cons
return (volatile uint32_t*) bit_word_address;
}
void peripheral_bitband_set(volatile void* const peripheral_address, const uint_fast8_t bit_number) {
volatile uint32_t* const bitband_address = peripheral_bitband_address(peripheral_address, bit_number);
void peripheral_bitband_set(
volatile void* const peripheral_address,
const uint_fast8_t bit_number)
{
volatile uint32_t* const bitband_address =
peripheral_bitband_address(peripheral_address, bit_number);
*bitband_address = 1;
}
void peripheral_bitband_clear(volatile void* const peripheral_address, const uint_fast8_t bit_number) {
volatile uint32_t* const bitband_address = peripheral_bitband_address(peripheral_address, bit_number);
void peripheral_bitband_clear(
volatile void* const peripheral_address,
const uint_fast8_t bit_number)
{
volatile uint32_t* const bitband_address =
peripheral_bitband_address(peripheral_address, bit_number);
*bitband_address = 0;
}
uint32_t peripheral_bitband_get(volatile void* const peripheral_address, const uint_fast8_t bit_number) {
volatile uint32_t* const bitband_address = peripheral_bitband_address(peripheral_address, bit_number);
uint32_t peripheral_bitband_get(
volatile void* const peripheral_address,
const uint_fast8_t bit_number)
{
volatile uint32_t* const bitband_address =
peripheral_bitband_address(peripheral_address, bit_number);
return *bitband_address;
}

View File

@ -24,9 +24,17 @@
#include <stdint.h>
volatile uint32_t* peripheral_bitband_address(volatile void* const address, const uint_fast8_t bit_number);
void peripheral_bitband_set(volatile void* const peripheral_address, const uint_fast8_t bit_number);
void peripheral_bitband_clear(volatile void* const peripheral_address, const uint_fast8_t bit_number);
uint32_t peripheral_bitband_get(volatile void* const peripheral_address, const uint_fast8_t bit_number);
volatile uint32_t* peripheral_bitband_address(
volatile void* const address,
const uint_fast8_t bit_number);
void peripheral_bitband_set(
volatile void* const peripheral_address,
const uint_fast8_t bit_number);
void peripheral_bitband_clear(
volatile void* const peripheral_address,
const uint_fast8_t bit_number);
uint32_t peripheral_bitband_get(
volatile void* const peripheral_address,
const uint_fast8_t bit_number);
#endif //__BITBAND_H__

View File

@ -29,7 +29,8 @@ static refill_buffer_cb refill_buffer;
static uint32_t xsvf_buffer_len, xsvf_pos;
static unsigned char* xsvf_buffer;
void cpld_jtag_take(jtag_t* const jtag) {
void cpld_jtag_take(jtag_t* const jtag)
{
const jtag_gpio_t* const gpio = jtag->gpio;
/* Set initial GPIO state to the voltages of the internal or external pull-ups/downs,
@ -53,7 +54,8 @@ void cpld_jtag_take(jtag_t* const jtag) {
gpio_input(gpio->gpio_tdo);
}
void cpld_jtag_release(jtag_t* const jtag) {
void cpld_jtag_release(jtag_t* const jtag)
{
const jtag_gpio_t* const gpio = jtag->gpio;
/* Make all pins inputs when JTAG interface not active.
@ -75,8 +77,8 @@ int cpld_jtag_program(
jtag_t* const jtag,
const uint32_t buffer_length,
unsigned char* const buffer,
refill_buffer_cb refill
) {
refill_buffer_cb refill)
{
int error;
cpld_jtag_take(jtag);
xsvf_buffer = buffer;
@ -89,7 +91,8 @@ int cpld_jtag_program(
}
/* this gets called by the XAPP058 code */
unsigned char cpld_jtag_get_next_byte(void) {
unsigned char cpld_jtag_get_next_byte(void)
{
if (xsvf_pos == xsvf_buffer_len) {
refill_buffer();
xsvf_pos = 0;

View File

@ -55,8 +55,7 @@ int cpld_jtag_program(
jtag_t* const jtag,
const uint32_t buffer_length,
unsigned char* const buffer,
refill_buffer_cb refill
);
refill_buffer_cb refill);
unsigned char cpld_jtag_get_next_byte(void);
#endif //__CPLD_JTAG_H__

View File

@ -53,9 +53,14 @@ typedef enum {
CPLD_XC2C_IR_STCTEST = 0b00010110,
CPLD_XC2C_IR_ISC_NOOP = 0b11100000,
} cpld_xc2c_ir_t;
// clang-format on
static bool cpld_xc2c_jtag_clock(const jtag_t* const jtag, const uint32_t tms, const uint32_t tdi) {
static bool cpld_xc2c_jtag_clock(
const jtag_t* const jtag,
const uint32_t tms,
const uint32_t tdi)
{
// 8 ns TMS/TDI to TCK setup
gpio_write(jtag->gpio->gpio_tdi, tdi);
gpio_write(jtag->gpio->gpio_tms, tms);
@ -90,27 +95,43 @@ static bool cpld_xc2c_jtag_clock(const jtag_t* const jtag, const uint32_t tms, c
return gpio_read(jtag->gpio->gpio_tdo);
}
static void cpld_xc2c_jtag_shift_ptr_tms(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t start, const size_t end, const bool tms) {
static void cpld_xc2c_jtag_shift_ptr_tms(
const jtag_t* const jtag,
uint8_t* const tdi_tdo,
const size_t start,
const size_t end,
const bool tms)
{
for (size_t i = start; i < end; i++) {
const size_t byte_n = i >> 3;
const size_t bit_n = i & 7;
const uint32_t mask = (1U << bit_n);
const uint32_t tdo = cpld_xc2c_jtag_clock(jtag, tms, tdi_tdo[byte_n] & mask) ? 1 : 0;
const uint32_t tdo =
cpld_xc2c_jtag_clock(jtag, tms, tdi_tdo[byte_n] & mask) ? 1 : 0;
tdi_tdo[byte_n] &= ~mask;
tdi_tdo[byte_n] |= (tdo << bit_n);
}
}
static void cpld_xc2c_jtag_shift_ptr(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t count) {
static void cpld_xc2c_jtag_shift_ptr(
const jtag_t* const jtag,
uint8_t* const tdi_tdo,
const size_t count)
{
if (count > 0) {
cpld_xc2c_jtag_shift_ptr_tms(jtag, tdi_tdo, 0, count - 1, false);
cpld_xc2c_jtag_shift_ptr_tms(jtag, tdi_tdo, count - 1, count, true);
}
}
static uint32_t cpld_xc2c_jtag_shift_u32(const jtag_t* const jtag, const uint32_t tms, const uint32_t tdi, const size_t count) {
static uint32_t cpld_xc2c_jtag_shift_u32(
const jtag_t* const jtag,
const uint32_t tms,
const uint32_t tdi,
const size_t count)
{
uint32_t tdo = 0;
for (size_t i = 0; i < count; i++) {
@ -121,19 +142,26 @@ static uint32_t cpld_xc2c_jtag_shift_u32(const jtag_t* const jtag, const uint32_
return tdo;
}
static void cpld_xc2c_jtag_clocks(const jtag_t* const jtag, const size_t count) {
static void cpld_xc2c_jtag_clocks(const jtag_t* const jtag, const size_t count)
{
for (size_t i = 0; i < count; i++) {
cpld_xc2c_jtag_clock(jtag, 0, 0);
}
}
static void cpld_xc2c_jtag_pause(const jtag_t* const jtag, const size_t count) {
static void cpld_xc2c_jtag_pause(const jtag_t* const jtag, const size_t count)
{
for (size_t i = 0; i < count; i++) {
cpld_xc2c_jtag_clock(jtag, (i == (count - 1)), 0);
}
}
static void cpld_xc2c_jtag_shift_dr_ir(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t bit_count, const size_t pause_count) {
static void cpld_xc2c_jtag_shift_dr_ir(
const jtag_t* const jtag,
uint8_t* const tdi_tdo,
const size_t bit_count,
const size_t pause_count)
{
/* Run-Test/Idle or Select-DR-Scan -> Shift-DR or Shift-IR */
cpld_xc2c_jtag_shift_u32(jtag, 0b001, 0b000, 3);
/* Shift-[DI]R -> Exit1-[DI]R */
@ -148,11 +176,20 @@ static void cpld_xc2c_jtag_shift_dr_ir(const jtag_t* const jtag, uint8_t* const
cpld_xc2c_jtag_shift_u32(jtag, 0b01, 0, 2);
}
static void cpld_xc2c_jtag_shift_dr(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t bit_count, const size_t pause_count) {
static void cpld_xc2c_jtag_shift_dr(
const jtag_t* const jtag,
uint8_t* const tdi_tdo,
const size_t bit_count,
const size_t pause_count)
{
cpld_xc2c_jtag_shift_dr_ir(jtag, tdi_tdo, bit_count, pause_count);
}
static uint8_t cpld_xc2c_jtag_shift_ir_pause(const jtag_t* const jtag, const cpld_xc2c_ir_t ir, const size_t pause_count) {
static uint8_t cpld_xc2c_jtag_shift_ir_pause(
const jtag_t* const jtag,
const cpld_xc2c_ir_t ir,
const size_t pause_count)
{
/* Run-Test/Idle -> Select-DR-Scan */
cpld_xc2c_jtag_shift_u32(jtag, 0b1, 0b0, 1);
uint8_t value = ir;
@ -160,17 +197,20 @@ static uint8_t cpld_xc2c_jtag_shift_ir_pause(const jtag_t* const jtag, const cpl
return value;
}
static uint8_t cpld_xc2c_jtag_shift_ir(const jtag_t* const jtag, const cpld_xc2c_ir_t ir) {
static uint8_t cpld_xc2c_jtag_shift_ir(const jtag_t* const jtag, const cpld_xc2c_ir_t ir)
{
return cpld_xc2c_jtag_shift_ir_pause(jtag, ir, 0);
}
static void cpld_xc2c_jtag_reset(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_reset(const jtag_t* const jtag)
{
/* Five TMS=1 to reach Test-Logic-Reset from any point in the TAP state diagram.
*/
cpld_xc2c_jtag_shift_u32(jtag, 0b11111, 0, 5);
}
static void cpld_xc2c_jtag_reset_and_idle(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_reset_and_idle(const jtag_t* const jtag)
{
/* Five TMS=1 to reach Test-Logic-Reset from any point in the TAP state diagram.
* One TMS=0 to move from Test-Logic-Reset to Run-Test-Idle.
*/
@ -178,7 +218,8 @@ static void cpld_xc2c_jtag_reset_and_idle(const jtag_t* const jtag) {
cpld_xc2c_jtag_shift_u32(jtag, 0, 0, 1);
}
static uint32_t cpld_xc2c_jtag_idcode(const jtag_t* const jtag) {
static uint32_t cpld_xc2c_jtag_idcode(const jtag_t* const jtag)
{
/* Enter and end at Run-Test-Idle state. */
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_IDCODE);
uint32_t result = 0;
@ -186,34 +227,41 @@ static uint32_t cpld_xc2c_jtag_idcode(const jtag_t* const jtag) {
return result;
}
static bool cpld_xc2c64a_jtag_idcode_ok(const jtag_t* const jtag) {
static bool cpld_xc2c64a_jtag_idcode_ok(const jtag_t* const jtag)
{
return ((cpld_xc2c_jtag_idcode(jtag) ^ 0xf6e5f093) & 0x0fff8fff) == 0;
}
static void cpld_xc2c_jtag_conld(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_conld(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_DISABLE);
cpld_xc2c_jtag_clocks(jtag, 100);
}
static void cpld_xc2c_jtag_enable(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_enable(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_ENABLE);
cpld_xc2c_jtag_clocks(jtag, 800);
}
static void cpld_xc2c_jtag_disable(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_disable(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_DISABLE);
cpld_xc2c_jtag_clocks(jtag, 100);
}
static void cpld_xc2c_jtag_sram_write(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_sram_write(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_WRITE);
}
static void cpld_xc2c_jtag_sram_read(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_sram_read(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_SRAM_READ);
}
static uint32_t cpld_xc2c_jtag_bypass(const jtag_t* const jtag, const bool shift_dr) {
static uint32_t cpld_xc2c_jtag_bypass(const jtag_t* const jtag, const bool shift_dr)
{
const uint8_t result = cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_BYPASS);
if (shift_dr) {
uint8_t dr = 0;
@ -222,16 +270,19 @@ static uint32_t cpld_xc2c_jtag_bypass(const jtag_t* const jtag, const bool shift
return result;
}
static bool cpld_xc2c_jtag_read_write_protect(const jtag_t* const jtag) {
static bool cpld_xc2c_jtag_read_write_protect(const jtag_t* const jtag)
{
/* Enter and end at Run-Test-Idle state. */
return ((cpld_xc2c_jtag_bypass(jtag, false) ^ 0x01) & 0x03) == 0;
}
static bool cpld_xc2c_jtag_is_done(const jtag_t* const jtag) {
static bool cpld_xc2c_jtag_is_done(const jtag_t* const jtag)
{
return ((cpld_xc2c_jtag_bypass(jtag, false) ^ 0x05) & 0x07) == 0;
}
static void cpld_xc2c_jtag_init_special(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_init_special(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_INIT);
cpld_xc2c_jtag_clocks(jtag, 20);
/* Run-Test/Idle -> Shift-IR */
@ -245,11 +296,16 @@ static void cpld_xc2c_jtag_init_special(const jtag_t* const jtag) {
cpld_xc2c_jtag_clocks(jtag, 800);
}
static void cpld_xc2c_jtag_read(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_read(const jtag_t* const jtag)
{
cpld_xc2c_jtag_shift_ir_pause(jtag, CPLD_XC2C_IR_ISC_READ, 1);
}
static void cpld_xc2c64a_jtag_read_row(const jtag_t* const jtag, uint8_t address, uint8_t* const dr) {
static void cpld_xc2c64a_jtag_read_row(
const jtag_t* const jtag,
uint8_t address,
uint8_t* const dr)
{
cpld_xc2c_jtag_shift_dr(jtag, &address, 7, 20);
cpld_xc2c_jtag_clocks(jtag, 100);
@ -264,13 +320,14 @@ static void cpld_xc2c64a_jtag_read_row(const jtag_t* const jtag, uint8_t address
bool cpld_xc2c64a_jtag_checksum(
const jtag_t* const jtag,
const cpld_xc2c64a_verify_t* const verify,
uint32_t* const crc_value
) {
uint32_t* const crc_value)
{
cpld_xc2c_jtag_reset_and_idle(jtag);
if( cpld_xc2c64a_jtag_idcode_ok(jtag) && cpld_xc2c_jtag_read_write_protect(jtag) &&
cpld_xc2c64a_jtag_idcode_ok(jtag) && cpld_xc2c_jtag_read_write_protect(jtag) ) {
if (cpld_xc2c64a_jtag_idcode_ok(jtag) &&
cpld_xc2c_jtag_read_write_protect(jtag) &&
cpld_xc2c64a_jtag_idcode_ok(jtag) &&
cpld_xc2c_jtag_read_write_protect(jtag)) {
cpld_xc2c_jtag_bypass(jtag, false);
cpld_xc2c_jtag_enable(jtag);
@ -319,7 +376,11 @@ bool cpld_xc2c64a_jtag_checksum(
return false;
}
static void cpld_xc2c64a_jtag_sram_write_row(const jtag_t* const jtag, uint8_t address, const uint8_t* const data) {
static void cpld_xc2c64a_jtag_sram_write_row(
const jtag_t* const jtag,
uint8_t address,
const uint8_t* const data)
{
uint8_t write[CPLD_XC2C64A_BYTES_IN_ROW];
memcpy(&write[0], data, sizeof(write));
@ -336,7 +397,11 @@ static void cpld_xc2c64a_jtag_sram_write_row(const jtag_t* const jtag, uint8_t a
cpld_xc2c_jtag_shift_u32(jtag, 0b01, 0b00, 2);
}
static void cpld_xc2c64a_jtag_sram_read_row(const jtag_t* const jtag, uint8_t* const data, const uint8_t next_address) {
static void cpld_xc2c64a_jtag_sram_read_row(
const jtag_t* const jtag,
uint8_t* const data,
const uint8_t next_address)
{
/* Run-Test/Idle -> Shift-DR */
cpld_xc2c_jtag_shift_u32(jtag, 0b001, 0b000, 3);
@ -353,7 +418,12 @@ static void cpld_xc2c64a_jtag_sram_read_row(const jtag_t* const jtag, uint8_t* c
cpld_xc2c_jtag_shift_u32(jtag, 0b0110, 0b0000, 4);
}
static bool cpld_xc2c64a_jtag_sram_compare_row(const jtag_t* const jtag, const uint8_t* const expected, const uint8_t* const mask, const uint8_t next_address) {
static bool cpld_xc2c64a_jtag_sram_compare_row(
const jtag_t* const jtag,
const uint8_t* const expected,
const uint8_t* const mask,
const uint8_t next_address)
{
/* Run-Test/Idle -> Shift-DR */
uint8_t read[CPLD_XC2C64A_BYTES_IN_ROW];
memset(read, 0xff, sizeof(read));
@ -362,7 +432,8 @@ static bool cpld_xc2c64a_jtag_sram_compare_row(const jtag_t* const jtag, const u
bool matched = true;
if ((expected != NULL) && (mask != NULL)) {
for (size_t i = 0; i < CPLD_XC2C64A_BYTES_IN_ROW; i++) {
const uint8_t significant_differences = (read[i] ^ expected[i]) & mask[i];
const uint8_t significant_differences =
(read[i] ^ expected[i]) & mask[i];
matched &= (significant_differences == 0);
}
}
@ -372,8 +443,8 @@ static bool cpld_xc2c64a_jtag_sram_compare_row(const jtag_t* const jtag, const u
void cpld_xc2c64a_jtag_sram_write(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program
) {
const cpld_xc2c64a_program_t* const program)
{
cpld_xc2c_jtag_reset_and_idle(jtag);
cpld_xc2c_jtag_enable(jtag);
@ -381,7 +452,10 @@ void cpld_xc2c64a_jtag_sram_write(
for (size_t row = 0; row < CPLD_XC2C64A_ROWS; row++) {
const uint8_t address = cpld_hackrf_row_addresses.address[row];
cpld_xc2c64a_jtag_sram_write_row(jtag, address, &program->row[row].data[0]);
cpld_xc2c64a_jtag_sram_write_row(
jtag,
address,
&program->row[row].data[0]);
}
cpld_xc2c_jtag_disable(jtag);
@ -392,8 +466,8 @@ void cpld_xc2c64a_jtag_sram_write(
bool cpld_xc2c64a_jtag_sram_verify(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program,
const cpld_xc2c64a_verify_t* const verify
) {
const cpld_xc2c64a_verify_t* const verify)
{
cpld_xc2c_jtag_reset_and_idle(jtag);
cpld_xc2c_jtag_enable(jtag);
@ -405,11 +479,20 @@ bool cpld_xc2c64a_jtag_sram_verify(
bool matched = true;
for (size_t address_row = 0; address_row <= CPLD_XC2C64A_ROWS; address_row++) {
const int data_row = (int) address_row - 1;
const size_t mask_index = (data_row >= 0) ? verify->mask_index[data_row] : 0;
const uint8_t* const expected = (data_row >= 0) ? &program->row[data_row].data[0] : NULL;
const uint8_t* const mask = (data_row >= 0) ? &verify->mask[mask_index].value[0] : NULL;
const uint8_t next_address = (address_row < CPLD_XC2C64A_ROWS) ? cpld_hackrf_row_addresses.address[address_row] : 0;
matched &= cpld_xc2c64a_jtag_sram_compare_row(jtag, expected, mask, next_address);
const size_t mask_index =
(data_row >= 0) ? verify->mask_index[data_row] : 0;
const uint8_t* const expected =
(data_row >= 0) ? &program->row[data_row].data[0] : NULL;
const uint8_t* const mask =
(data_row >= 0) ? &verify->mask[mask_index].value[0] : NULL;
const uint8_t next_address = (address_row < CPLD_XC2C64A_ROWS) ?
cpld_hackrf_row_addresses.address[address_row] :
0;
matched &= cpld_xc2c64a_jtag_sram_compare_row(
jtag,
expected,
mask,
next_address);
}
cpld_xc2c_jtag_disable(jtag);

View File

@ -56,17 +56,14 @@ typedef struct {
bool cpld_xc2c64a_jtag_checksum(
const jtag_t* const jtag,
const cpld_xc2c64a_verify_t* const verify,
uint32_t* const crc_value
);
uint32_t* const crc_value);
void cpld_xc2c64a_jtag_sram_write(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program
);
const cpld_xc2c64a_program_t* const program);
bool cpld_xc2c64a_jtag_sram_verify(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program,
const cpld_xc2c64a_verify_t* const verify
);
const cpld_xc2c64a_verify_t* const verify);
extern const cpld_xc2c64a_program_t cpld_hackrf_program_sram;
extern const cpld_xc2c64a_verify_t cpld_hackrf_verify;

View File

@ -23,13 +23,15 @@
#include <stdbool.h>
void crc32_init(crc32_t* const crc) {
void crc32_init(crc32_t* const crc)
{
crc->remainder = 0xffffffff;
crc->reversed_polynomial = 0xedb88320;
crc->final_xor = 0xffffffff;
}
void crc32_update(crc32_t* const crc, const uint8_t* const data, const size_t byte_count) {
void crc32_update(crc32_t* const crc, const uint8_t* const data, const size_t byte_count)
{
uint32_t remainder = crc->remainder;
const size_t bit_count = byte_count * 8;
for (size_t bit_n = 0; bit_n < bit_count; bit_n++) {
@ -44,6 +46,7 @@ void crc32_update(crc32_t* const crc, const uint8_t* const data, const size_t by
crc->remainder = remainder;
}
uint32_t crc32_digest(const crc32_t* const crc) {
uint32_t crc32_digest(const crc32_t* const crc)
{
return crc->remainder ^ crc->final_xor;
}

View File

@ -24,8 +24,7 @@
#include "fault_handler.h"
typedef struct
{
typedef struct {
uint32_t r0;
uint32_t r1;
uint32_t r2;
@ -36,8 +35,8 @@ typedef struct
uint32_t psr; /* Program Status Register. */
} hard_fault_stack_t;
__attribute__((naked))
void hard_fault_handler(void) {
__attribute__((naked)) void hard_fault_handler(void)
{
__asm__("TST LR, #4");
__asm__("ITE EQ");
__asm__("MRSEQ R0, MSP");
@ -73,14 +72,17 @@ __attribute__((used)) void hard_fault_handler_c(uint32_t* args)
while (1) {}
}
void mem_manage_handler() {
void mem_manage_handler()
{
while (1) {}
}
void bus_fault_handler() {
void bus_fault_handler()
{
while (1) {}
}
void usage_fault_handler() {
void usage_fault_handler()
{
while (1) {}
}

View File

@ -30,6 +30,7 @@
// structures are supposedly the same between processors (to an
// undetermined extent).
typedef struct armv7m_scb_t armv7m_scb_t;
struct armv7m_scb_t {
volatile const uint32_t CPUID;
volatile uint32_t ICSR;

View File

@ -23,40 +23,49 @@
#include <libopencm3/lpc43xx/gpdma.h>
void gpdma_controller_enable() {
void gpdma_controller_enable()
{
GPDMA_CONFIG |= GPDMA_CONFIG_E(1);
while ((GPDMA_CONFIG & GPDMA_CONFIG_E_MASK) == 0) {}
}
void gpdma_channel_enable(const uint_fast8_t channel) {
void gpdma_channel_enable(const uint_fast8_t channel)
{
GPDMA_CCONFIG(channel) |= GPDMA_CCONFIG_E(1);
}
void gpdma_channel_disable(const uint_fast8_t channel) {
void gpdma_channel_disable(const uint_fast8_t channel)
{
GPDMA_CCONFIG(channel) &= ~GPDMA_CCONFIG_E_MASK;
while (GPDMA_ENBLDCHNS & GPDMA_ENBLDCHNS_ENABLEDCHANNELS(1 << channel)) {}
}
void gpdma_channel_interrupt_tc_clear(const uint_fast8_t channel) {
void gpdma_channel_interrupt_tc_clear(const uint_fast8_t channel)
{
GPDMA_INTTCCLEAR = GPDMA_INTTCCLEAR_INTTCCLEAR(1 << channel);
}
void gpdma_channel_interrupt_error_clear(const uint_fast8_t channel) {
void gpdma_channel_interrupt_error_clear(const uint_fast8_t channel)
{
GPDMA_INTERRCLR = GPDMA_INTERRCLR_INTERRCLR(1 << channel);
}
void gpdma_lli_enable_interrupt(gpdma_lli_t* const lli) {
void gpdma_lli_enable_interrupt(gpdma_lli_t* const lli)
{
lli->ccontrol |= GPDMA_CCONTROL_I(1);
}
void gpdma_lli_create_loop(gpdma_lli_t* const lli, const size_t lli_count) {
void gpdma_lli_create_loop(gpdma_lli_t* const lli, const size_t lli_count)
{
for (size_t i = 0; i < lli_count; i++) {
gpdma_lli_t* const next_lli = &lli[(i + 1) % lli_count];
lli[i].clli = (lli[i].clli & ~GPDMA_CLLI_LLI_MASK) | GPDMA_CLLI_LLI((uint32_t)next_lli >> 2);
lli[i].clli = (lli[i].clli & ~GPDMA_CLLI_LLI_MASK) |
GPDMA_CLLI_LLI((uint32_t) next_lli >> 2);
}
}
void gpdma_lli_create_oneshot(gpdma_lli_t* const lli, const size_t lli_count) {
void gpdma_lli_create_oneshot(gpdma_lli_t* const lli, const size_t lli_count)
{
gpdma_lli_create_loop(lli, lli_count);
lli[lli_count - 1].clli &= ~GPDMA_CLLI_LLI_MASK;
}

View File

@ -23,36 +23,44 @@
#include <stddef.h>
void gpio_init() {
void gpio_init()
{
for (size_t i = 0; i < 8; i++) {
GPIO_LPC_PORT(i)->dir = 0;
}
}
void gpio_set(gpio_t gpio) {
void gpio_set(gpio_t gpio)
{
gpio->port->set = gpio->mask;
}
void gpio_clear(gpio_t gpio) {
void gpio_clear(gpio_t gpio)
{
gpio->port->clr = gpio->mask;
}
void gpio_toggle(gpio_t gpio) {
void gpio_toggle(gpio_t gpio)
{
gpio->port->not = gpio->mask;
}
void gpio_output(gpio_t gpio) {
void gpio_output(gpio_t gpio)
{
gpio->port->dir |= gpio->mask;
}
void gpio_input(gpio_t gpio) {
void gpio_input(gpio_t gpio)
{
gpio->port->dir &= ~gpio->mask;
}
void gpio_write(gpio_t gpio, const bool value) {
void gpio_write(gpio_t gpio, const bool value)
{
*gpio->gpio_w = value;
}
bool gpio_read(gpio_t gpio) {
bool gpio_read(gpio_t gpio)
{
return *gpio->gpio_w;
}

View File

@ -58,8 +58,10 @@ struct gpio_t {
#define GPIO_LPC_W_OFFSET (0x1000)
#define GPIO_LPC_PORT_OFFSET (0x2000)
#define GPIO_LPC_PORT(_n) ((gpio_port_t*)((GPIO_LPC_BASE + GPIO_LPC_PORT_OFFSET) + (_n) * 4))
#define GPIO_LPC_W(_port_num, _pin_num) (volatile uint32_t*)((GPIO_LPC_BASE + GPIO_LPC_W_OFFSET) + ((_port_num) * 0x80) + ((_pin_num) * 4))
#define GPIO_LPC_PORT(_n) \
((gpio_port_t*) ((GPIO_LPC_BASE + GPIO_LPC_PORT_OFFSET) + (_n) *4))
#define GPIO_LPC_W(_port_num, _pin_num) \
(volatile uint32_t*) ((GPIO_LPC_BASE + GPIO_LPC_W_OFFSET) + ((_port_num) *0x80) + ((_pin_num) *4))
// clang-format off
#define GPIO(_port_num, _pin_num) { \

View File

@ -304,19 +304,16 @@ void delay_us_at_mhz(uint32_t us, uint32_t mhz)
{
// The loop below takes 4 cycles per iteration.
uint32_t loop_iterations = (us * mhz) / 4;
asm volatile (
"start%=:\n"
asm volatile("start%=:\n"
" subs %[ITERATIONS], #1\n" // 1 cycle
" bpl start%=\n" // 3 cycles
:
: [ITERATIONS] "r" (loop_iterations)
);
: [ITERATIONS] "r"(loop_iterations));
}
/* GCD algo from wikipedia */
/* http://en.wikipedia.org/wiki/Greatest_common_divisor */
static uint32_t
gcd(uint32_t u, uint32_t v)
static uint32_t gcd(uint32_t u, uint32_t v)
{
int s;
@ -343,8 +340,7 @@ gcd(uint32_t u, uint32_t v)
}
v = v - u;
}
while (v);
} while (v);
return u << s;
}
@ -421,7 +417,8 @@ bool sample_rate_frac_set(uint32_t rate_num, uint32_t rate_denom)
return true;
}
bool sample_rate_set(const uint32_t sample_rate_hz) {
bool sample_rate_set(const uint32_t sample_rate_hz)
{
uint32_t p1 = 4608;
uint32_t p2 = 0;
uint32_t p3 = 0;
@ -484,10 +481,12 @@ bool sample_rate_set(const uint32_t sample_rate_hz) {
return true;
}
bool baseband_filter_bandwidth_set(const uint32_t bandwidth_hz) {
bool baseband_filter_bandwidth_set(const uint32_t bandwidth_hz)
{
uint32_t bandwidth_hz_real = max2837_set_lpf_bandwidth(&max2837, bandwidth_hz);
if(bandwidth_hz_real) hackrf_ui()->set_filter_bw(bandwidth_hz_real);
if (bandwidth_hz_real)
hackrf_ui()->set_filter_bw(bandwidth_hz_real);
return bandwidth_hz_real != 0;
}
@ -507,8 +506,7 @@ static void cpu_clock_pll1_max_speed(void)
/* 1. Select the IRC as BASE_M4_CLK source. */
reg_val = CGU_BASE_M4_CLK;
reg_val &= ~CGU_BASE_M4_CLK_CLK_SEL_MASK;
reg_val |= CGU_BASE_M4_CLK_CLK_SEL(CGU_SRC_IRC) |
CGU_BASE_M4_CLK_AUTOBLOCK(1);
reg_val |= CGU_BASE_M4_CLK_CLK_SEL(CGU_SRC_IRC) | CGU_BASE_M4_CLK_AUTOBLOCK(1);
CGU_BASE_M4_CLK = reg_val;
/* 2. Enable the crystal oscillator. */
@ -595,9 +593,21 @@ void cpu_clock_init(void)
*/
/* MS4/CLK4 is the source for the RFFC5071 mixer (MAX2837 on rad1o). */
si5351c_configure_multisynth(&clock_gen, 4, 20*128-512, 0, 1, 0); /* 800/20 = 40MHz */
si5351c_configure_multisynth(
&clock_gen,
4,
20 * 128 - 512,
0,
1,
0); /* 800/20 = 40MHz */
/* MS5/CLK5 is the source for the MAX2837 clock input (MAX2871 on rad1o). */
si5351c_configure_multisynth(&clock_gen, 5, 20*128-512, 0, 1, 0); /* 800/20 = 40MHz */
si5351c_configure_multisynth(
&clock_gen,
5,
20 * 128 - 512,
0,
1,
0); /* 800/20 = 40MHz */
/* MS6/CLK6 is unused. */
/* MS7/CLK7 is unused. */
@ -628,53 +638,51 @@ void cpu_clock_init(void)
cpu_clock_pll1_max_speed();
/* use XTAL_OSC as clock source for APB1 */
CGU_BASE_APB1_CLK = CGU_BASE_APB1_CLK_AUTOBLOCK(1)
| CGU_BASE_APB1_CLK_CLK_SEL(CGU_SRC_XTAL);
CGU_BASE_APB1_CLK =
CGU_BASE_APB1_CLK_AUTOBLOCK(1) | CGU_BASE_APB1_CLK_CLK_SEL(CGU_SRC_XTAL);
/* use XTAL_OSC as clock source for APB3 */
CGU_BASE_APB3_CLK = CGU_BASE_APB3_CLK_AUTOBLOCK(1)
| CGU_BASE_APB3_CLK_CLK_SEL(CGU_SRC_XTAL);
CGU_BASE_APB3_CLK =
CGU_BASE_APB3_CLK_AUTOBLOCK(1) | CGU_BASE_APB3_CLK_CLK_SEL(CGU_SRC_XTAL);
/* use XTAL_OSC as clock source for PLL0USB */
CGU_PLL0USB_CTRL = CGU_PLL0USB_CTRL_PD(1)
| CGU_PLL0USB_CTRL_AUTOBLOCK(1)
| CGU_PLL0USB_CTRL_CLK_SEL(CGU_SRC_XTAL);
CGU_PLL0USB_CTRL = CGU_PLL0USB_CTRL_PD(1) | CGU_PLL0USB_CTRL_AUTOBLOCK(1) |
CGU_PLL0USB_CTRL_CLK_SEL(CGU_SRC_XTAL);
while (CGU_PLL0USB_STAT & CGU_PLL0USB_STAT_LOCK_MASK) {}
/* configure PLL0USB to produce 480 MHz clock from 12 MHz XTAL_OSC */
/* Values from User Manual v1.4 Table 94, for 12MHz oscillator. */
CGU_PLL0USB_MDIV = 0x06167FFA;
CGU_PLL0USB_NP_DIV = 0x00302062;
CGU_PLL0USB_CTRL |= (CGU_PLL0USB_CTRL_PD(1)
| CGU_PLL0USB_CTRL_DIRECTI(1)
| CGU_PLL0USB_CTRL_DIRECTO(1)
| CGU_PLL0USB_CTRL_CLKEN(1));
CGU_PLL0USB_CTRL |=
(CGU_PLL0USB_CTRL_PD(1) | CGU_PLL0USB_CTRL_DIRECTI(1) |
CGU_PLL0USB_CTRL_DIRECTO(1) | CGU_PLL0USB_CTRL_CLKEN(1));
/* power on PLL0USB and wait until stable */
CGU_PLL0USB_CTRL &= ~CGU_PLL0USB_CTRL_PD_MASK;
while (!(CGU_PLL0USB_STAT & CGU_PLL0USB_STAT_LOCK_MASK)) {}
/* use PLL0USB as clock source for USB0 */
CGU_BASE_USB0_CLK = CGU_BASE_USB0_CLK_AUTOBLOCK(1)
| CGU_BASE_USB0_CLK_CLK_SEL(CGU_SRC_PLL0USB);
CGU_BASE_USB0_CLK = CGU_BASE_USB0_CLK_AUTOBLOCK(1) |
CGU_BASE_USB0_CLK_CLK_SEL(CGU_SRC_PLL0USB);
/* Switch peripheral clock over to use PLL1 (204MHz) */
CGU_BASE_PERIPH_CLK = CGU_BASE_PERIPH_CLK_AUTOBLOCK(1)
| CGU_BASE_PERIPH_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_PERIPH_CLK = CGU_BASE_PERIPH_CLK_AUTOBLOCK(1) |
CGU_BASE_PERIPH_CLK_CLK_SEL(CGU_SRC_PLL1);
/* Switch APB1 clock over to use PLL1 (204MHz) */
CGU_BASE_APB1_CLK = CGU_BASE_APB1_CLK_AUTOBLOCK(1)
| CGU_BASE_APB1_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_APB1_CLK =
CGU_BASE_APB1_CLK_AUTOBLOCK(1) | CGU_BASE_APB1_CLK_CLK_SEL(CGU_SRC_PLL1);
/* Switch APB3 clock over to use PLL1 (204MHz) */
CGU_BASE_APB3_CLK = CGU_BASE_APB3_CLK_AUTOBLOCK(1)
| CGU_BASE_APB3_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_APB3_CLK =
CGU_BASE_APB3_CLK_AUTOBLOCK(1) | CGU_BASE_APB3_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_SSP0_CLK = CGU_BASE_SSP0_CLK_AUTOBLOCK(1)
| CGU_BASE_SSP0_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_SSP0_CLK =
CGU_BASE_SSP0_CLK_AUTOBLOCK(1) | CGU_BASE_SSP0_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_SSP1_CLK = CGU_BASE_SSP1_CLK_AUTOBLOCK(1)
| CGU_BASE_SSP1_CLK_CLK_SEL(CGU_SRC_PLL1);
CGU_BASE_SSP1_CLK =
CGU_BASE_SSP1_CLK_AUTOBLOCK(1) | CGU_BASE_SSP1_CLK_CLK_SEL(CGU_SRC_PLL1);
#if (defined JAWBREAKER || defined HACKRF_ONE)
/* Disable unused clocks */
@ -775,7 +783,9 @@ clock_source_t activate_best_clock_source(void)
/* No external or PortaPack clock was found. Use HackRF Si5351C crystal. */
}
si5351c_set_clock_source(&clock_gen, (source == CLOCK_SOURCE_HACKRF) ? PLL_SOURCE_XTAL : PLL_SOURCE_CLKIN);
si5351c_set_clock_source(
&clock_gen,
(source == CLOCK_SOURCE_HACKRF) ? PLL_SOURCE_XTAL : PLL_SOURCE_CLKIN);
hackrf_ui()->set_clock_source(source);
return source;
}
@ -790,7 +800,8 @@ void ssp1_set_mode_max5864(void)
spi_bus_start(max5864.bus, &ssp_config_max5864);
}
void pin_setup(void) {
void pin_setup(void)
{
/* Configure all GPIO as Input (safe state) */
gpio_init();
@ -881,16 +892,19 @@ void pin_setup(void) {
sgpio_configure_pin_functions(&sgpio_config);
}
void enable_1v8_power(void) {
void enable_1v8_power(void)
{
gpio_set(&gpio_1v8_enable);
}
void disable_1v8_power(void) {
void disable_1v8_power(void)
{
gpio_clear(&gpio_1v8_enable);
}
#ifdef HACKRF_ONE
void enable_rf_power(void) {
void enable_rf_power(void)
{
uint32_t i;
/* many short pulses to avoid one big voltage glitch */
@ -901,41 +915,48 @@ void enable_rf_power(void) {
gpio_clear(&gpio_vaa_disable);
}
void disable_rf_power(void) {
void disable_rf_power(void)
{
gpio_set(&gpio_vaa_disable);
}
#endif
#ifdef RAD1O
void enable_rf_power(void) {
void enable_rf_power(void)
{
gpio_set(&gpio_vaa_enable);
}
void disable_rf_power(void) {
void disable_rf_power(void)
{
gpio_clear(&gpio_vaa_enable);
}
#endif
void led_on(const led_t led) {
void led_on(const led_t led)
{
gpio_set(&gpio_led[led]);
}
void led_off(const led_t led) {
void led_off(const led_t led)
{
gpio_clear(&gpio_led[led]);
}
void led_toggle(const led_t led) {
void led_toggle(const led_t led)
{
gpio_toggle(&gpio_led[led]);
}
void hw_sync_enable(const hw_sync_mode_t hw_sync_mode){
void hw_sync_enable(const hw_sync_mode_t hw_sync_mode)
{
gpio_write(&gpio_hw_sync_enable, hw_sync_mode == 1);
}
void halt_and_flash(const uint32_t duration) {
/* blink LED1, LED2, and LED3 */
while (1)
void halt_and_flash(const uint32_t duration)
{
/* blink LED1, LED2, and LED3 */
while (1) {
led_on(LED1);
led_on(LED2);
led_on(LED3);

View File

@ -25,8 +25,7 @@
#define __HACKRF_CORE_H
#ifdef __cplusplus
extern "C"
{
extern "C" {
#endif
#include <stdint.h>
@ -175,7 +174,6 @@ extern "C"
#define SCU_VAA_ENABLE (P5_0) /* GPIO2[9] on P5_0 */
#endif
/* SPI flash */
#define SCU_SSP0_CIPO (P3_6)
#define SCU_SSP0_COPI (P3_7)

View File

@ -46,6 +46,7 @@ void hackrf_ui_set_antenna_bias_null(bool antenna_bias) { UNUSED(antenna_bias);
void hackrf_ui_set_clock_source_null(clock_source_t source) { UNUSED(source); }
void hackrf_ui_set_transceiver_mode_null(transceiver_mode_t mode) { UNUSED(mode); }
bool hackrf_ui_operacake_gpio_compatible_null(void) { return true; }
// clang-format on
/* Null UI function table, used if there's no hardware UI detected. Eliminates the
@ -67,13 +68,13 @@ static const hackrf_ui_t hackrf_ui_null = {
&hackrf_ui_set_antenna_bias_null,
&hackrf_ui_set_clock_source_null,
&hackrf_ui_set_transceiver_mode_null,
&hackrf_ui_operacake_gpio_compatible_null
};
&hackrf_ui_operacake_gpio_compatible_null};
static const hackrf_ui_t* ui = NULL;
static bool ui_enabled = true;
const hackrf_ui_t* hackrf_ui(void) {
const hackrf_ui_t* hackrf_ui(void)
{
/* Detect on first use. If no UI hardware is detected, use a stub function table. */
if (ui == NULL && ui_enabled) {
#ifdef HACKRF_ONE
@ -94,7 +95,8 @@ const hackrf_ui_t* hackrf_ui(void) {
return ui;
}
void hackrf_ui_set_enable(bool enabled) {
void hackrf_ui_set_enable(bool enabled)
{
if (ui_enabled != enabled) {
ui_enabled = enabled;
hackrf_ui()->deinit();

View File

@ -21,19 +21,23 @@
#include "i2c_bus.h"
void i2c_bus_start(i2c_bus_t* const bus, const void* const config) {
void i2c_bus_start(i2c_bus_t* const bus, const void* const config)
{
bus->start(bus, config);
}
void i2c_bus_stop(i2c_bus_t* const bus) {
void i2c_bus_stop(i2c_bus_t* const bus)
{
bus->stop(bus);
}
void i2c_bus_transfer(
i2c_bus_t* const bus,
const uint_fast8_t peripheral_address,
const uint8_t* const tx, const size_t tx_count,
uint8_t* const rx, const size_t rx_count
) {
const uint8_t* const tx,
const size_t tx_count,
uint8_t* const rx,
const size_t rx_count)
{
bus->transfer(bus, peripheral_address, tx, tx_count, rx, rx_count);
}

View File

@ -35,9 +35,10 @@ struct i2c_bus_t {
void (*transfer)(
i2c_bus_t* const bus,
const uint_fast8_t peripheral_address,
const uint8_t* const tx, const size_t tx_count,
uint8_t* const rx, const size_t rx_count
);
const uint8_t* const tx,
const size_t tx_count,
uint8_t* const rx,
const size_t rx_count);
};
void i2c_bus_start(i2c_bus_t* const bus, const void* const config);
@ -45,8 +46,9 @@ void i2c_bus_stop(i2c_bus_t* const bus);
void i2c_bus_transfer(
i2c_bus_t* const bus,
const uint_fast8_t peripheral_address,
const uint8_t* const tx, const size_t tx_count,
uint8_t* const rx, const size_t rx_count
);
const uint8_t* const tx,
const size_t tx_count,
uint8_t* const rx,
const size_t rx_count);
#endif /*__I2C_BUS_H__*/

View File

@ -26,23 +26,28 @@
/* FIXME return i2c0 status from each function */
void i2c_lpc_start(i2c_bus_t* const bus, const void* const _config) {
void i2c_lpc_start(i2c_bus_t* const bus, const void* const _config)
{
const i2c_lpc_config_t* const config = _config;
const uint32_t port = (uint32_t) bus->obj;
i2c_init(port, config->duty_cycle_count);
}
void i2c_lpc_stop(i2c_bus_t* const bus) {
void i2c_lpc_stop(i2c_bus_t* const bus)
{
const uint32_t port = (uint32_t) bus->obj;
i2c_disable(port);
}
void i2c_lpc_transfer(i2c_bus_t* const bus,
void i2c_lpc_transfer(
i2c_bus_t* const bus,
const uint_fast8_t peripheral_address,
const uint8_t* const data_tx, const size_t count_tx,
uint8_t* const data_rx, const size_t count_rx
) {
const uint8_t* const data_tx,
const size_t count_tx,
uint8_t* const data_rx,
const size_t count_rx)
{
const uint32_t port = (uint32_t) bus->obj;
size_t i;
bool ack = false;
@ -67,7 +72,8 @@ void i2c_lpc_transfer(i2c_bus_t* const bus,
i2c_stop(port);
}
bool i2c_probe(i2c_bus_t* const bus, const uint_fast8_t device_address) {
bool i2c_probe(i2c_bus_t* const bus, const uint_fast8_t device_address)
{
const uint32_t port = (uint32_t) bus->obj;
i2c_tx_start(port);

View File

@ -34,11 +34,13 @@ typedef struct i2c_lpc_config_t {
void i2c_lpc_start(i2c_bus_t* const bus, const void* const config);
void i2c_lpc_stop(i2c_bus_t* const bus);
void i2c_lpc_transfer(i2c_bus_t* const bus,
void i2c_lpc_transfer(
i2c_bus_t* const bus,
const uint_fast8_t peripheral_address,
const uint8_t* const data_tx, const size_t count_tx,
uint8_t* const data_rx, const size_t count_rx
);
const uint8_t* const data_tx,
const size_t count_tx,
uint8_t* const data_rx,
const size_t count_rx);
bool i2c_probe(i2c_bus_t* const bus, const uint_fast8_t device_address);
#endif /*__I2C_LPC_H__*/

View File

@ -19,8 +19,7 @@
* Boston, MA 02110-1301, USA.
*/
int main() {
while(1) {
}
int main()
{
while (1) {}
}

View File

@ -119,13 +119,15 @@ void max2837_setup(max2837_driver_t* const drv)
max2837_regs_commit(drv);
}
static uint16_t max2837_read(max2837_driver_t* const drv, uint8_t r) {
static uint16_t max2837_read(max2837_driver_t* const drv, uint8_t r)
{
uint16_t value = (1 << 15) | (r << 10);
spi_bus_transfer(drv->bus, &value, 1);
return value & 0x3ff;
}
static void max2837_write(max2837_driver_t* const drv, uint8_t r, uint16_t v) {
static void max2837_write(max2837_driver_t* const drv, uint8_t r, uint16_t v)
{
uint16_t value = (r << 10) | (v & 0x3ff);
spi_bus_transfer(drv->bus, &value, 1);
}
@ -160,11 +162,13 @@ void max2837_regs_commit(max2837_driver_t* const drv)
}
}
void max2837_set_mode(max2837_driver_t* const drv, const max2837_mode_t new_mode) {
void max2837_set_mode(max2837_driver_t* const drv, const max2837_mode_t new_mode)
{
drv->set_mode(drv, new_mode);
}
max2837_mode_t max2837_mode(max2837_driver_t* const drv) {
max2837_mode_t max2837_mode(max2837_driver_t* const drv)
{
return drv->mode;
}
@ -210,16 +214,13 @@ void max2837_set_frequency(max2837_driver_t* const drv, uint32_t freq)
if (freq < 2400000000U) {
band = MAX2837_LOGEN_BSW_2_3;
lna_band = MAX2837_LNAband_2_4;
}
else if (freq < 2500000000U) {
} else if (freq < 2500000000U) {
band = MAX2837_LOGEN_BSW_2_4;
lna_band = MAX2837_LNAband_2_4;
}
else if (freq < 2600000000U) {
} else if (freq < 2600000000U) {
band = MAX2837_LOGEN_BSW_2_5;
lna_band = MAX2837_LNAband_2_6;
}
else {
} else {
band = MAX2837_LOGEN_BSW_2_6;
lna_band = MAX2837_LNAband_2_6;
}

View File

@ -81,7 +81,9 @@ extern void max2837_stop(max2837_driver_t* const drv);
/* Set frequency in Hz. Frequency setting is a multi-step function
* where order of register writes matters. */
extern void max2837_set_frequency(max2837_driver_t* const drv, uint32_t freq);
uint32_t max2837_set_lpf_bandwidth(max2837_driver_t* const drv, const uint32_t bandwidth_hz);
uint32_t max2837_set_lpf_bandwidth(
max2837_driver_t* const drv,
const uint32_t bandwidth_hz);
bool max2837_set_lna_gain(max2837_driver_t* const drv, const uint32_t gain_db);
bool max2837_set_vga_gain(max2837_driver_t* const drv, const uint32_t gain_db);
bool max2837_set_txvga_gain(max2837_driver_t* const drv, const uint32_t gain_db);

View File

@ -25,7 +25,8 @@
#include <libopencm3/lpc43xx/scu.h>
#include "hackrf_core.h"
void max2837_target_init(max2837_driver_t* const drv) {
void max2837_target_init(max2837_driver_t* const drv)
{
/* Configure SSP1 Peripheral (to be moved later in SSP driver) */
scu_pinmux(SCU_SSP1_CIPO, (SCU_SSP_IO | SCU_CONF_FUNCTION5));
scu_pinmux(SCU_SSP1_COPI, (SCU_SSP_IO | SCU_CONF_FUNCTION5));
@ -44,7 +45,8 @@ void max2837_target_init(max2837_driver_t* const drv) {
gpio_output(drv->gpio_tx_enable);
}
void max2837_target_set_mode(max2837_driver_t* const drv, const max2837_mode_t new_mode) {
void max2837_target_set_mode(max2837_driver_t* const drv, const max2837_mode_t new_mode)
{
/* MAX2837_MODE_SHUTDOWN:
* All circuit blocks are powered down, except the 4-wire serial bus
* and its internal programmable registers.

View File

@ -115,7 +115,6 @@ static void delay_ms(int ms)
}
}
static void serial_delay(void)
{
uint32_t i;
@ -124,13 +123,13 @@ static void serial_delay(void)
__asm__("nop");
}
/* SPI register write
*
* Send 32 bits:
* First 29 bits are data
* Last 3 bits are register number */
static void max2871_spi_write(max2871_driver_t* const drv, uint8_t r, uint32_t v) {
static void max2871_spi_write(max2871_driver_t* const drv, uint8_t r, uint32_t v)
{
#if DEBUG
LOG("0x%04x -> reg%d\n", v, r);
#else
@ -229,8 +228,8 @@ void max2871_enable(max2871_driver_t* const drv)
{
gpio_set(drv->gpio_vco_ce);
}
void max2871_disable(max2871_driver_t* const drv)
{
gpio_clear(drv->gpio_vco_ce);
}

View File

@ -23,15 +23,18 @@
#include "max5864.h"
static void max5864_write(max5864_driver_t* const drv, uint8_t value) {
static void max5864_write(max5864_driver_t* const drv, uint8_t value)
{
spi_bus_transfer(drv->bus, &value, 1);
}
static void max5864_init(max5864_driver_t* const drv) {
static void max5864_init(max5864_driver_t* const drv)
{
drv->target_init(drv);
}
void max5864_setup(max5864_driver_t* const drv) {
void max5864_setup(max5864_driver_t* const drv)
{
max5864_init(drv);
}

View File

@ -24,7 +24,8 @@
#include <libopencm3/lpc43xx/scu.h>
#include "hackrf_core.h"
void max5864_target_init(max5864_driver_t* const drv) {
void max5864_target_init(max5864_driver_t* const drv)
{
(void) drv;
/* Configure SSP1 Peripheral (to be moved later in SSP driver) */

View File

@ -60,9 +60,9 @@
#define OPERACAKE_REG_POLARITY 0x02
#define OPERACAKE_REG_CONFIG 0x03
#define OPERACAKE_DEFAULT_OUTPUT (OPERACAKE_GPIO_DISABLE | OPERACAKE_SAMESIDE \
| OPERACAKE_PORT_A1 | OPERACAKE_PORT_B1 \
| OPERACAKE_EN_LEDS)
#define OPERACAKE_DEFAULT_OUTPUT \
(OPERACAKE_GPIO_DISABLE | OPERACAKE_SAMESIDE | OPERACAKE_PORT_A1 | \
OPERACAKE_PORT_B1 | OPERACAKE_EN_LEDS)
#define OPERACAKE_CONFIG_ALL_OUTPUT (0x00)
// Leave LED bits as outputs
#define OPERACAKE_CONFIG_GPIO_INPUTS (0x7C)
@ -96,7 +96,8 @@ struct operacake_state operacake_boards[OPERACAKE_MAX_BOARDS];
bool allow_gpio_mode = true;
/* read single register */
uint8_t operacake_read_reg(i2c_bus_t* const bus, uint8_t address, uint8_t reg) {
uint8_t operacake_read_reg(i2c_bus_t* const bus, uint8_t address, uint8_t reg)
{
// Convert from Opera Cake address (0-7) to I2C address
address += OPERACAKE_ADDRESS_DEFAULT;
@ -107,7 +108,8 @@ uint8_t operacake_read_reg(i2c_bus_t* const bus, uint8_t address, uint8_t reg) {
}
/* Write to one of the PCA9557 registers */
void operacake_write_reg(i2c_bus_t* const bus, uint8_t address, uint8_t reg, uint8_t value) {
void operacake_write_reg(i2c_bus_t* const bus, uint8_t address, uint8_t reg, uint8_t value)
{
// Convert from Opera Cake address (0-7) to I2C address
address += OPERACAKE_ADDRESS_DEFAULT;
@ -115,12 +117,19 @@ void operacake_write_reg(i2c_bus_t* const bus, uint8_t address, uint8_t reg, uin
i2c_bus_transfer(bus, address, data, 2, NULL, 0);
}
uint8_t operacake_init(bool allow_gpio) {
uint8_t operacake_init(bool allow_gpio)
{
/* Find connected operacakes */
for (int addr = 0; addr < 8; addr++) {
operacake_write_reg(oc_bus, addr, OPERACAKE_REG_OUTPUT,
operacake_write_reg(
oc_bus,
addr,
OPERACAKE_REG_OUTPUT,
OPERACAKE_DEFAULT_OUTPUT);
operacake_write_reg(oc_bus, addr, OPERACAKE_REG_CONFIG,
operacake_write_reg(
oc_bus,
addr,
OPERACAKE_REG_CONFIG,
OPERACAKE_CONFIG_ALL_OUTPUT);
uint8_t reg = operacake_read_reg(oc_bus, addr, OPERACAKE_REG_CONFIG);
@ -136,14 +145,16 @@ uint8_t operacake_init(bool allow_gpio) {
return 0;
}
bool operacake_is_board_present(uint8_t address) {
bool operacake_is_board_present(uint8_t address)
{
if (address >= OPERACAKE_MAX_BOARDS)
return false;
return operacake_boards[address].present;
}
void operacake_get_boards(uint8_t *addresses) {
void operacake_get_boards(uint8_t* addresses)
{
int count = 0;
for (int i = 0; i < OPERACAKE_MAX_BOARDS; i++) {
addresses[i] = OPERACAKE_ADDRESS_INVALID;
@ -154,7 +165,8 @@ void operacake_get_boards(uint8_t *addresses) {
}
}
uint8_t port_to_pins(uint8_t port) {
uint8_t port_to_pins(uint8_t port)
{
switch (port) {
case OPERACAKE_PA1:
return OPERACAKE_PORT_A1;
@ -188,8 +200,8 @@ uint8_t operacake_activate_ports(uint8_t address, uint8_t PA, uint8_t PB)
return 1;
}
/* Ensure PA and PB are on opposite sides. */
if (((PA <= OPERACAKE_PA4) && (PB <= OPERACAKE_PA4))
|| ((PA > OPERACAKE_PA4) && (PB > OPERACAKE_PA4))) {
if (((PA <= OPERACAKE_PA4) && (PB <= OPERACAKE_PA4)) ||
((PA > OPERACAKE_PA4) && (PB > OPERACAKE_PA4))) {
return 1;
}
@ -207,7 +219,8 @@ uint8_t operacake_activate_ports(uint8_t address, uint8_t PA, uint8_t PB)
return 0;
}
void operacake_set_mode(uint8_t address, uint8_t mode) {
void operacake_set_mode(uint8_t address, uint8_t mode)
{
if (address >= OPERACAKE_MAX_BOARDS)
return;
@ -216,12 +229,25 @@ void operacake_set_mode(uint8_t address, uint8_t mode) {
if (mode == MODE_TIME) {
// Switch Opera Cake to pin-control mode
uint8_t config_pins = (uint8_t)~(OPERACAKE_PIN_OE(1) | OPERACAKE_PIN_LEDEN(1) | OPERACAKE_PIN_LEDEN2(1));
uint8_t config_pins = (uint8_t) ~(
OPERACAKE_PIN_OE(1) | OPERACAKE_PIN_LEDEN(1) |
OPERACAKE_PIN_LEDEN2(1));
operacake_write_reg(oc_bus, address, OPERACAKE_REG_CONFIG, config_pins);
operacake_write_reg(oc_bus, address, OPERACAKE_REG_OUTPUT, OPERACAKE_GPIO_ENABLE | OPERACAKE_EN_LEDS);
operacake_write_reg(
oc_bus,
address,
OPERACAKE_REG_OUTPUT,
OPERACAKE_GPIO_ENABLE | OPERACAKE_EN_LEDS);
} else {
operacake_write_reg(oc_bus, address, OPERACAKE_REG_CONFIG, OPERACAKE_CONFIG_ALL_OUTPUT);
operacake_activate_ports(address, operacake_boards[address].PA, operacake_boards[address].PB);
operacake_write_reg(
oc_bus,
address,
OPERACAKE_REG_CONFIG,
OPERACAKE_CONFIG_ALL_OUTPUT);
operacake_activate_ports(
address,
operacake_boards[address].PA,
operacake_boards[address].PB);
}
// If any boards are in MODE_TIME, enable the sctimer events.
@ -233,7 +259,8 @@ void operacake_set_mode(uint8_t address, uint8_t mode) {
operacake_sctimer_enable(enable_sctimer);
}
uint8_t operacake_get_mode(uint8_t address) {
uint8_t operacake_get_mode(uint8_t address)
{
if (address >= OPERACAKE_MAX_BOARDS)
return 0;
@ -250,8 +277,8 @@ uint8_t operacake_set_ports(uint8_t address, uint8_t PA, uint8_t PB)
return 1;
}
/* Ensure PA and PB are on opposite sides. */
if (((PA <= OPERACAKE_PA4) && (PB <= OPERACAKE_PA4))
|| ((PA > OPERACAKE_PA4) && (PB > OPERACAKE_PA4))) {
if (((PA <= OPERACAKE_PA4) && (PB <= OPERACAKE_PA4)) ||
((PA > OPERACAKE_PA4) && (PB > OPERACAKE_PA4))) {
return 1;
}
@ -280,7 +307,8 @@ typedef struct {
static operacake_range ranges[MAX_OPERACAKE_RANGES * sizeof(operacake_range)];
static uint8_t range_idx = 0;
uint8_t operacake_add_range(uint16_t freq_min, uint16_t freq_max, uint8_t port) {
uint8_t operacake_add_range(uint16_t freq_min, uint16_t freq_max, uint8_t port)
{
if (range_idx >= MAX_OPERACAKE_RANGES) {
return 1;
}
@ -301,15 +329,16 @@ void operacake_clear_ranges(void)
#define FREQ_ONE_MHZ (1000000ull)
uint8_t operacake_set_range(uint32_t freq_mhz) {
uint8_t operacake_set_range(uint32_t freq_mhz)
{
if (range_idx == 0) {
return 1;
}
int range;
for (range = 0; range < range_idx; range++) {
if((freq_mhz >= ranges[range].freq_min)
&& (freq_mhz <= ranges[range].freq_max)) {
if ((freq_mhz >= ranges[range].freq_min) &&
(freq_mhz <= ranges[range].freq_max)) {
break;
}
}
@ -322,8 +351,12 @@ uint8_t operacake_set_range(uint32_t freq_mhz) {
}
for (int i = 0; i < OPERACAKE_MAX_BOARDS; i++) {
if (operacake_is_board_present(i) && operacake_get_mode(i) == MODE_FREQUENCY) {
operacake_activate_ports(i, ranges[range].portA, ranges[range].portB);
if (operacake_is_board_present(i) &&
operacake_get_mode(i) == MODE_FREQUENCY) {
operacake_activate_ports(
i,
ranges[range].portA,
ranges[range].portB);
break;
}
}
@ -358,9 +391,15 @@ uint16_t gpio_test(uint8_t address)
// Setup I2C to put it in GPIO mode
reg = (OPERACAKE_GPIO_ENABLE | OPERACAKE_EN_LEDS);
operacake_write_reg(oc_bus, address, OPERACAKE_REG_OUTPUT, reg);
operacake_write_reg(oc_bus, address, OPERACAKE_REG_CONFIG,
operacake_write_reg(
oc_bus,
address,
OPERACAKE_REG_CONFIG,
OPERACAKE_CONFIG_GPIO_INPUTS);
operacake_write_reg(oc_bus, address, OPERACAKE_REG_POLARITY,
operacake_write_reg(
oc_bus,
address,
OPERACAKE_REG_POLARITY,
OPERACAKE_POLARITY_NORMAL);
// clear state
for (i = 0; i < 5; i++) {
@ -406,9 +445,15 @@ uint16_t gpio_test(uint8_t address)
}
// Put it back in to I2C mode and set default pins
operacake_write_reg(oc_bus, address, OPERACAKE_REG_CONFIG,
operacake_write_reg(
oc_bus,
address,
OPERACAKE_REG_CONFIG,
OPERACAKE_CONFIG_ALL_OUTPUT);
operacake_write_reg(oc_bus, address, OPERACAKE_REG_OUTPUT,
operacake_write_reg(
oc_bus,
address,
OPERACAKE_REG_OUTPUT,
OPERACAKE_DEFAULT_OUTPUT);
return result;
}

View File

@ -23,8 +23,7 @@
#define __OPERACAKE_H
#ifdef __cplusplus
extern "C"
{
extern "C" {
#endif
#include <stdint.h>

View File

@ -30,7 +30,6 @@
#include <libopencm3/lpc43xx/gima.h>
#include "sct.h"
#define U1CTRL_SET SCT_OUT14_SET
#define U1CTRL_CLR SCT_OUT14_CLR
#define U2CTRL0_SET SCT_OUT13_SET
@ -53,7 +52,8 @@ static uint32_t default_output = 0;
* To trigger the antenna switching synchronously with the sample clock, the
* SGPIO is configured to output its clock (f=2 * sample clock) to the SCTimer.
*/
void operacake_sctimer_init() {
void operacake_sctimer_init()
{
// We start by resetting the SCTimer
RESET_CTRL1 = RESET_CTRL1_SCT_RST;
@ -67,23 +67,30 @@ void operacake_sctimer_init() {
// this delay may need to be increased.
delay(8);
// Pin definitions for the HackRF
// U2CTRL0
scu_pinmux(P7_4, SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
scu_pinmux(
P7_4,
SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
// U2CTRL1
scu_pinmux(P7_5, SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
scu_pinmux(
P7_5,
SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
// U3CTRL0
scu_pinmux(P7_6, SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
scu_pinmux(
P7_6,
SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
// U3CTRL1
scu_pinmux(P7_7, SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
scu_pinmux(
P7_7,
SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
// U1CTRL
scu_pinmux(P7_0, SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
scu_pinmux(
P7_0,
SCU_CONF_EPUN_DIS_PULLUP | SCU_CONF_EHS_FAST | SCU_CONF_FUNCTION1);
// Configure the SGPIO to output the clock (f=2 * sample clock) on pin 12
SGPIO_OUT_MUX_CFG12 =
SGPIO_OUT_MUX_CFG_P_OUT_CFG(0x08) | // clkout output mode
SGPIO_OUT_MUX_CFG12 = SGPIO_OUT_MUX_CFG_P_OUT_CFG(0x08) | // clkout output mode
SGPIO_OUT_MUX_CFG_P_OE_CFG(0); // gpio_oe
SGPIO_GPIO_OENREG |= BIT12;
@ -91,9 +98,8 @@ void operacake_sctimer_init() {
GIMA_CTIN_1_IN = 0x2 << 4; // Route SGPIO12 to SCTIN1
// We configure this register first, because the user manual says to
SCT_CONFIG |= SCT_CONFIG_UNIFY_32_BIT
| SCT_CONFIG_CLKMODE_PRESCALED_BUS_CLOCK
| SCT_CONFIG_CKSEL_RISING_EDGES_ON_INPUT_1;
SCT_CONFIG |= SCT_CONFIG_UNIFY_32_BIT | SCT_CONFIG_CLKMODE_PRESCALED_BUS_CLOCK |
SCT_CONFIG_CKSEL_RISING_EDGES_ON_INPUT_1;
// Halt the SCTimer to enable it to be configured
SCT_CTRL = SCT_CTRL_HALT_L(1);
@ -108,28 +114,30 @@ void operacake_sctimer_init() {
SCT_CTRL &= ~SCT_CTRL_HALT_L(1);
}
static uint32_t operacake_sctimer_port_to_output(uint8_t port) {
static uint32_t operacake_sctimer_port_to_output(uint8_t port)
{
int bit0 = (port >> 0) & 1;
int bit1 = (port >> 1) & 1;
int bit2 = (port >> 2) & 1;
return (bit0 << 11) | (bit0 << 13) |
(bit1 << 8) | (bit1 << 12) |
return (bit0 << 11) | (bit0 << 13) | (bit1 << 8) | (bit1 << 12) |
(((~bit2) & 1) << 14);
}
void operacake_sctimer_enable(bool enable) {
void operacake_sctimer_enable(bool enable)
{
SCT_CTRL = SCT_CTRL_HALT_L(1);
SCT_STATE = enable;
SCT_CTRL &= ~SCT_CTRL_HALT_L(1);
}
void operacake_sctimer_set_dwell_times(struct operacake_dwell_times *times, int n) {
void operacake_sctimer_set_dwell_times(struct operacake_dwell_times* times, int n)
{
SCT_CTRL = SCT_CTRL_HALT_L(1);
uint32_t counter = 0;
uint32_t bit0_set = 0, bit0_clr = 0, bit1_set = 0, bit1_clr = 0, bit2_set = 0, bit2_clr = 0;
uint32_t bit0_set = 0, bit0_clr = 0, bit1_set = 0, bit1_clr = 0, bit2_set = 0,
bit2_clr = 0;
for (int i = 0; i < n; i++) {
// Enable event i in state 1, set to match on match register i
SCT_EVn_STATE(i) = SCT_EVn_STATE_STATEMSK1(1);
@ -192,7 +200,8 @@ void operacake_sctimer_set_dwell_times(struct operacake_dwell_times *times, int
SCT_CTRL &= ~SCT_CTRL_HALT_L(1);
}
void operacake_sctimer_stop() {
void operacake_sctimer_stop()
{
// Halt timer
SCT_CTRL |= SCT_CTRL_HALT_L(1);
}
@ -203,7 +212,8 @@ void operacake_sctimer_stop() {
* called by set_transceiver_mode so the HackRF starts capturing with the
* same antenna selected each time.
*/
void operacake_sctimer_reset_state() {
void operacake_sctimer_reset_state()
{
SCT_CTRL |= SCT_CTRL_HALT_L(1);
// Clear the counter value

View File

@ -26,7 +26,8 @@
#include <libopencm3/lpc43xx/scu.h>
static void portapack_sleep_milliseconds(const uint32_t milliseconds) {
static void portapack_sleep_milliseconds(const uint32_t milliseconds)
{
/* NOTE: Naively assumes 204 MHz instruction cycle clock and five instructions per count */
delay(milliseconds * 40800);
}
@ -41,6 +42,7 @@ static struct gpio_t gpio_unused = GPIO(5, 7); /* P2_8 */
static struct gpio_t gpio_lcd_rdx = GPIO(5, 4); /* P2_4 */
static struct gpio_t gpio_lcd_wrx = GPIO(1, 10); /* P2_9 */
static struct gpio_t gpio_dir = GPIO(1, 13); /* P2_13 */
// clang-format on
typedef struct portapack_if_t {
@ -67,26 +69,31 @@ static portapack_if_t portapack_if = {
#define GPIO_DATA_SHIFT (8)
static const uint32_t gpio_data_mask = 0xFFU << GPIO_DATA_SHIFT;
static void portapack_data_mask_set() {
static void portapack_data_mask_set()
{
portapack_if.gpio_port_data->mask = ~gpio_data_mask;
}
static void portapack_data_write_low(const uint32_t value) {
static void portapack_data_write_low(const uint32_t value)
{
portapack_if.gpio_port_data->mpin = (value << GPIO_DATA_SHIFT);
}
static void portapack_data_write_high(const uint32_t value) {
static void portapack_data_write_high(const uint32_t value)
{
/* NOTE: Assumes no other bits in the port are masked. */
/* NOTE: Assumes that bits 15 through 8 are masked. */
portapack_if.gpio_port_data->mpin = value;
}
static void portapack_dir_read() {
static void portapack_dir_read()
{
portapack_if.gpio_port_data->dir &= ~gpio_data_mask;
gpio_set(portapack_if.gpio_dir);
}
static void portapack_dir_write() {
static void portapack_dir_write()
{
gpio_clear(portapack_if.gpio_dir);
portapack_if.gpio_port_data->dir |= gpio_data_mask;
/* TODO: Manipulating DIR[3] makes me queasy. The RFFC5072 DATA pin
@ -97,35 +104,43 @@ static void portapack_dir_write() {
*/
}
__attribute__((unused)) static void portapack_lcd_rd_assert() {
__attribute__((unused)) static void portapack_lcd_rd_assert()
{
gpio_clear(portapack_if.gpio_lcd_rdx);
}
static void portapack_lcd_rd_deassert() {
static void portapack_lcd_rd_deassert()
{
gpio_set(portapack_if.gpio_lcd_rdx);
}
static void portapack_lcd_wr_assert() {
static void portapack_lcd_wr_assert()
{
gpio_clear(portapack_if.gpio_lcd_wrx);
}
static void portapack_lcd_wr_deassert() {
static void portapack_lcd_wr_deassert()
{
gpio_set(portapack_if.gpio_lcd_wrx);
}
static void portapack_io_stb_assert() {
static void portapack_io_stb_assert()
{
gpio_clear(portapack_if.gpio_io_stbx);
}
static void portapack_io_stb_deassert() {
static void portapack_io_stb_deassert()
{
gpio_set(portapack_if.gpio_io_stbx);
}
static void portapack_addr(const bool value) {
static void portapack_addr(const bool value)
{
gpio_write(portapack_if.gpio_addr, value);
}
static void portapack_lcd_command(const uint32_t value) {
static void portapack_lcd_command(const uint32_t value)
{
portapack_data_write_high(0); /* Drive high byte (with zero -- don't care) */
portapack_dir_write(); /* Turn around data bus, MCU->CPLD */
portapack_addr(0); /* Indicate command */
@ -143,7 +158,8 @@ static void portapack_lcd_command(const uint32_t value) {
portapack_addr(1); /* Set up for data phase (most likely after a command) */
}
static void portapack_lcd_write_data(const uint32_t value) {
static void portapack_lcd_write_data(const uint32_t value)
{
// NOTE: Assumes and DIR=0 and ADDR=1 from command phase.
portapack_data_write_high(value); /* Drive high byte */
__asm__("nop");
@ -156,7 +172,8 @@ static void portapack_lcd_write_data(const uint32_t value) {
portapack_lcd_wr_deassert(); /* Complete write operation */
}
static void portapack_io_write(const bool address, const uint_fast16_t value) {
static void portapack_io_write(const bool address, const uint_fast16_t value)
{
portapack_data_write_low(value);
portapack_dir_write();
portapack_addr(address);
@ -170,7 +187,8 @@ static void portapack_io_write(const bool address, const uint_fast16_t value) {
portapack_io_stb_deassert();
}
static void portapack_if_init() {
static void portapack_if_init()
{
portapack_data_mask_set();
portapack_data_write_high(0);
@ -206,7 +224,8 @@ static void portapack_if_init() {
/* scu_pinmux(SCU_PINMUX_PP_UNUSED, SCU_CONF_FUNCTION4 | SCU_GPIO_NOPULL); */
}
static void portapack_lcd_reset_state(const bool active) {
static void portapack_lcd_reset_state(const bool active)
{
portapack_if.io_reg = (portapack_if.io_reg & 0xfe) | (active ? (1 << 0) : 0);
portapack_io_write(1, portapack_if.io_reg);
}
@ -214,15 +233,16 @@ static void portapack_lcd_reset_state(const bool active) {
static void portapack_lcd_data_write_command_and_data(
const uint_fast8_t command,
const uint8_t* data,
const size_t data_count
) {
const size_t data_count)
{
portapack_lcd_command(command);
for (size_t i = 0; i < data_count; i++) {
portapack_lcd_write_data(data[i]);
}
}
static void portapack_lcd_sleep_out() {
static void portapack_lcd_sleep_out()
{
const uint8_t cmd_11[] = {};
portapack_lcd_data_write_command_and_data(0x11, cmd_11, ARRAY_SIZEOF(cmd_11));
// "It will be necessary to wait 120msec after sending Sleep Out
@ -231,56 +251,68 @@ static void portapack_lcd_sleep_out() {
portapack_sleep_milliseconds(120);
}
static void portapack_lcd_display_on() {
static void portapack_lcd_display_on()
{
const uint8_t cmd_29[] = {};
portapack_lcd_data_write_command_and_data(0x29, cmd_29, ARRAY_SIZEOF(cmd_29));
}
static void portapack_lcd_ramwr_start() {
static void portapack_lcd_ramwr_start()
{
const uint8_t cmd_2c[] = {};
portapack_lcd_data_write_command_and_data(0x2c, cmd_2c, ARRAY_SIZEOF(cmd_2c));
}
static void portapack_lcd_set(const uint_fast8_t command, const uint_fast16_t start, const uint_fast16_t end) {
const uint8_t data[] = {
(start >> 8), (start & 0xff),
(end >> 8), (end & 0xff)
};
static void portapack_lcd_set(
const uint_fast8_t command,
const uint_fast16_t start,
const uint_fast16_t end)
{
const uint8_t data[] = {(start >> 8), (start & 0xff), (end >> 8), (end & 0xff)};
portapack_lcd_data_write_command_and_data(command, data, ARRAY_SIZEOF(data));
}
static void portapack_lcd_caset(const uint_fast16_t start_column, const uint_fast16_t end_column) {
static void portapack_lcd_caset(
const uint_fast16_t start_column,
const uint_fast16_t end_column)
{
portapack_lcd_set(0x2a, start_column, end_column);
}
static void portapack_lcd_paset(const uint_fast16_t start_page, const uint_fast16_t end_page) {
static void portapack_lcd_paset(
const uint_fast16_t start_page,
const uint_fast16_t end_page)
{
portapack_lcd_set(0x2b, start_page, end_page);
}
static void portapack_lcd_start_ram_write(
const ui_rect_t rect
) {
static void portapack_lcd_start_ram_write(const ui_rect_t rect)
{
portapack_lcd_caset(rect.point.x, rect.point.x + rect.size.width - 1);
portapack_lcd_paset(rect.point.y, rect.point.y + rect.size.height - 1);
portapack_lcd_ramwr_start();
}
static void portapack_lcd_write_pixel(const ui_color_t pixel) {
static void portapack_lcd_write_pixel(const ui_color_t pixel)
{
portapack_lcd_write_data(pixel.v);
}
static void portapack_lcd_write_pixels_color(const ui_color_t c, size_t n) {
static void portapack_lcd_write_pixels_color(const ui_color_t c, size_t n)
{
while (n--) {
portapack_lcd_write_data(c.v);
}
}
static void portapack_lcd_wake() {
static void portapack_lcd_wake()
{
portapack_lcd_sleep_out();
portapack_lcd_display_on();
}
static void portapack_lcd_reset() {
static void portapack_lcd_reset()
{
portapack_lcd_reset_state(false);
portapack_sleep_milliseconds(1);
portapack_lcd_reset_state(true);
@ -289,7 +321,8 @@ static void portapack_lcd_reset() {
portapack_sleep_milliseconds(120);
}
static void portapack_lcd_init() {
static void portapack_lcd_init()
{
// LCDs are configured for IM[2:0] = 001
// 8080-I system, 16-bit parallel bus
@ -403,16 +436,40 @@ static void portapack_lcd_init() {
// Set Gamma
const uint8_t cmd_e0[] = {
0x0F, 0x1D, 0x19, 0x0E, 0x10, 0x07, 0x4C, 0x63,
0x3F, 0x03, 0x0D, 0x00, 0x26, 0x24, 0x04
};
0x0F,
0x1D,
0x19,
0x0E,
0x10,
0x07,
0x4C,
0x63,
0x3F,
0x03,
0x0D,
0x00,
0x26,
0x24,
0x04};
portapack_lcd_data_write_command_and_data(0xE0, cmd_e0, ARRAY_SIZEOF(cmd_e0));
// Set Gamma
const uint8_t cmd_e1[] = {
0x00, 0x1C, 0x1F, 0x02, 0x0F, 0x03, 0x35, 0x25,
0x47, 0x04, 0x0C, 0x0B, 0x29, 0x2F, 0x05
};
0x00,
0x1C,
0x1F,
0x02,
0x0F,
0x03,
0x35,
0x25,
0x47,
0x04,
0x0C,
0x0B,
0x29,
0x2F,
0x05};
portapack_lcd_data_write_command_and_data(0xE1, cmd_e1, ARRAY_SIZEOF(cmd_e1));
portapack_lcd_wake();
@ -422,26 +479,27 @@ static void portapack_lcd_init() {
portapack_lcd_data_write_command_and_data(0x35, cmd_35, ARRAY_SIZEOF(cmd_35));
}
void portapack_backlight(const bool on) {
void portapack_backlight(const bool on)
{
portapack_if.io_reg = (portapack_if.io_reg & 0x7f) | (on ? (1 << 7) : 0);
portapack_io_write(1, portapack_if.io_reg);
}
void portapack_reference_oscillator(const bool on) {
void portapack_reference_oscillator(const bool on)
{
const uint8_t mask = 1 << 6;
portapack_if.io_reg = (portapack_if.io_reg & ~mask) | (on ? mask : 0);
portapack_io_write(1, portapack_if.io_reg);
}
void portapack_fill_rectangle(
const ui_rect_t rect,
const ui_color_t color
) {
void portapack_fill_rectangle(const ui_rect_t rect, const ui_color_t color)
{
portapack_lcd_start_ram_write(rect);
portapack_lcd_write_pixels_color(color, rect.size.width * rect.size.height);
}
void portapack_clear_display(const ui_color_t color) {
void portapack_clear_display(const ui_color_t color)
{
const ui_rect_t rect_screen = {{0, 0}, {240, 320}};
portapack_fill_rectangle(rect_screen, color);
}
@ -450,12 +508,9 @@ void portapack_draw_bitmap(
const ui_point_t point,
const ui_bitmap_t bitmap,
const ui_color_t foreground,
const ui_color_t background
) {
const ui_rect_t rect = {
.point = point,
.size = bitmap.size
};
const ui_color_t background)
{
const ui_rect_t rect = {.point = point, .size = bitmap.size};
portapack_lcd_start_ram_write(rect);
@ -466,17 +521,14 @@ void portapack_draw_bitmap(
}
}
ui_bitmap_t portapack_font_glyph(
const ui_font_t* const font,
const char c
) {
ui_bitmap_t portapack_font_glyph(const ui_font_t* const font, const char c)
{
if (c >= font->c_start) {
const uint_fast8_t index = c - font->c_start;
if (index < font->c_count) {
const ui_bitmap_t bitmap = {
.size = font->glyph_size,
.data = &font->data[index * font->data_stride]
};
.data = &font->data[index * font->data_stride]};
return bitmap;
}
}
@ -488,7 +540,8 @@ ui_bitmap_t portapack_font_glyph(
return bitmap;
}
static bool jtag_pp_tck(const bool tms_value) {
static bool jtag_pp_tck(const bool tms_value)
{
gpio_write(jtag_cpld.gpio->gpio_pp_tms, tms_value);
// 8 ns TMS/TDI to TCK setup
@ -521,7 +574,8 @@ static bool jtag_pp_tck(const bool tms_value) {
return gpio_read(jtag_cpld.gpio->gpio_pp_tdo);
}
static uint32_t jtag_pp_shift(const uint32_t tms_bits, const size_t count) {
static uint32_t jtag_pp_shift(const uint32_t tms_bits, const size_t count)
{
uint32_t result = 0;
size_t bit_in_index = count - 1;
size_t bit_out_index = 0;
@ -536,7 +590,8 @@ static uint32_t jtag_pp_shift(const uint32_t tms_bits, const size_t count) {
return result;
}
static uint32_t jtag_pp_idcode(void) {
static uint32_t jtag_pp_idcode(void)
{
cpld_jtag_take(&jtag_cpld);
/* TODO: Check if PortaPack TMS is floating or driven by an external device. */
@ -556,20 +611,22 @@ static uint32_t jtag_pp_idcode(void) {
return idcode;
}
static bool portapack_detect(void) {
static bool portapack_detect(void)
{
return jtag_pp_idcode() == 0x020A50DD;
}
static const portapack_t portapack_instance = {
};
static const portapack_t portapack_instance = {};
static const portapack_t* portapack_pointer = NULL;
const portapack_t* portapack(void) {
const portapack_t* portapack(void)
{
return portapack_pointer;
}
void portapack_init(void) {
void portapack_init(void)
{
if (portapack_detect()) {
portapack_if_init();
portapack_lcd_reset();

View File

@ -73,10 +73,7 @@ void portapack_backlight(const bool on);
void portapack_reference_oscillator(const bool on) __attribute__((weak));
void portapack_fill_rectangle(
const ui_rect_t rect,
const ui_color_t color
);
void portapack_fill_rectangle(const ui_rect_t rect, const ui_color_t color);
void portapack_clear_display(const ui_color_t color);
@ -84,12 +81,8 @@ void portapack_draw_bitmap(
const ui_point_t point,
const ui_bitmap_t bitmap,
const ui_color_t foreground,
const ui_color_t background
);
const ui_color_t background);
ui_bitmap_t portapack_font_glyph(
const ui_font_t* const font,
const char c
);
ui_bitmap_t portapack_font_glyph(const ui_font_t* const font, const char c);
#endif /*__PORTAPACK_H__*/

View File

@ -104,13 +104,10 @@ uint8_t *rad1o_pk_decode(const uint8_t *ldata, int *len)
if (pos == 8) {
bufptr++;
if ((bufptr - charBuf) % height ==
0) { // End of column?
if ((bufptr - charBuf) % height == 0) { // End of column?
while (repeat > 0) {
for (int y = 0; y < height;
y++) {
bufptr[0] =
bufptr[-height];
for (int y = 0; y < height; y++) {
bufptr[0] = bufptr[-height];
bufptr++;
};
repeat--;

View File

@ -44,9 +44,16 @@ static void select()
uint8_t serial_clock_rate = 1;
uint8_t clock_prescale_rate = 12;
ssp_init(LCD_SSP, SSP_DATA_9BITS, SSP_FRAME_SPI, SSP_CPOL_0_CPHA_0,
serial_clock_rate, clock_prescale_rate, SSP_MODE_NORMAL,
SSP_MASTER, SSP_SLAVE_OUT_ENABLE);
ssp_init(
LCD_SSP,
SSP_DATA_9BITS,
SSP_FRAME_SPI,
SSP_CPOL_0_CPHA_0,
serial_clock_rate,
clock_prescale_rate,
SSP_MODE_NORMAL,
SSP_MASTER,
SSP_SLAVE_OUT_ENABLE);
gpio_clear(&gpio_lcd_cs);
}
@ -87,17 +94,24 @@ void rad1o_lcdInit(void)
/* The controller is a PCF8833 - documentation can be found online. */
static uint8_t initseq_d[] = {
0x11, // SLEEP_OUT (wake up)
0x3A, 2, // mode 8bpp (2= 8bpp, 3= 12bpp, 5= 16bpp)
0x36, 0b11000000, // my,mx,v,lao,rgb,x,x,x
0x25, 0x3a, // set contrast
0x3A,
2, // mode 8bpp (2= 8bpp, 3= 12bpp, 5= 16bpp)
0x36,
0b11000000, // my,mx,v,lao,rgb,x,x,x
0x25,
0x3a, // set contrast
0x29, // display on
0x03, // BSTRON (booster voltage)
0x2A, 1, RESX, 0x2B, 1, RESY
};
uint16_t initseq_c = ~(/* commands: 1, data: 0 */
(1 << 0) | (1 << 1) | (0 << 2) | (1 << 3) |
(0 << 4) | (1 << 5) | (0 << 6) | (1 << 7) |
(1 << 8) | (1 << 9) | (0 << 10) | (0 << 11) |
0x2A,
1,
RESX,
0x2B,
1,
RESY};
uint16_t initseq_c =
~(/* commands: 1, data: 0 */
(1 << 0) | (1 << 1) | (0 << 2) | (1 << 3) | (0 << 4) | (1 << 5) |
(0 << 6) | (1 << 7) | (1 << 8) | (1 << 9) | (0 << 10) | (0 << 11) |
(1 << 12) | (0 << 13) | (0 << 14) | 0);
write(0, 0x01); /* most color displays need the pause */

View File

@ -98,8 +98,7 @@ int rad1o_DoChar(int sx, int sy, int c)
data = &font->au8FontTable[toff + 3];
width = (width - 3 / height);
} else {
data = rad1o_pk_decode(
&font->au8FontTable[toff], &width);
data = rad1o_pk_decode(&font->au8FontTable[toff], &width);
}
} else {
toff = (c) *font->u8Width * 1;
@ -109,8 +108,7 @@ int rad1o_DoChar(int sx, int sy, int c)
} while (0);
#define xy_(x, y) \
((x < 0 || y < 0 || x >= RESX || y >= RESY) ? 0 : (y)*RESX + (x))
#define xy_(x, y) ((x < 0 || y < 0 || x >= RESX || y >= RESY) ? 0 : (y) *RESX + (x))
#define gPx(x, y) (data[x * height + (height - y / 8 - 1)] & (1 << (y % 8)))
int x = 0;

View File

@ -3399,11 +3399,11 @@ const FONT_CHAR_INFO Ubuntu18ptLengths[] = {
{30}, /* € */
};
const uint16_t Ubuntu18ptExtra[] = { 196, 214, 220, 223, 228,
246, 252, 8364, 65535 };
const uint16_t Ubuntu18ptExtra[] = {196, 214, 220, 223, 228, 246, 252, 8364, 65535};
/* Font info */
const struct FONT_DEF Font_Ubuntu18pt = { 1, /* width (1 == comressed) */
const struct FONT_DEF Font_Ubuntu18pt = {
1, /* width (1 == comressed) */
26, /* character height */
32, /* first char */
126, /* last char */

View File

@ -74,7 +74,9 @@
* Safe (initial) switch settings turn off both amplifiers and enable both amp
* bypass and mixer bypass.
*/
#define SWITCHCTRL_SAFE (SWITCHCTRL_NO_TX_AMP_PWR | SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_TX | SWITCHCTRL_MIX_BYPASS | SWITCHCTRL_HP | SWITCHCTRL_NO_RX_AMP_PWR)
#define SWITCHCTRL_SAFE \
(SWITCHCTRL_NO_TX_AMP_PWR | SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_TX | \
SWITCHCTRL_MIX_BYPASS | SWITCHCTRL_HP | SWITCHCTRL_NO_RX_AMP_PWR)
#endif
uint8_t switchctrl = SWITCHCTRL_SAFE;
@ -88,7 +90,8 @@ uint8_t switchctrl = SWITCHCTRL_SAFE;
#define SWITCHCTRL_ANT_PWR (1 << 6) /* turn on antenna port power */
#ifdef HACKRF_ONE
static void switchctrl_set_hackrf_one(rf_path_t* const rf_path, uint8_t ctrl) {
static void switchctrl_set_hackrf_one(rf_path_t* const rf_path, uint8_t ctrl)
{
if (ctrl & SWITCHCTRL_TX) {
gpio_set(rf_path->gpio_tx);
gpio_clear(rf_path->gpio_rx);
@ -161,7 +164,8 @@ static void switchctrl_set_hackrf_one(rf_path_t* const rf_path, uint8_t ctrl) {
#endif
#ifdef RAD1O
static void switchctrl_set_rad1o(rf_path_t* const rf_path, uint8_t ctrl) {
static void switchctrl_set_rad1o(rf_path_t* const rf_path, uint8_t ctrl)
{
if (ctrl & SWITCHCTRL_TX) {
gpio_set(rf_path->gpio_tx_rx_n);
gpio_clear(rf_path->gpio_tx_rx);
@ -224,7 +228,8 @@ static void switchctrl_set_rad1o(rf_path_t* const rf_path, uint8_t ctrl) {
}
#endif
static void switchctrl_set(rf_path_t* const rf_path, const uint8_t gpo) {
static void switchctrl_set(rf_path_t* const rf_path, const uint8_t gpo)
{
#ifdef JAWBREAKER
(void) rf_path; /* silence unused param warning */
mixer_set_gpo(&mixer, gpo);
@ -237,7 +242,8 @@ static void switchctrl_set(rf_path_t* const rf_path, const uint8_t gpo) {
#endif
}
void rf_path_pin_setup(rf_path_t* const rf_path) {
void rf_path_pin_setup(rf_path_t* const rf_path)
{
#ifdef HACKRF_ONE
/* Configure RF switch control signals */
// clang-format off
@ -321,7 +327,8 @@ void rf_path_pin_setup(rf_path_t* const rf_path) {
#endif
}
void rf_path_init(rf_path_t* const rf_path) {
void rf_path_init(rf_path_t* const rf_path)
{
ssp1_set_mode_max5864();
max5864_setup(&max5864);
max5864_shutdown(&max5864);
@ -334,7 +341,8 @@ void rf_path_init(rf_path_t* const rf_path) {
switchctrl_set(rf_path, switchctrl);
}
void rf_path_set_direction(rf_path_t* const rf_path, const rf_path_direction_t direction) {
void rf_path_set_direction(rf_path_t* const rf_path, const rf_path_direction_t direction)
{
/* Turn off TX and RX amplifiers, then enable based on direction and bypass state. */
rf_path->switchctrl |= SWITCHCTRL_NO_TX_AMP_PWR | SWITCHCTRL_NO_RX_AMP_PWR;
switch (direction) {
@ -398,7 +406,8 @@ void rf_path_set_direction(rf_path_t* const rf_path, const rf_path_direction_t d
hackrf_ui()->set_direction(direction);
}
void rf_path_set_filter(rf_path_t* const rf_path, const rf_path_filter_t filter) {
void rf_path_set_filter(rf_path_t* const rf_path, const rf_path_filter_t filter)
{
switch (filter) {
default:
case RF_PATH_FILTER_BYPASS:
@ -423,20 +432,24 @@ void rf_path_set_filter(rf_path_t* const rf_path, const rf_path_filter_t filter)
hackrf_ui()->set_filter(filter);
}
void rf_path_set_lna(rf_path_t* const rf_path, const uint_fast8_t enable) {
void rf_path_set_lna(rf_path_t* const rf_path, const uint_fast8_t enable)
{
if (enable) {
if (rf_path->switchctrl & SWITCHCTRL_TX) {
/* AMP_BYPASS=0, NO_RX_AMP_PWR=1, NO_TX_AMP_PWR=0 */
rf_path->switchctrl |= SWITCHCTRL_NO_RX_AMP_PWR;
rf_path->switchctrl &= ~(SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_NO_TX_AMP_PWR);
rf_path->switchctrl &=
~(SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_NO_TX_AMP_PWR);
} else {
/* AMP_BYPASS=0, NO_RX_AMP_PWR=0, NO_TX_AMP_PWR=1 */
rf_path->switchctrl |= SWITCHCTRL_NO_TX_AMP_PWR;
rf_path->switchctrl &= ~(SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_NO_RX_AMP_PWR);
rf_path->switchctrl &=
~(SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_NO_RX_AMP_PWR);
}
} else {
/* AMP_BYPASS=1, NO_RX_AMP_PWR=1, NO_TX_AMP_PWR=1 */
rf_path->switchctrl |= SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_NO_TX_AMP_PWR | SWITCHCTRL_NO_RX_AMP_PWR;
rf_path->switchctrl |= SWITCHCTRL_AMP_BYPASS | SWITCHCTRL_NO_TX_AMP_PWR |
SWITCHCTRL_NO_RX_AMP_PWR;
}
switchctrl_set(rf_path, rf_path->switchctrl);
@ -445,7 +458,8 @@ void rf_path_set_lna(rf_path_t* const rf_path, const uint_fast8_t enable) {
}
/* antenna port power control */
void rf_path_set_antenna(rf_path_t* const rf_path, const uint_fast8_t enable) {
void rf_path_set_antenna(rf_path_t* const rf_path, const uint_fast8_t enable)
{
if (enable) {
rf_path->switchctrl |= SWITCHCTRL_ANT_PWR;
} else {

View File

@ -70,7 +70,8 @@ static const uint16_t rffc5071_regs_default[RFFC5071_NUM_REGS] = {
0x0000, /* 1B */
0xc840, /* 1C */
0x1000, /* 1D */
0x0005, /* 1E */ };
0x0005,
/* 1E */};
/* Set up all registers according to defaults specified in docs. */
void rffc5071_init(rffc5071_driver_t* const drv)
@ -120,7 +121,8 @@ void rffc5071_setup(rffc5071_driver_t* const drv)
rffc5071_regs_commit(drv);
}
static uint16_t rffc5071_spi_read(rffc5071_driver_t* const drv, uint8_t r) {
static uint16_t rffc5071_spi_read(rffc5071_driver_t* const drv, uint8_t r)
{
(void) drv;
uint16_t data[] = {0x80 | (r & 0x7f), 0xffff};
@ -128,7 +130,8 @@ static uint16_t rffc5071_spi_read(rffc5071_driver_t* const drv, uint8_t r) {
return data[1];
}
static void rffc5071_spi_write(rffc5071_driver_t* const drv, uint8_t r, uint16_t v) {
static void rffc5071_spi_write(rffc5071_driver_t* const drv, uint8_t r, uint16_t v)
{
(void) drv;
uint16_t data[] = {0x00 | (r & 0x7f), v};
@ -171,14 +174,16 @@ void rffc5071_regs_commit(rffc5071_driver_t* const drv)
}
}
void rffc5071_tx(rffc5071_driver_t* const drv) {
void rffc5071_tx(rffc5071_driver_t* const drv)
{
set_RFFC5071_ENBL(drv, 0);
set_RFFC5071_FULLD(drv, 0);
set_RFFC5071_MODE(drv, 1); /* mixer 2 used for both RX and TX */
rffc5071_regs_commit(drv);
}
void rffc5071_rx(rffc5071_driver_t* const drv) {
void rffc5071_rx(rffc5071_driver_t* const drv)
{
set_RFFC5071_ENBL(drv, 0);
set_RFFC5071_FULLD(drv, 0);
set_RFFC5071_MODE(drv, 1); /* mixer 2 used for both RX and TX */
@ -189,7 +194,8 @@ void rffc5071_rx(rffc5071_driver_t* const drv) {
* This function turns on both mixer (full-duplex) on the RFFC5071, but our
* current hardware designs do not support full-duplex operation.
*/
void rffc5071_rxtx(rffc5071_driver_t* const drv) {
void rffc5071_rxtx(rffc5071_driver_t* const drv)
{
set_RFFC5071_ENBL(drv, 0);
set_RFFC5071_FULLD(drv, 1); /* mixer 1 and mixer 2 (RXTX) */
rffc5071_regs_commit(drv);
@ -197,12 +203,14 @@ void rffc5071_rxtx(rffc5071_driver_t* const drv) {
rffc5071_enable(drv);
}
void rffc5071_disable(rffc5071_driver_t* const drv) {
void rffc5071_disable(rffc5071_driver_t* const drv)
{
set_RFFC5071_ENBL(drv, 0);
rffc5071_regs_commit(drv);
}
void rffc5071_enable(rffc5071_driver_t* const drv) {
void rffc5071_enable(rffc5071_driver_t* const drv)
{
set_RFFC5071_ENBL(drv, 1);
rffc5071_regs_commit(drv);
}
@ -212,7 +220,8 @@ void rffc5071_enable(rffc5071_driver_t* const drv) {
#define FREQ_ONE_MHZ (1000 * 1000)
/* configure frequency synthesizer in integer mode (lo in MHz) */
uint64_t rffc5071_config_synth_int(rffc5071_driver_t* const drv, uint16_t lo) {
uint64_t rffc5071_config_synth_int(rffc5071_driver_t* const drv, uint16_t lo)
{
uint8_t lodiv;
uint16_t fvco;
uint8_t fbkdiv;
@ -251,8 +260,8 @@ uint64_t rffc5071_config_synth_int(rffc5071_driver_t* const drv, uint16_t lo) {
p1nmsb = (tmp_n >> 13ULL) & 0xffff;
p1nlsb = (tmp_n >> 5ULL) & 0xff;
tune_freq_hz = (REF_FREQ * (tmp_n >> 5ULL) * fbkdiv * FREQ_ONE_MHZ)
/ (lodiv * (1 << 24ULL));
tune_freq_hz = (REF_FREQ * (tmp_n >> 5ULL) * fbkdiv * FREQ_ONE_MHZ) /
(lodiv * (1 << 24ULL));
/* Path 2 */
set_RFFC5071_P2LODIV(drv, n_lo);
@ -267,7 +276,8 @@ uint64_t rffc5071_config_synth_int(rffc5071_driver_t* const drv, uint16_t lo) {
}
/* !!!!!!!!!!! hz is currently ignored !!!!!!!!!!! */
uint64_t rffc5071_set_frequency(rffc5071_driver_t* const drv, uint16_t mhz) {
uint64_t rffc5071_set_frequency(rffc5071_driver_t* const drv, uint16_t mhz)
{
uint32_t tune_freq;
rffc5071_disable(drv);

View File

@ -25,37 +25,44 @@
#include "rffc5071_spi.h"
static void rffc5071_spi_target_select(spi_bus_t* const bus) {
static void rffc5071_spi_target_select(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
gpio_clear(config->gpio_select);
}
static void rffc5071_spi_target_unselect(spi_bus_t* const bus) {
static void rffc5071_spi_target_unselect(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
gpio_set(config->gpio_select);
}
static void rffc5071_spi_direction_out(spi_bus_t* const bus) {
static void rffc5071_spi_direction_out(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
gpio_output(config->gpio_data);
}
static void rffc5071_spi_direction_in(spi_bus_t* const bus) {
static void rffc5071_spi_direction_in(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
gpio_input(config->gpio_data);
}
static void rffc5071_spi_data_out(spi_bus_t* const bus, const bool bit) {
static void rffc5071_spi_data_out(spi_bus_t* const bus, const bool bit)
{
const rffc5071_spi_config_t* const config = bus->config;
gpio_write(config->gpio_data, bit);
}
static bool rffc5071_spi_data_in(spi_bus_t* const bus) {
static bool rffc5071_spi_data_in(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
return gpio_read(config->gpio_data);
}
static void rffc5071_spi_bus_init(spi_bus_t* const bus) {
static void rffc5071_spi_bus_init(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
scu_pinmux(SCU_MIXER_SCLK, SCU_GPIO_FAST | SCU_CONF_FUNCTION4);
@ -68,7 +75,8 @@ static void rffc5071_spi_bus_init(spi_bus_t* const bus) {
gpio_clear(config->gpio_data);
}
static void rffc5071_spi_target_init(spi_bus_t* const bus) {
static void rffc5071_spi_target_init(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
/* Configure GPIO pins. */
@ -82,22 +90,26 @@ static void rffc5071_spi_target_init(spi_bus_t* const bus) {
rffc5071_spi_target_unselect(bus);
}
void rffc5071_spi_start(spi_bus_t* const bus, const void* const config) {
void rffc5071_spi_start(spi_bus_t* const bus, const void* const config)
{
bus->config = config;
rffc5071_spi_bus_init(bus);
rffc5071_spi_target_init(bus);
}
void rffc5071_spi_stop(spi_bus_t* const bus) {
void rffc5071_spi_stop(spi_bus_t* const bus)
{
(void) bus;
}
static void rffc5071_spi_serial_delay(spi_bus_t* const bus) {
static void rffc5071_spi_serial_delay(spi_bus_t* const bus)
{
(void) bus;
__asm__("nop");
}
static void rffc5071_spi_sck(spi_bus_t* const bus) {
static void rffc5071_spi_sck(spi_bus_t* const bus)
{
const rffc5071_spi_config_t* const config = bus->config;
rffc5071_spi_serial_delay(bus);
@ -107,13 +119,18 @@ static void rffc5071_spi_sck(spi_bus_t* const bus) {
gpio_clear(config->gpio_clock);
}
static uint32_t rffc5071_spi_exchange_bit(spi_bus_t* const bus, const uint32_t bit) {
static uint32_t rffc5071_spi_exchange_bit(spi_bus_t* const bus, const uint32_t bit)
{
rffc5071_spi_data_out(bus, bit);
rffc5071_spi_sck(bus);
return rffc5071_spi_data_in(bus) ? 1 : 0;
}
static uint32_t rffc5071_spi_exchange_word(spi_bus_t* const bus, const uint32_t data, const size_t count) {
static uint32_t rffc5071_spi_exchange_word(
spi_bus_t* const bus,
const uint32_t data,
const size_t count)
{
size_t bits = count;
const uint32_t msb = 1UL << (count - 1);
uint32_t t = data;
@ -141,7 +158,8 @@ static uint32_t rffc5071_spi_exchange_word(spi_bus_t* const bus, const uint32_t
* next 7 bits are register address,
* next 16 bits are register value.
*/
void rffc5071_spi_transfer(spi_bus_t* const bus, void* const _data, const size_t count) {
void rffc5071_spi_transfer(spi_bus_t* const bus, void* const _data, const size_t count)
{
if (count != 2) {
return;
}
@ -177,7 +195,11 @@ void rffc5071_spi_transfer(spi_bus_t* const bus, void* const _data, const size_t
rffc5071_spi_sck(bus);
}
void rffc5071_spi_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const transfer, const size_t count) {
void rffc5071_spi_transfer_gather(
spi_bus_t* const bus,
const spi_transfer_t* const transfer,
const size_t count)
{
if (count == 1) {
rffc5071_spi_transfer(bus, transfer[0].data, transfer[0].count);
}

View File

@ -36,6 +36,9 @@ typedef struct rffc5071_spi_config_t {
void rffc5071_spi_start(spi_bus_t* const bus, const void* const config);
void rffc5071_spi_stop(spi_bus_t* const bus);
void rffc5071_spi_transfer(spi_bus_t* const bus, void* const data, const size_t count);
void rffc5071_spi_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const transfer, const size_t count);
void rffc5071_spi_transfer_gather(
spi_bus_t* const bus,
const spi_transfer_t* const transfer,
const size_t count);
#endif // __RFFC5071_SPI_H

View File

@ -36,6 +36,7 @@ typedef struct {
const IAP_t IAP; /* If equal to 0x12345678 IAP not implemented */
/* Other TBD */
} * pENTRY_ROM_API_t;
#define pROM_API ((pENTRY_ROM_API_t) ROM_IAP_ADDR)
/*
@ -54,11 +55,9 @@ typedef struct {
bool iap_is_implemented(void)
{
bool res;
if( *((uint32_t*)ROM_IAP_ADDR) != ROM_IAP_UNDEF_ADDR )
{
if (*((uint32_t*) ROM_IAP_ADDR) != ROM_IAP_UNDEF_ADDR) {
res = true;
}else
{
} else {
res = false;
}
return res;
@ -68,11 +67,11 @@ isp_iap_ret_code_t iap_cmd_call(iap_cmd_res_t* iap_cmd_res)
{
uint32_t* p_u32_data;
if( iap_is_implemented() )
{
pROM_API->IAP( (uint32_t*)&iap_cmd_res->cmd_param, (uint32_t*)&iap_cmd_res->status_res);
}else
{
if (iap_is_implemented()) {
pROM_API->IAP(
(uint32_t*) &iap_cmd_res->cmd_param,
(uint32_t*) &iap_cmd_res->status_res);
} else {
/*
Alternative way to retrieve Part Id on MCU with no IAP
Read Serial No => Read Unique ID in SPIFI (only compatible with W25Q80BV
@ -80,8 +79,7 @@ isp_iap_ret_code_t iap_cmd_call(iap_cmd_res_t* iap_cmd_res)
spi_bus_start(spi_flash.bus, &ssp_config_w25q80bv);
w25q80bv_setup(&spi_flash);
switch(iap_cmd_res->cmd_param.command_code)
{
switch (iap_cmd_res->cmd_param.command_code) {
case IAP_CMD_READ_PART_ID_NO:
p_u32_data = (uint32_t*) ROM_OTP_PART_ID_ADDR;
iap_cmd_res->status_res.iap_result[0] = p_u32_data[0];
@ -93,7 +91,10 @@ isp_iap_ret_code_t iap_cmd_call(iap_cmd_res_t* iap_cmd_res)
/* Only 64bits used */
iap_cmd_res->status_res.iap_result[0] = 0;
iap_cmd_res->status_res.iap_result[1] = 0;
w25q80bv_get_unique_id(&spi_flash, (w25q80bv_unique_id_t*)&iap_cmd_res->status_res.iap_result[2] );
w25q80bv_get_unique_id(
&spi_flash,
(w25q80bv_unique_id_t*) &iap_cmd_res->status_res
.iap_result[2]);
iap_cmd_res->status_res.status_ret = CMD_SUCCESS;
break;

View File

@ -95,20 +95,18 @@ typedef enum
/* Special Error */
ERROR_IAP_NOT_IMPLEMENTED = 0x00000100 /* IAP is not implemented in this part */
} isp_iap_ret_code_t;
// clang-format on
typedef struct
{
typedef struct {
/* Input Command/Param */
struct
{
struct {
iap_cmd_code_t command_code;
uint32_t iap_param[5];
} cmd_param;
/* Output Status/Result */
struct
{
struct {
isp_iap_ret_code_t status_ret;
uint32_t iap_result[4];
} status_res;

View File

@ -630,8 +630,7 @@ EV[0:15]_CTRL[MATCHMEM, DIRECTION]
/* -- SCT_OUTPUTDIRCTRL_SETCLR10: Set/clear operation on output 5. Value 0x3 is
* reserved. Do not program this value. */
#define SCT_OUTPUTDIRCTRL_SETCLR10_SHIFT (20)
#define SCT_OUTPUTDIRCTRL_SETCLR10_MASK \
(0x03 << SCT_OUTPUTDIRCTRL_SETCLR10_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR10_MASK (0x03 << SCT_OUTPUTDIRCTRL_SETCLR10_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR10(x) ((x) << SCT_OUTPUTDIRCTRL_SETCLR10_SHIFT)
/* SCT_OUTPUTDIRCTRL_SETCLR10_SETCLR10 values */
@ -647,8 +646,7 @@ EV[0:15]_CTRL[MATCHMEM, DIRECTION]
/* -- SCT_OUTPUTDIRCTRL_SETCLR11: Set/clear operation on output 11. Value 0x3 is
* reserved. Do not program this value. */
#define SCT_OUTPUTDIRCTRL_SETCLR11_SHIFT (22)
#define SCT_OUTPUTDIRCTRL_SETCLR11_MASK \
(0x03 << SCT_OUTPUTDIRCTRL_SETCLR11_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR11_MASK (0x03 << SCT_OUTPUTDIRCTRL_SETCLR11_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR11(x) ((x) << SCT_OUTPUTDIRCTRL_SETCLR11_SHIFT)
/* SCT_OUTPUTDIRCTRL_SETCLR11_SETCLR11 values */
@ -664,8 +662,7 @@ EV[0:15]_CTRL[MATCHMEM, DIRECTION]
/* -- SCT_OUTPUTDIRCTRL_SETCLR12: Set/clear operation on output 12. Value 0x3 is
* reserved. Do not program this value. */
#define SCT_OUTPUTDIRCTRL_SETCLR12_SHIFT (24)
#define SCT_OUTPUTDIRCTRL_SETCLR12_MASK \
(0x03 << SCT_OUTPUTDIRCTRL_SETCLR12_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR12_MASK (0x03 << SCT_OUTPUTDIRCTRL_SETCLR12_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR12(x) ((x) << SCT_OUTPUTDIRCTRL_SETCLR12_SHIFT)
/* SCT_OUTPUTDIRCTRL_SETCLR12_SETCLR12 values */
@ -681,8 +678,7 @@ EV[0:15]_CTRL[MATCHMEM, DIRECTION]
/* -- SCT_OUTPUTDIRCTRL_SETCLR13: Set/clear operation on output 13. Value 0x3 is
* reserved. Do not program this value. */
#define SCT_OUTPUTDIRCTRL_SETCLR13_SHIFT (26)
#define SCT_OUTPUTDIRCTRL_SETCLR13_MASK \
(0x03 << SCT_OUTPUTDIRCTRL_SETCLR13_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR13_MASK (0x03 << SCT_OUTPUTDIRCTRL_SETCLR13_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR13(x) ((x) << SCT_OUTPUTDIRCTRL_SETCLR13_SHIFT)
/* SCT_OUTPUTDIRCTRL_SETCLR13_SETCLR13 values */
@ -698,8 +694,7 @@ EV[0:15]_CTRL[MATCHMEM, DIRECTION]
/* -- SCT_OUTPUTDIRCTRL_SETCLR14: Set/clear operation on output 14. Value 0x3 is
* reserved. Do not program this value. */
#define SCT_OUTPUTDIRCTRL_SETCLR14_SHIFT (28)
#define SCT_OUTPUTDIRCTRL_SETCLR14_MASK \
(0x03 << SCT_OUTPUTDIRCTRL_SETCLR14_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR14_MASK (0x03 << SCT_OUTPUTDIRCTRL_SETCLR14_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR14(x) ((x) << SCT_OUTPUTDIRCTRL_SETCLR14_SHIFT)
/* SCT_OUTPUTDIRCTRL_SETCLR14_SETCLR14 values */
@ -715,8 +710,7 @@ EV[0:15]_CTRL[MATCHMEM, DIRECTION]
/* -- SCT_OUTPUTDIRCTRL_SETCLR15: Set/clear operation on output 15. Value 0x3 is
* reserved. Do not program this value. */
#define SCT_OUTPUTDIRCTRL_SETCLR15_SHIFT (30)
#define SCT_OUTPUTDIRCTRL_SETCLR15_MASK \
(0x03 << SCT_OUTPUTDIRCTRL_SETCLR15_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR15_MASK (0x03 << SCT_OUTPUTDIRCTRL_SETCLR15_SHIFT)
#define SCT_OUTPUTDIRCTRL_SETCLR15(x) ((x) << SCT_OUTPUTDIRCTRL_SETCLR15_SHIFT)
/* SCT_OUTPUTDIRCTRL_SETCLR15_SETCLR15 values */

View File

@ -32,7 +32,8 @@
static void update_q_invert(sgpio_config_t* const config);
#endif
void sgpio_configure_pin_functions(sgpio_config_t* const config) {
void sgpio_configure_pin_functions(sgpio_config_t* const config)
{
scu_pinmux(SCU_PINMUX_SGPIO0, SCU_GPIO_FAST | SCU_CONF_FUNCTION3);
scu_pinmux(SCU_PINMUX_SGPIO1, SCU_GPIO_FAST | SCU_CONF_FUNCTION3);
scu_pinmux(SCU_PINMUX_SGPIO2, SCU_GPIO_FAST | SCU_CONF_FUNCTION2);
@ -57,10 +58,8 @@ void sgpio_configure_pin_functions(sgpio_config_t* const config) {
gpio_output(config->gpio_hw_sync_enable);
}
void sgpio_set_slice_mode(
sgpio_config_t* const config,
const bool multi_slice
) {
void sgpio_set_slice_mode(sgpio_config_t* const config, const bool multi_slice)
{
config->slice_mode_multislice = multi_slice;
}
@ -95,16 +94,13 @@ void sgpio_set_slice_mode(
SGPIO10 Disable Output (1/High=Disable codec data stream, 0/Low=Enable codec data stream)
SGPIO11 Direction Output (1/High=TX mode LPC43xx=>CPLD=>DAC, 0/Low=RX mode LPC43xx<=CPLD<=ADC)
*/
void sgpio_configure(
sgpio_config_t* const config,
const sgpio_direction_t direction
) {
void sgpio_configure(sgpio_config_t* const config, const sgpio_direction_t direction)
{
// Disable all counters during configuration
SGPIO_CTRL_ENABLE = 0;
// Set SGPIO output values.
const uint_fast8_t cpld_direction =
(direction == SGPIO_DIRECTION_TX) ? 1 : 0;
const uint_fast8_t cpld_direction = (direction == SGPIO_DIRECTION_TX) ? 1 : 0;
// clang-format off
SGPIO_GPIO_OUTREG =
@ -123,9 +119,7 @@ void sgpio_configure(
// Enable SGPIO pin outputs.
const uint_fast16_t sgpio_gpio_data_direction =
(direction == SGPIO_DIRECTION_TX)
? (0xFF << 0)
: (0x00 << 0);
(direction == SGPIO_DIRECTION_TX) ? (0xFF << 0) : (0x00 << 0);
// clang-format off
SGPIO_GPIO_OENREG =
@ -190,8 +184,7 @@ void sgpio_configure(
uint32_t slice_enable_mask = BIT3;
/* Configure Slice A, I, E, J, C, K, F, L (sgpio_slice_mode_multislice mode) */
for(uint_fast8_t i=0; i<slice_count; i++)
{
for (uint_fast8_t i = 0; i < slice_count; i++) {
const uint_fast8_t slice_index = slice_indices[i];
/* Only for slice0/A and RX mode set input_slice to 1 */
const bool input_slice = (i == 0) && (direction != SGPIO_DIRECTION_TX);
@ -224,10 +217,7 @@ void sgpio_configure(
SGPIO_PRESET(slice_index) = 0; // External clock, don't care
SGPIO_COUNT(slice_index) = 0; // External clock, don't care
SGPIO_POS(slice_index) =
SGPIO_POS_POS_RESET(pos)
| SGPIO_POS_POS(pos)
;
SGPIO_POS(slice_index) = SGPIO_POS_POS_RESET(pos) | SGPIO_POS_POS(pos);
SGPIO_REG(slice_index) = 0x00000000; // Primary output data register
SGPIO_REG_SS(slice_index) = 0x00000000; // Shadow output data register
// clang-format on
@ -260,12 +250,11 @@ void sgpio_configure(
SGPIO_PRESET(slice_gpdma) = 0; // External clock, don't care
SGPIO_COUNT(slice_gpdma) = 0; // External clock, don't care
SGPIO_POS(slice_gpdma) =
SGPIO_POS_POS_RESET(0x1f)
| SGPIO_POS_POS(0x1f)
;
SGPIO_REG(slice_gpdma) = 0x11111111; // Primary output data register, LSB -> out
SGPIO_REG_SS(slice_gpdma) = 0x11111111; // Shadow output data register, LSB -> out1
SGPIO_POS(slice_gpdma) = SGPIO_POS_POS_RESET(0x1f) | SGPIO_POS_POS(0x1f);
SGPIO_REG(slice_gpdma) =
0x11111111; // Primary output data register, LSB -> out
SGPIO_REG_SS(slice_gpdma) =
0x11111111; // Shadow output data register, LSB -> out1
slice_enable_mask |= (1 << slice_gpdma);
}
@ -274,24 +263,26 @@ void sgpio_configure(
SGPIO_CTRL_ENABLE = slice_enable_mask;
}
void sgpio_cpld_stream_enable(sgpio_config_t* const config) {
void sgpio_cpld_stream_enable(sgpio_config_t* const config)
{
(void) config;
// Enable codec data stream.
SGPIO_GPIO_OUTREG &= ~(1L << 10); /* SGPIO10 */
}
void sgpio_cpld_stream_disable(sgpio_config_t* const config) {
void sgpio_cpld_stream_disable(sgpio_config_t* const config)
{
(void) config;
// Disable codec data stream.
SGPIO_GPIO_OUTREG |= (1L << 10); /* SGPIO10 */
}
bool sgpio_cpld_stream_is_enabled(sgpio_config_t* const config) {
bool sgpio_cpld_stream_is_enabled(sgpio_config_t* const config)
{
(void) config;
return (SGPIO_GPIO_OUTREG & (1L << 10)) == 0; /* SGPIO10 */
}
#ifdef RAD1O
/* The rad1o hardware has a bug which makes it
* necessary to also switch between the two options based
@ -306,7 +297,8 @@ static bool sgpio_invert = false;
/* Called when TX/RX changes od sgpio_cpld_stream_rx_set_q_invert
* gets called. */
static void update_q_invert(sgpio_config_t* const config) {
static void update_q_invert(sgpio_config_t* const config)
{
/* 1=Output SGPIO11 High(TX mode), 0=Output SGPIO11 Low(RX mode) */
bool tx_mode = (SGPIO_GPIO_OUTREG & (1 << 11)) > 0;
@ -322,7 +314,10 @@ static void update_q_invert(sgpio_config_t* const config) {
}
}
void sgpio_cpld_stream_rx_set_q_invert(sgpio_config_t* const config, const uint_fast8_t invert) {
void sgpio_cpld_stream_rx_set_q_invert(
sgpio_config_t* const config,
const uint_fast8_t invert)
{
if (invert) {
sgpio_invert = true;
} else {
@ -333,7 +328,10 @@ void sgpio_cpld_stream_rx_set_q_invert(sgpio_config_t* const config, const uint_
}
#else
void sgpio_cpld_stream_rx_set_q_invert(sgpio_config_t* const config, const uint_fast8_t invert) {
void sgpio_cpld_stream_rx_set_q_invert(
sgpio_config_t* const config,
const uint_fast8_t invert)
{
gpio_write(config->gpio_rx_q_invert, invert);
}
#endif

View File

@ -42,18 +42,14 @@ typedef struct sgpio_config_t {
void sgpio_configure_pin_functions(sgpio_config_t* const config);
void sgpio_test_interface(sgpio_config_t* const config);
void sgpio_set_slice_mode(
sgpio_config_t* const config,
const bool multi_slice
);
void sgpio_configure(
sgpio_config_t* const config,
const sgpio_direction_t direction
);
void sgpio_set_slice_mode(sgpio_config_t* const config, const bool multi_slice);
void sgpio_configure(sgpio_config_t* const config, const sgpio_direction_t direction);
void sgpio_cpld_stream_enable(sgpio_config_t* const config);
void sgpio_cpld_stream_disable(sgpio_config_t* const config);
bool sgpio_cpld_stream_is_enabled(sgpio_config_t* const config);
void sgpio_cpld_stream_rx_set_q_invert(sgpio_config_t* const config, const uint_fast8_t invert);
void sgpio_cpld_stream_rx_set_q_invert(
sgpio_config_t* const config,
const uint_fast8_t invert);
#endif //__SGPIO_H__

View File

@ -46,7 +46,10 @@ uint8_t si5351c_read_single(si5351c_driver_t* const drv, uint8_t reg)
* Write to one or more contiguous registers. data[0] should be the first
* register number, one or more values follow.
*/
void si5351c_write(si5351c_driver_t* const drv, const uint8_t* const data, const size_t data_count)
void si5351c_write(
si5351c_driver_t* const drv,
const uint8_t* const data,
const size_t data_count)
{
i2c_bus_transfer(drv->bus, drv->i2c_address, data, data_count, NULL, 0);
}
@ -68,16 +71,16 @@ void si5351c_disable_oeb_pin_control(si5351c_driver_t* const drv)
/* Power down all CLKx */
void si5351c_power_down_all_clocks(si5351c_driver_t* const drv)
{
uint8_t data[] = { 16
, SI5351C_CLK_POWERDOWN
, SI5351C_CLK_POWERDOWN
, SI5351C_CLK_POWERDOWN
, SI5351C_CLK_POWERDOWN
, SI5351C_CLK_POWERDOWN
, SI5351C_CLK_POWERDOWN
, SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE
, SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE
};
uint8_t data[] = {
16,
SI5351C_CLK_POWERDOWN,
SI5351C_CLK_POWERDOWN,
SI5351C_CLK_POWERDOWN,
SI5351C_CLK_POWERDOWN,
SI5351C_CLK_POWERDOWN,
SI5351C_CLK_POWERDOWN,
SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE,
SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE};
si5351c_write(drv, data, sizeof(data));
}
@ -135,9 +138,12 @@ void si5351c_reset_pll(si5351c_driver_t* const drv)
si5351c_write(drv, data, sizeof(data));
}
void si5351c_configure_multisynth(si5351c_driver_t* const drv,
void si5351c_configure_multisynth(
si5351c_driver_t* const drv,
const uint_fast8_t ms_number,
const uint32_t p1, const uint32_t p2, const uint32_t p3,
const uint32_t p1,
const uint32_t p2,
const uint32_t p3,
const uint_fast8_t r_div)
{
/*
@ -166,7 +172,9 @@ void si5351c_configure_multisynth(si5351c_driver_t* const drv,
si5351c_write(drv, data, sizeof(data));
}
void si5351c_configure_clock_control(si5351c_driver_t* const drv, const enum pll_sources source)
void si5351c_configure_clock_control(
si5351c_driver_t* const drv,
const enum pll_sources source)
{
uint8_t pll;
#ifdef RAD1O
@ -186,15 +194,29 @@ void si5351c_configure_clock_control(si5351c_driver_t* const drv, const enum pll
#endif
/* Clock to CPU is deactivated as it is not used and creates noise */
/* External clock output is kept in current state */
uint8_t data[] = {16
,SI5351C_CLK_FRAC_MODE | SI5351C_CLK_PLL_SRC(pll) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_8MA)
,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_0_4) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA) | SI5351C_CLK_INV
,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_0_4) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA)
,clk3_ctrl
,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_6MA) | SI5351C_CLK_INV
,SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_4MA)
,SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE /*not connected, but: plla int mode*/
,SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE /*not connected, but: plla int mode*/
uint8_t data[] = {
16,
SI5351C_CLK_FRAC_MODE | SI5351C_CLK_PLL_SRC(pll) |
SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) |
SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_8MA),
SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) |
SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_0_4) |
SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA) | SI5351C_CLK_INV,
SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) |
SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_0_4) |
SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_2MA),
clk3_ctrl,
SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) |
SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) |
SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_6MA) | SI5351C_CLK_INV,
SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) |
SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) |
SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_4MA),
SI5351C_CLK_POWERDOWN |
SI5351C_CLK_INT_MODE /*not connected, but: plla int mode*/
,
SI5351C_CLK_POWERDOWN |
SI5351C_CLK_INT_MODE /*not connected, but: plla int mode*/
};
si5351c_write(drv, data, sizeof(data));
}
@ -210,20 +232,20 @@ void si5351c_enable_clock_outputs(si5351c_driver_t* const drv)
/* 7: Clock to CPU is deactivated as it is not used and creates noise */
/* 3: External clock output is deactivated by default */
// uint8_t data[] = { 3, ~((1 << 0) | (1 << 1) | (1 << 2) | (1 << 4) | (1 << 5))};
uint8_t data[] = { SI5351C_REG_OUTPUT_EN,
SI5351C_CLK_ENABLE(0) |
SI5351C_CLK_ENABLE(1) |
SI5351C_CLK_ENABLE(2) |
SI5351C_CLK_DISABLE(3) |
SI5351C_CLK_ENABLE(4) |
SI5351C_CLK_ENABLE(5) |
SI5351C_CLK_DISABLE(6) |
SI5351C_CLK_DISABLE(7)
};
uint8_t data[] = {
SI5351C_REG_OUTPUT_EN,
SI5351C_CLK_ENABLE(0) | SI5351C_CLK_ENABLE(1) | SI5351C_CLK_ENABLE(2) |
SI5351C_CLK_DISABLE(3) | SI5351C_CLK_ENABLE(4) |
SI5351C_CLK_ENABLE(5) | SI5351C_CLK_DISABLE(6) |
SI5351C_CLK_DISABLE(7)};
si5351c_write(drv, data, sizeof(data));
}
void si5351c_set_int_mode(si5351c_driver_t* const drv, const uint_fast8_t ms_number, const uint_fast8_t on){
void si5351c_set_int_mode(
si5351c_driver_t* const drv,
const uint_fast8_t ms_number,
const uint_fast8_t on)
{
uint8_t data[] = {16, 0};
if (ms_number < 8) {
@ -247,7 +269,8 @@ void si5351c_set_clock_source(si5351c_driver_t* const drv, const enum pll_source
}
}
bool si5351c_clkin_signal_valid(si5351c_driver_t* const drv) {
bool si5351c_clkin_signal_valid(si5351c_driver_t* const drv)
{
return (si5351c_read_single(drv, 0) & SI5351C_LOS) == 0;
}
@ -283,7 +306,9 @@ void si5351c_clkout_enable(si5351c_driver_t* const drv, uint8_t enable)
}
#endif
if (enable)
clk3_ctrl = SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) | SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) | SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_8MA);
clk3_ctrl = SI5351C_CLK_INT_MODE | SI5351C_CLK_PLL_SRC(pll) |
SI5351C_CLK_SRC(SI5351C_CLK_SRC_MULTISYNTH_SELF) |
SI5351C_CLK_IDRV(SI5351C_CLK_IDRV_8MA);
else
clk3_ctrl = SI5351C_CLK_POWERDOWN | SI5351C_CLK_INT_MODE;
uint8_t clk3_data[] = {SI5351C_REG_CLK3_CTRL, clk3_ctrl};

View File

@ -24,8 +24,7 @@
#define __SI5351C_H
#ifdef __cplusplus
extern "C"
{
extern "C" {
#endif
#include <stdint.h>
@ -78,19 +77,30 @@ void si5351c_enable_xo_and_ms_fanout(si5351c_driver_t* const drv);
void si5351c_configure_pll_sources(si5351c_driver_t* const drv);
void si5351c_configure_pll_multisynth(si5351c_driver_t* const drv);
void si5351c_reset_pll(si5351c_driver_t* const drv);
void si5351c_configure_multisynth(si5351c_driver_t* const drv,
void si5351c_configure_multisynth(
si5351c_driver_t* const drv,
const uint_fast8_t ms_number,
const uint32_t p1, const uint32_t p2, const uint32_t p3,
const uint32_t p1,
const uint32_t p2,
const uint32_t p3,
const uint_fast8_t r_div);
void si5351c_configure_clock_control(si5351c_driver_t* const drv, const enum pll_sources source);
void si5351c_configure_clock_control(
si5351c_driver_t* const drv,
const enum pll_sources source);
void si5351c_enable_clock_outputs(si5351c_driver_t* const drv);
void si5351c_set_int_mode(si5351c_driver_t* const drv, const uint_fast8_t ms_number, const uint_fast8_t on);
void si5351c_set_int_mode(
si5351c_driver_t* const drv,
const uint_fast8_t ms_number,
const uint_fast8_t on);
void si5351c_set_clock_source(si5351c_driver_t* const drv, const enum pll_sources source);
bool si5351c_clkin_signal_valid(si5351c_driver_t* const drv);
void si5351c_write_single(si5351c_driver_t* const drv, uint8_t reg, uint8_t val);
uint8_t si5351c_read_single(si5351c_driver_t* const drv, uint8_t reg);
void si5351c_write(si5351c_driver_t* const drv, const uint8_t* const data, const size_t data_count);
void si5351c_write(
si5351c_driver_t* const drv,
const uint8_t* const data,
const size_t data_count);
void si5351c_clkout_enable(si5351c_driver_t* const drv, uint8_t enable);
#ifdef __cplusplus

View File

@ -21,18 +21,25 @@
#include "spi_bus.h"
void spi_bus_start(spi_bus_t* const bus, const void* const config) {
void spi_bus_start(spi_bus_t* const bus, const void* const config)
{
bus->start(bus, config);
}
void spi_bus_stop(spi_bus_t* const bus) {
void spi_bus_stop(spi_bus_t* const bus)
{
bus->stop(bus);
}
void spi_bus_transfer(spi_bus_t* const bus, void* const data, const size_t count) {
void spi_bus_transfer(spi_bus_t* const bus, void* const data, const size_t count)
{
bus->transfer(bus, data, count);
}
void spi_bus_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const transfers, const size_t count) {
void spi_bus_transfer_gather(
spi_bus_t* const bus,
const spi_transfer_t* const transfers,
const size_t count)
{
bus->transfer_gather(bus, transfers, count);
}

View File

@ -38,12 +38,18 @@ struct spi_bus_t {
void (*start)(spi_bus_t* const bus, const void* const config);
void (*stop)(spi_bus_t* const bus);
void (*transfer)(spi_bus_t* const bus, void* const data, const size_t count);
void (*transfer_gather)(spi_bus_t* const bus, const spi_transfer_t* const transfers, const size_t count);
void (*transfer_gather)(
spi_bus_t* const bus,
const spi_transfer_t* const transfers,
const size_t count);
};
void spi_bus_start(spi_bus_t* const bus, const void* const config);
void spi_bus_stop(spi_bus_t* const bus);
void spi_bus_transfer(spi_bus_t* const bus, void* const data, const size_t count);
void spi_bus_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const transfers, const size_t count);
void spi_bus_transfer_gather(
spi_bus_t* const bus,
const spi_transfer_t* const transfers,
const size_t count);
#endif /*__SPI_BUS_H__*/

View File

@ -24,7 +24,8 @@
#include <libopencm3/lpc43xx/rgu.h>
#include <libopencm3/lpc43xx/ssp.h>
void spi_ssp_start(spi_bus_t* const bus, const void* const _config) {
void spi_ssp_start(spi_bus_t* const bus, const void* const _config)
{
const ssp_config_t* const config = _config;
if (bus->obj == (void*) SSP0_BASE) {
@ -37,39 +38,36 @@ void spi_ssp_start(spi_bus_t* const bus, const void* const _config) {
SSP_CR1(bus->obj) = 0;
SSP_CPSR(bus->obj) = config->clock_prescale_rate;
SSP_CR0(bus->obj) =
(config->serial_clock_rate << 8)
| SSP_CPOL_0_CPHA_0
| SSP_FRAME_SPI
| config->data_bits
;
SSP_CR0(bus->obj) = (config->serial_clock_rate << 8) | SSP_CPOL_0_CPHA_0 |
SSP_FRAME_SPI | config->data_bits;
SSP_CR1(bus->obj) =
SSP_SLAVE_OUT_ENABLE
| SSP_MASTER
| SSP_ENABLE
| SSP_MODE_NORMAL
;
SSP_SLAVE_OUT_ENABLE | SSP_MASTER | SSP_ENABLE | SSP_MODE_NORMAL;
bus->config = config;
}
void spi_ssp_stop(spi_bus_t* const bus) {
void spi_ssp_stop(spi_bus_t* const bus)
{
SSP_CR1(bus->obj) = 0;
}
static void spi_ssp_wait_for_tx_fifo_not_full(spi_bus_t* const bus) {
static void spi_ssp_wait_for_tx_fifo_not_full(spi_bus_t* const bus)
{
while ((SSP_SR(bus->obj) & SSP_SR_TNF) == 0) {}
}
static void spi_ssp_wait_for_rx_fifo_not_empty(spi_bus_t* const bus) {
static void spi_ssp_wait_for_rx_fifo_not_empty(spi_bus_t* const bus)
{
while ((SSP_SR(bus->obj) & SSP_SR_RNE) == 0) {}
}
static void spi_ssp_wait_for_not_busy(spi_bus_t* const bus) {
static void spi_ssp_wait_for_not_busy(spi_bus_t* const bus)
{
while (SSP_SR(bus->obj) & SSP_SR_BSY) {}
}
static uint32_t spi_ssp_transfer_word(spi_bus_t* const bus, const uint32_t data) {
static uint32_t spi_ssp_transfer_word(spi_bus_t* const bus, const uint32_t data)
{
spi_ssp_wait_for_tx_fifo_not_full(bus);
SSP_DR(bus->obj) = data;
spi_ssp_wait_for_not_busy(bus);
@ -77,7 +75,11 @@ static uint32_t spi_ssp_transfer_word(spi_bus_t* const bus, const uint32_t data)
return SSP_DR(bus->obj);
}
void spi_ssp_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const transfers, const size_t count) {
void spi_ssp_transfer_gather(
spi_bus_t* const bus,
const spi_transfer_t* const transfers,
const size_t count)
{
const ssp_config_t* const config = bus->config;
const bool word_size_u16 = (SSP_CR0(bus->obj) & 0xf) > SSP_DATA_8BITS;
@ -101,7 +103,8 @@ void spi_ssp_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const t
gpio_set(config->gpio_select);
}
void spi_ssp_transfer(spi_bus_t* const bus, void* const data, const size_t count) {
void spi_ssp_transfer(spi_bus_t* const bus, void* const data, const size_t count)
{
const spi_transfer_t transfers[] = {
{data, count},
};

View File

@ -41,6 +41,9 @@ typedef struct ssp_config_t {
void spi_ssp_start(spi_bus_t* const bus, const void* const config);
void spi_ssp_stop(spi_bus_t* const bus);
void spi_ssp_transfer(spi_bus_t* const bus, void* const data, const size_t count);
void spi_ssp_transfer_gather(spi_bus_t* const bus, const spi_transfer_t* const transfers, const size_t count);
void spi_ssp_transfer_gather(
spi_bus_t* const bus,
const spi_transfer_t* const transfers,
const size_t count);
#endif /*__SPI_SSP_H__*/

View File

@ -25,12 +25,14 @@
#include <libopencm3/lpc43xx/m4/nvic.h>
#include <libopencm3/lpc43xx/sgpio.h>
void baseband_streaming_enable(sgpio_config_t* const sgpio_config) {
void baseband_streaming_enable(sgpio_config_t* const sgpio_config)
{
SGPIO_SET_EN_1 = (1 << SGPIO_SLICE_A);
sgpio_cpld_stream_enable(sgpio_config);
}
void baseband_streaming_disable(sgpio_config_t* const sgpio_config) {
void baseband_streaming_disable(sgpio_config_t* const sgpio_config)
{
sgpio_cpld_stream_disable(sgpio_config);
}

View File

@ -49,6 +49,7 @@
static uint32_t max2837_freq_nominal_hz = 2560000000;
uint64_t freq_cache = 100000000;
/*
* Set freq/tuning between 0MHz to 7250 MHz (less than 16bits really used)
* hz between 0 to 999999 Hz (not checked)
@ -68,8 +69,7 @@ bool set_freq(const uint64_t freq)
const max2837_mode_t prior_max2837_mode = max2837_mode(&max2837);
max2837_set_mode(&max2837, MAX2837_MODE_STANDBY);
if(freq_mhz < MAX_LP_FREQ_MHZ)
{
if (freq_mhz < MAX_LP_FREQ_MHZ) {
rf_path_set_filter(&rf_path, RF_PATH_FILTER_LOW_PASS);
#ifdef RAD1O
max2837_freq_nominal_hz = 2300000000;
@ -82,18 +82,17 @@ bool set_freq(const uint64_t freq)
real_mixer_freq_hz = mixer_set_frequency(&mixer, mixer_freq_mhz);
max2837_set_frequency(&max2837, real_mixer_freq_hz - freq);
sgpio_cpld_stream_rx_set_q_invert(&sgpio_config, 1);
}else if( (freq_mhz >= MIN_BYPASS_FREQ_MHZ) && (freq_mhz < MAX_BYPASS_FREQ_MHZ) )
{
} else if ((freq_mhz >= MIN_BYPASS_FREQ_MHZ) && (freq_mhz < MAX_BYPASS_FREQ_MHZ)) {
rf_path_set_filter(&rf_path, RF_PATH_FILTER_BYPASS);
MAX2837_freq_hz = (freq_mhz * FREQ_ONE_MHZ) + freq_hz;
/* mixer_freq_mhz <= not used in Bypass mode */
max2837_set_frequency(&max2837, MAX2837_freq_hz);
sgpio_cpld_stream_rx_set_q_invert(&sgpio_config, 0);
}else if( (freq_mhz >= MIN_HP_FREQ_MHZ) && (freq_mhz <= MAX_HP_FREQ_MHZ) )
{
} else if ((freq_mhz >= MIN_HP_FREQ_MHZ) && (freq_mhz <= MAX_HP_FREQ_MHZ)) {
if (freq_mhz < MID1_HP_FREQ_MHZ) {
/* IF is graduated from 2150 MHz to 2750 MHz */
max2837_freq_nominal_hz = 2150000000 + (((freq - 2750000000) * 60) / 85);
max2837_freq_nominal_hz =
2150000000 + (((freq - 2750000000) * 60) / 85);
} else if (freq_mhz < MID2_HP_FREQ_MHZ) {
/* IF is graduated from 2350 MHz to 2650 MHz */
max2837_freq_nominal_hz = 2350000000 + ((freq - 3600000000) / 5);
@ -107,8 +106,7 @@ bool set_freq(const uint64_t freq)
real_mixer_freq_hz = mixer_set_frequency(&mixer, mixer_freq_mhz);
max2837_set_frequency(&max2837, freq - real_mixer_freq_hz);
sgpio_cpld_stream_rx_set_q_invert(&sgpio_config, 0);
}else
{
} else {
/* Error freq_mhz too high */
success = false;
}
@ -123,11 +121,13 @@ bool set_freq(const uint64_t freq)
return success;
}
bool set_freq_explicit(const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
bool set_freq_explicit(
const uint64_t if_freq_hz,
const uint64_t lo_freq_hz,
const rf_path_filter_t path)
{
if ((if_freq_hz < ((uint64_t)MIN_BYPASS_FREQ_MHZ * FREQ_ONE_MHZ))
|| (if_freq_hz > ((uint64_t)MAX_BYPASS_FREQ_MHZ * FREQ_ONE_MHZ))) {
if ((if_freq_hz < ((uint64_t) MIN_BYPASS_FREQ_MHZ * FREQ_ONE_MHZ)) ||
(if_freq_hz > ((uint64_t) MAX_BYPASS_FREQ_MHZ * FREQ_ONE_MHZ))) {
return false;
}

View File

@ -29,7 +29,9 @@
#include <stdbool.h>
bool set_freq(const uint64_t freq);
bool set_freq_explicit(const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
bool set_freq_explicit(
const uint64_t if_freq_hz,
const uint64_t lo_freq_hz,
const rf_path_filter_t path);
#endif /*__TUNING_H__*/

View File

@ -26,265 +26,336 @@
/* Pixel data within a font or bitmap byte is "reversed": LSB is left-most pixel. */
static const uint8_t font_fixed_8x16_glyph_data[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x24, 0x24, 0x24, 0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x48, 0x48, 0x48, 0xff, 0x24, 0x24, 0xff, 0x12, 0x12, 0x12, 0x00, 0x00, 0x00,
0x00, 0x00, 0x10, 0x78, 0x14, 0x14, 0x14, 0x18, 0x30, 0x50, 0x50, 0x50, 0x3c, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0x46, 0x29, 0x29, 0x19, 0x16, 0x68, 0x98, 0x94, 0x94, 0x62, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x24, 0x24, 0x14, 0x88, 0x54, 0x72, 0x22, 0x62, 0x9c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x20, 0x10, 0x10, 0x08, 0x08, 0x08, 0x08, 0x10, 0x10, 0x20, 0x40, 0x00,
0x00, 0x00, 0x00, 0x02, 0x04, 0x08, 0x08, 0x10, 0x10, 0x10, 0x10, 0x08, 0x08, 0x04, 0x02, 0x00,
0x00, 0x00, 0x00, 0x08, 0x2a, 0x1c, 0x2a, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x10, 0x10, 0xfe, 0x10, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x20, 0x20, 0x10, 0x10, 0x08, 0x08, 0x04, 0x04, 0x02, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x24, 0x42, 0x42, 0x5a, 0x5a, 0x42, 0x42, 0x24, 0x18, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0c, 0x0a, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x3e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1e, 0x20, 0x20, 0x20, 0x20, 0x10, 0x08, 0x04, 0x02, 0x3e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1e, 0x20, 0x20, 0x10, 0x0c, 0x10, 0x20, 0x20, 0x10, 0x0e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x30, 0x30, 0x28, 0x28, 0x24, 0x24, 0x22, 0x7e, 0x20, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7c, 0x04, 0x04, 0x04, 0x3c, 0x40, 0x40, 0x40, 0x40, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x38, 0x04, 0x02, 0x02, 0x3a, 0x46, 0x42, 0x42, 0x44, 0x38, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7e, 0x40, 0x20, 0x20, 0x10, 0x10, 0x10, 0x08, 0x08, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3c, 0x42, 0x42, 0x24, 0x18, 0x24, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1c, 0x22, 0x42, 0x42, 0x62, 0x5c, 0x40, 0x40, 0x20, 0x1c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x20, 0x18, 0x04, 0x18, 0x20, 0x40, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x08, 0x30, 0x40, 0x30, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x38, 0x44, 0x40, 0x40, 0x30, 0x08, 0x08, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1c, 0x22, 0x41, 0x59, 0x55, 0x55, 0x55, 0x39, 0x01, 0x02, 0x3c, 0x00, 0x00,
0x00, 0x00, 0x00, 0x08, 0x14, 0x14, 0x14, 0x14, 0x22, 0x3e, 0x22, 0x41, 0x41, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3e, 0x42, 0x42, 0x42, 0x3e, 0x42, 0x42, 0x42, 0x42, 0x3e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x38, 0x44, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x44, 0x38, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1e, 0x22, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x22, 0x1e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7e, 0x02, 0x02, 0x02, 0x7e, 0x02, 0x02, 0x02, 0x02, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7e, 0x02, 0x02, 0x02, 0x7e, 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x38, 0x44, 0x02, 0x02, 0x02, 0x72, 0x42, 0x42, 0x44, 0x38, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x42, 0x42, 0x42, 0x42, 0x7e, 0x42, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3e, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x3e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x1e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x82, 0x42, 0x22, 0x12, 0x0a, 0x0e, 0x12, 0x22, 0x42, 0x82, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x42, 0x66, 0x66, 0x5a, 0x5a, 0x42, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x42, 0x46, 0x46, 0x4a, 0x4a, 0x52, 0x52, 0x62, 0x62, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x24, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x24, 0x18, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3e, 0x42, 0x42, 0x3e, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x24, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x24, 0x18, 0x10, 0x60, 0x00,
0x00, 0x00, 0x00, 0x3e, 0x42, 0x42, 0x42, 0x3e, 0x12, 0x22, 0x22, 0x42, 0x82, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3c, 0x42, 0x02, 0x02, 0x0c, 0x30, 0x40, 0x40, 0x42, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7f, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x41, 0x41, 0x22, 0x22, 0x22, 0x14, 0x14, 0x14, 0x14, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x41, 0x41, 0x41, 0x49, 0x49, 0x55, 0x55, 0x55, 0x22, 0x22, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x41, 0x22, 0x22, 0x14, 0x08, 0x08, 0x14, 0x22, 0x22, 0x41, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x41, 0x22, 0x22, 0x14, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7e, 0x40, 0x20, 0x10, 0x10, 0x08, 0x08, 0x04, 0x02, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x38, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x38, 0x00,
0x00, 0x00, 0x00, 0x02, 0x02, 0x04, 0x04, 0x08, 0x08, 0x10, 0x10, 0x20, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0e, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0e, 0x00,
0x00, 0x00, 0x00, 0x10, 0x28, 0x44, 0x44, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff,
0x00, 0x00, 0x00, 0x08, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x42, 0x40, 0x7c, 0x42, 0x62, 0x5c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x1a, 0x26, 0x42, 0x42, 0x42, 0x26, 0x1a, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x02, 0x02, 0x02, 0x04, 0x78, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x40, 0x40, 0x40, 0x58, 0x64, 0x42, 0x42, 0x42, 0x64, 0x58, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x24, 0x42, 0x7e, 0x02, 0x04, 0x78, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x70, 0x08, 0x08, 0x7e, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x22, 0x22, 0x22, 0x1c, 0x02, 0x3e, 0x42, 0x42, 0x3c,
0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x3a, 0x46, 0x42, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x1c, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x1c, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x0e,
0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x22, 0x12, 0x0a, 0x0e, 0x12, 0x22, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0e, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x38, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x37, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3a, 0x46, 0x42, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x42, 0x42, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a, 0x26, 0x42, 0x42, 0x42, 0x26, 0x1a, 0x02, 0x02, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x58, 0x64, 0x42, 0x42, 0x42, 0x64, 0x58, 0x40, 0x40, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x74, 0x0c, 0x04, 0x04, 0x04, 0x04, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x02, 0x02, 0x3c, 0x40, 0x40, 0x3e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x3c, 0x08, 0x08, 0x08, 0x08, 0x08, 0x70, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x42, 0x42, 0x42, 0x42, 0x62, 0x5c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x22, 0x22, 0x36, 0x14, 0x14, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x41, 0x49, 0x55, 0x55, 0x22, 0x22, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x24, 0x18, 0x18, 0x18, 0x24, 0x42, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x22, 0x22, 0x14, 0x14, 0x14, 0x08, 0x08, 0x04, 0x03,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7e, 0x20, 0x10, 0x08, 0x08, 0x04, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x10, 0x08, 0x08, 0x08, 0x08, 0x04, 0x08, 0x08, 0x08, 0x08, 0x08, 0x10, 0x00,
0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00,
0x00, 0x00, 0x00, 0x08, 0x10, 0x10, 0x10, 0x10, 0x20, 0x10, 0x10, 0x10, 0x10, 0x10, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x8e, 0x71, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x24, 0x24, 0x24,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48,
0x48, 0x48, 0xff, 0x24, 0x24, 0xff, 0x12, 0x12, 0x12, 0x00, 0x00, 0x00, 0x00,
0x00, 0x10, 0x78, 0x14, 0x14, 0x14, 0x18, 0x30, 0x50, 0x50, 0x50, 0x3c, 0x10,
0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x29, 0x29, 0x19, 0x16, 0x68, 0x98, 0x94,
0x94, 0x62, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x24, 0x24, 0x14, 0x88,
0x54, 0x72, 0x22, 0x62, 0x9c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08,
0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x40, 0x20, 0x10, 0x10, 0x08, 0x08, 0x08, 0x08, 0x10, 0x10, 0x20, 0x40,
0x00, 0x00, 0x00, 0x00, 0x02, 0x04, 0x08, 0x08, 0x10, 0x10, 0x10, 0x10, 0x08,
0x08, 0x04, 0x02, 0x00, 0x00, 0x00, 0x00, 0x08, 0x2a, 0x1c, 0x2a, 0x08, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
0x10, 0x10, 0xfe, 0x10, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x20, 0x10, 0x10,
0x08, 0x08, 0x04, 0x04, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18,
0x24, 0x42, 0x42, 0x5a, 0x5a, 0x42, 0x42, 0x24, 0x18, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0c, 0x0a, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x3e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x20, 0x20, 0x20, 0x20, 0x10, 0x08, 0x04,
0x02, 0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x20, 0x20, 0x10, 0x0c,
0x10, 0x20, 0x20, 0x10, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x30,
0x28, 0x28, 0x24, 0x24, 0x22, 0x7e, 0x20, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x7c, 0x04, 0x04, 0x04, 0x3c, 0x40, 0x40, 0x40, 0x40, 0x3c, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x38, 0x04, 0x02, 0x02, 0x3a, 0x46, 0x42, 0x42, 0x44,
0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7e, 0x40, 0x20, 0x20, 0x10, 0x10,
0x10, 0x08, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x42, 0x42,
0x24, 0x18, 0x24, 0x42, 0x42, 0x42, 0x3c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x1c, 0x22, 0x42, 0x42, 0x62, 0x5c, 0x40, 0x40, 0x20, 0x1c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x08, 0x08,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x00, 0x00,
0x00, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x20,
0x18, 0x04, 0x18, 0x20, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x7e, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x08, 0x30, 0x40, 0x30, 0x08, 0x04, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x44, 0x40, 0x40, 0x30, 0x08, 0x08, 0x00,
0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0x22, 0x41, 0x59, 0x55,
0x55, 0x55, 0x39, 0x01, 0x02, 0x3c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x14,
0x14, 0x14, 0x14, 0x22, 0x3e, 0x22, 0x41, 0x41, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x3e, 0x42, 0x42, 0x42, 0x3e, 0x42, 0x42, 0x42, 0x42, 0x3e, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x38, 0x44, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x44,
0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x22, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x22, 0x1e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7e, 0x02, 0x02,
0x02, 0x7e, 0x02, 0x02, 0x02, 0x02, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x7e, 0x02, 0x02, 0x02, 0x7e, 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x38, 0x44, 0x02, 0x02, 0x02, 0x72, 0x42, 0x42, 0x44, 0x38,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x42, 0x42, 0x42, 0x7e, 0x42, 0x42,
0x42, 0x42, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3e, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x1e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x82, 0x42, 0x22, 0x12, 0x0a, 0x0e, 0x12, 0x22, 0x42, 0x82, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x66, 0x66, 0x5a, 0x5a,
0x42, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x46,
0x46, 0x4a, 0x4a, 0x52, 0x52, 0x62, 0x62, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x18, 0x24, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x24, 0x18, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x3e, 0x42, 0x42, 0x3e, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x24, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x24, 0x18, 0x10, 0x60, 0x00, 0x00, 0x00, 0x00, 0x3e, 0x42, 0x42,
0x42, 0x3e, 0x12, 0x22, 0x22, 0x42, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x3c, 0x42, 0x02, 0x02, 0x0c, 0x30, 0x40, 0x40, 0x42, 0x3c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7f, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42,
0x42, 0x42, 0x3c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x41, 0x22, 0x22,
0x22, 0x14, 0x14, 0x14, 0x14, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41,
0x41, 0x41, 0x49, 0x49, 0x55, 0x55, 0x55, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x41, 0x22, 0x22, 0x14, 0x08, 0x08, 0x14, 0x22, 0x22, 0x41, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x22, 0x22, 0x14, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7e, 0x40, 0x20, 0x10, 0x10,
0x08, 0x08, 0x04, 0x02, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x38, 0x00, 0x00, 0x00,
0x00, 0x02, 0x02, 0x04, 0x04, 0x08, 0x08, 0x10, 0x10, 0x20, 0x20, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0e, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x10, 0x28, 0x44, 0x44, 0x82, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00,
0x08, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x42, 0x40, 0x7c, 0x42, 0x62, 0x5c,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x1a, 0x26, 0x42, 0x42,
0x42, 0x26, 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78,
0x04, 0x02, 0x02, 0x02, 0x04, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40,
0x40, 0x40, 0x58, 0x64, 0x42, 0x42, 0x42, 0x64, 0x58, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x24, 0x42, 0x7e, 0x02, 0x04, 0x78, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x70, 0x08, 0x08, 0x7e, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x22,
0x22, 0x22, 0x1c, 0x02, 0x3e, 0x42, 0x42, 0x3c, 0x00, 0x00, 0x00, 0x02, 0x02,
0x02, 0x3a, 0x46, 0x42, 0x42, 0x42, 0x42, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x10, 0x00, 0x00, 0x1c, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x1c, 0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x10, 0x10, 0x0e, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x22, 0x12, 0x0a,
0x0e, 0x12, 0x22, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x37, 0x49, 0x49, 0x49, 0x49, 0x49, 0x49, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3a, 0x46, 0x42, 0x42, 0x42, 0x42, 0x42,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3c, 0x42, 0x42, 0x42,
0x42, 0x42, 0x3c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a,
0x26, 0x42, 0x42, 0x42, 0x26, 0x1a, 0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x58, 0x64, 0x42, 0x42, 0x42, 0x64, 0x58, 0x40, 0x40, 0x40, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x74, 0x0c, 0x04, 0x04, 0x04, 0x04, 0x04, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x02, 0x02, 0x3c, 0x40,
0x40, 0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x3c, 0x08,
0x08, 0x08, 0x08, 0x08, 0x70, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x42, 0x42, 0x42, 0x42, 0x42, 0x62, 0x5c, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x41, 0x22, 0x22, 0x36, 0x14, 0x14, 0x08, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x41, 0x41, 0x49, 0x55, 0x55, 0x22,
0x22, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x24, 0x18,
0x18, 0x18, 0x24, 0x42, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x41, 0x22, 0x22, 0x14, 0x14, 0x14, 0x08, 0x08, 0x04, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x7e, 0x20, 0x10, 0x08, 0x08, 0x04, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x10, 0x08, 0x08, 0x08, 0x08, 0x04, 0x08, 0x08, 0x08, 0x08,
0x08, 0x10, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x00, 0x00, 0x08, 0x10, 0x10, 0x10,
0x10, 0x20, 0x10, 0x10, 0x10, 0x10, 0x10, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x8e, 0x71, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
static const ui_font_t font_fixed_8x16 = {
{ 8, 16 },
font_fixed_8x16_glyph_data,
0x20, 95,
(8 * 16 + 7U) >> 3
};
static const ui_font_t font_fixed_8x16 =
{{8, 16}, font_fixed_8x16_glyph_data, 0x20, 95, (8 * 16 + 7U) >> 3};
static const uint8_t font_fixed_24x19_glyph_data[] = {
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
0x00, 0x78, 0x00, 0x00, 0x7c, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x7f, 0x00, 0x80, 0x77, 0x00, 0xc0, 0x73, 0x00, 0xc0, 0x71, 0x00, 0xc0, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00,
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x3c, 0x00, 0xfc, 0x1f, 0xe0, 0xff, 0x1f, 0xf8, 0xff, 0x07, 0xfc, 0x07, 0x00, 0x3c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0xfc, 0xff, 0x3f, 0xfc, 0xff, 0x3f, 0xfc, 0xff, 0x3f,
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x3f, 0x3c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0xfe, 0x3f, 0x00, 0xfe, 0x1f, 0x00, 0xfe, 0x3f, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x38, 0xf8, 0xff, 0x3f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
0x00, 0x80, 0x0f, 0x00, 0xc0, 0x0f, 0x00, 0xe0, 0x0f, 0x00, 0xf8, 0x0f, 0x00, 0x7c, 0x0f, 0x00, 0x1e, 0x0f, 0x00, 0x0f, 0x0f, 0xc0, 0x07, 0x0f, 0xe0, 0x01, 0x0f, 0xf0, 0x00, 0x0f, 0x7c, 0x00, 0x0f, 0x1e, 0x00, 0x0f, 0xfe, 0xff, 0x7f, 0xfe, 0xff, 0x7f, 0xfe, 0xff, 0x7f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f,
0xfc, 0xff, 0x3f, 0xfc, 0xff, 0x3f, 0xfc, 0xff, 0x3f, 0x1c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0xdc, 0xff, 0x07, 0xfc, 0xff, 0x1f, 0xfc, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x00, 0xdc, 0xff, 0x07, 0xfc, 0xff, 0x1f, 0xfc, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
0xfc, 0xff, 0x7f, 0xfc, 0xff, 0x7f, 0xfc, 0xff, 0x7f, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x1e, 0x00, 0x00, 0x0f, 0x00, 0x80, 0x07, 0x00, 0xc0, 0x03, 0x00, 0xe0, 0x01, 0x00, 0xf0, 0x01, 0x00, 0xf0, 0x00, 0x00, 0x78, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x1e, 0x00, 0x00, 0x0f, 0x00, 0x80, 0x0f, 0x00, 0x80, 0x07, 0x00, 0xc0, 0x03, 0x00,
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf0, 0xff, 0x0f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x3f, 0xf8, 0xff, 0x3f, 0xe0, 0xff, 0x3b, 0x00, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c,
0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00,
0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38,
0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8,
0xff, 0x1f, 0xe0, 0xff, 0x07, 0x00, 0x78, 0x00, 0x00, 0x7c, 0x00, 0x00, 0x7e,
0x00, 0x00, 0x7f, 0x00, 0x80, 0x77, 0x00, 0xc0, 0x73, 0x00, 0xc0, 0x71, 0x00,
0xc0, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00,
0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70,
0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0x00, 0x70, 0x00, 0xe0, 0xff, 0x07,
0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c,
0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x3c, 0x00, 0xfc,
0x1f, 0xe0, 0xff, 0x1f, 0xf8, 0xff, 0x07, 0xfc, 0x07, 0x00, 0x3c, 0x00, 0x00,
0x1c, 0x00, 0x00, 0x1c, 0x00, 0x00, 0xfc, 0xff, 0x3f, 0xfc, 0xff, 0x3f, 0xfc,
0xff, 0x3f, 0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x3f, 0x3c, 0x00,
0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38,
0x00, 0xfe, 0x3f, 0x00, 0xfe, 0x1f, 0x00, 0xfe, 0x3f, 0x00, 0x00, 0x38, 0x00,
0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x38, 0xf8, 0xff,
0x3f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07, 0x00, 0x80, 0x0f, 0x00, 0xc0, 0x0f,
0x00, 0xe0, 0x0f, 0x00, 0xf8, 0x0f, 0x00, 0x7c, 0x0f, 0x00, 0x1e, 0x0f, 0x00,
0x0f, 0x0f, 0xc0, 0x07, 0x0f, 0xe0, 0x01, 0x0f, 0xf0, 0x00, 0x0f, 0x7c, 0x00,
0x0f, 0x1e, 0x00, 0x0f, 0xfe, 0xff, 0x7f, 0xfe, 0xff, 0x7f, 0xfe, 0xff, 0x7f,
0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x0f, 0xfc,
0xff, 0x3f, 0xfc, 0xff, 0x3f, 0xfc, 0xff, 0x3f, 0x1c, 0x00, 0x00, 0x1c, 0x00,
0x00, 0x1c, 0x00, 0x00, 0xdc, 0xff, 0x07, 0xfc, 0xff, 0x1f, 0xfc, 0xff, 0x1f,
0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x00, 0x00, 0x38, 0x00, 0x00, 0x38, 0x1c,
0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff,
0x1f, 0xe0, 0xff, 0x07, 0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f,
0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x00, 0xdc,
0xff, 0x07, 0xfc, 0xff, 0x1f, 0xfc, 0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00,
0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c,
0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07, 0xfc, 0xff, 0x7f, 0xfc,
0xff, 0x7f, 0xfc, 0xff, 0x7f, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00,
0x1e, 0x00, 0x00, 0x0f, 0x00, 0x80, 0x07, 0x00, 0xc0, 0x03, 0x00, 0xe0, 0x01,
0x00, 0xf0, 0x01, 0x00, 0xf0, 0x00, 0x00, 0x78, 0x00, 0x00, 0x3c, 0x00, 0x00,
0x1e, 0x00, 0x00, 0x0f, 0x00, 0x80, 0x0f, 0x00, 0x80, 0x07, 0x00, 0xc0, 0x03,
0x00, 0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x3c,
0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8,
0xff, 0x1f, 0xf0, 0xff, 0x0f, 0xf8, 0xff, 0x1f, 0x3c, 0x00, 0x38, 0x1c, 0x00,
0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x1f,
0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07, 0xe0, 0xff, 0x07, 0xf8, 0xff, 0x1f, 0xf8,
0xff, 0x1f, 0x3c, 0x00, 0x3c, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00,
0x38, 0x1c, 0x00, 0x38, 0x3c, 0x00, 0x3c, 0xf8, 0xff, 0x3f, 0xf8, 0xff, 0x3f,
0xe0, 0xff, 0x3b, 0x00, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x1c, 0x00, 0x38, 0x3c,
0x00, 0x3c, 0xf8, 0xff, 0x1f, 0xf8, 0xff, 0x1f, 0xe0, 0xff, 0x07,
};
static const ui_font_t font_fixed_24x19 = {
{ 24, 19 },
font_fixed_24x19_glyph_data,
0x30, 10,
(24 * 19 + 7U) >> 3
};
static const ui_font_t font_fixed_24x19 =
{{24, 19}, font_fixed_24x19_glyph_data, 0x30, 10, (24 * 19 + 7U) >> 3};
static const uint8_t font_fixed_16x14_glyph_data[] = {
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
0x00, 0x03, 0x80, 0x03, 0xc0, 0x03, 0xe0, 0x03, 0x70, 0x03, 0x20, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03,
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x00, 0x60, 0x00, 0x70, 0x80, 0x3f, 0xf8, 0x1f, 0xfc, 0x00, 0x0e, 0x00, 0x06, 0x00, 0x06, 0x00, 0xfe, 0x7f, 0xfe, 0x7f,
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x00, 0x60, 0x00, 0x60, 0xc0, 0x3f, 0xc0, 0x7f, 0x00, 0x60, 0x00, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
0x00, 0x1c, 0x00, 0x1e, 0x00, 0x1f, 0x80, 0x1b, 0xc0, 0x19, 0xe0, 0x18, 0x70, 0x18, 0x38, 0x18, 0x1c, 0x18, 0xfe, 0x7f, 0xfe, 0x7f, 0x00, 0x18, 0x00, 0x18, 0x00, 0x18,
0xfe, 0x7f, 0xfe, 0x7f, 0x06, 0x00, 0x06, 0x00, 0x06, 0x00, 0xf6, 0x1f, 0xfe, 0x3f, 0x0e, 0x70, 0x00, 0x60, 0x00, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x00, 0xf6, 0x1f, 0xfe, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
0xfe, 0x7f, 0xfe, 0x7f, 0x00, 0x70, 0x00, 0x30, 0x00, 0x18, 0x00, 0x1c, 0x00, 0x0c, 0x00, 0x06, 0x00, 0x07, 0x80, 0x03, 0x80, 0x01, 0xc0, 0x00, 0xe0, 0x00, 0x60, 0x00,
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x7f, 0xf8, 0x6f, 0x00, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06,
0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f,
0xf8, 0x1f, 0x00, 0x03, 0x80, 0x03, 0xc0, 0x03, 0xe0, 0x03, 0x70, 0x03, 0x20,
0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03,
0x00, 0x03, 0x00, 0x03, 0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x00,
0x60, 0x00, 0x70, 0x80, 0x3f, 0xf8, 0x1f, 0xfc, 0x00, 0x0e, 0x00, 0x06, 0x00,
0x06, 0x00, 0xfe, 0x7f, 0xfe, 0x7f, 0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06,
0x60, 0x00, 0x60, 0x00, 0x60, 0xc0, 0x3f, 0xc0, 0x7f, 0x00, 0x60, 0x00, 0x60,
0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f, 0x00, 0x1c, 0x00, 0x1e, 0x00,
0x1f, 0x80, 0x1b, 0xc0, 0x19, 0xe0, 0x18, 0x70, 0x18, 0x38, 0x18, 0x1c, 0x18,
0xfe, 0x7f, 0xfe, 0x7f, 0x00, 0x18, 0x00, 0x18, 0x00, 0x18, 0xfe, 0x7f, 0xfe,
0x7f, 0x06, 0x00, 0x06, 0x00, 0x06, 0x00, 0xf6, 0x1f, 0xfe, 0x3f, 0x0e, 0x70,
0x00, 0x60, 0x00, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f, 0xf8,
0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x00, 0xf6, 0x1f, 0xfe, 0x3f,
0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8,
0x1f, 0xfe, 0x7f, 0xfe, 0x7f, 0x00, 0x70, 0x00, 0x30, 0x00, 0x18, 0x00, 0x1c,
0x00, 0x0c, 0x00, 0x06, 0x00, 0x07, 0x80, 0x03, 0x80, 0x01, 0xc0, 0x00, 0xe0,
0x00, 0x60, 0x00, 0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60,
0x0e, 0x70, 0xfc, 0x3f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60, 0x06, 0x60, 0x0e,
0x70, 0xfc, 0x3f, 0xf8, 0x1f, 0xf8, 0x1f, 0xfc, 0x3f, 0x0e, 0x70, 0x06, 0x60,
0x06, 0x60, 0x06, 0x60, 0x0e, 0x70, 0xfc, 0x7f, 0xf8, 0x6f, 0x00, 0x60, 0x06,
0x60, 0x0e, 0x70, 0xfc, 0x3f, 0xf8, 0x1f,
};
static const ui_font_t font_fixed_16x14 = {
{ 16, 14 },
font_fixed_16x14_glyph_data,
0x30, 10,
(16 * 14 + 7U) >> 3
};
static const ui_font_t font_fixed_16x14 =
{{16, 14}, font_fixed_16x14_glyph_data, 0x30, 10, (16 * 14 + 7U) >> 3};
static const uint8_t bitmap_amp_rx_data[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x06, 0x00, 0x60, 0x06, 0x00, 0x60, 0x0c, 0x00, 0x30, 0x0c, 0x00, 0x30, 0x18, 0x00, 0x18, 0x18, 0x00, 0x18, 0x30, 0x00, 0x0c, 0x30, 0x00, 0x0c, 0x60, 0x00, 0x06, 0x60, 0x00, 0x06, 0xc0, 0x00, 0x03, 0xc0, 0x00, 0x03, 0x80, 0x81, 0x01, 0x80, 0x81, 0x01, 0x00, 0xc3, 0x00, 0x00, 0xc3, 0x00, 0x00, 0x66, 0x00, 0x00, 0x66, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00
};
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x06, 0x00, 0x60, 0x06, 0x00, 0x60,
0x0c, 0x00, 0x30, 0x0c, 0x00, 0x30, 0x18, 0x00, 0x18, 0x18, 0x00, 0x18,
0x30, 0x00, 0x0c, 0x30, 0x00, 0x0c, 0x60, 0x00, 0x06, 0x60, 0x00, 0x06,
0xc0, 0x00, 0x03, 0xc0, 0x00, 0x03, 0x80, 0x81, 0x01, 0x80, 0x81, 0x01,
0x00, 0xc3, 0x00, 0x00, 0xc3, 0x00, 0x00, 0x66, 0x00, 0x00, 0x66, 0x00,
0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00};
static const ui_bitmap_t bitmap_amp_rx = {
{ 24, 24 }, bitmap_amp_rx_data
};
static const ui_bitmap_t bitmap_amp_rx = {{24, 24}, bitmap_amp_rx_data};
static const uint8_t bitmap_amp_tx_data[] = {
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x66, 0x00, 0x00, 0x66, 0x00, 0x00, 0xc3, 0x00, 0x00, 0xc3, 0x00, 0x80, 0x81, 0x01, 0x80, 0x81, 0x01, 0xc0, 0x00, 0x03, 0xc0, 0x00, 0x03, 0x60, 0x00, 0x06, 0x60, 0x00, 0x06, 0x30, 0x00, 0x0c, 0x30, 0x00, 0x0c, 0x18, 0x00, 0x18, 0x18, 0x00, 0x18, 0x0c, 0x00, 0x30, 0x0c, 0x00, 0x30, 0x06, 0x00, 0x60, 0x06, 0x00, 0x60, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00,
0x00, 0x66, 0x00, 0x00, 0x66, 0x00, 0x00, 0xc3, 0x00, 0x00, 0xc3, 0x00,
0x80, 0x81, 0x01, 0x80, 0x81, 0x01, 0xc0, 0x00, 0x03, 0xc0, 0x00, 0x03,
0x60, 0x00, 0x06, 0x60, 0x00, 0x06, 0x30, 0x00, 0x0c, 0x30, 0x00, 0x0c,
0x18, 0x00, 0x18, 0x18, 0x00, 0x18, 0x0c, 0x00, 0x30, 0x0c, 0x00, 0x30,
0x06, 0x00, 0x60, 0x06, 0x00, 0x60, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static const ui_bitmap_t bitmap_amp_tx = {
{ 24, 24 }, bitmap_amp_tx_data
};
static const ui_bitmap_t bitmap_amp_tx = {{24, 24}, bitmap_amp_tx_data};
static const uint8_t bitmap_antenna_data[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x06, 0x18, 0x60, 0x06, 0x18, 0x60, 0x0c, 0x18, 0x30, 0x0c, 0x18, 0x30, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x30, 0x18, 0x0c, 0x30, 0x18, 0x0c, 0x60, 0x18, 0x06, 0x60, 0x18, 0x06, 0xc0, 0x18, 0x03, 0xc0, 0x18, 0x03, 0x80, 0x99, 0x01, 0x80, 0x99, 0x01, 0x00, 0xdb, 0x00, 0x00, 0xdb, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00
};
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x06, 0x18, 0x60, 0x06, 0x18, 0x60,
0x0c, 0x18, 0x30, 0x0c, 0x18, 0x30, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x30, 0x18, 0x0c, 0x30, 0x18, 0x0c, 0x60, 0x18, 0x06, 0x60, 0x18, 0x06,
0xc0, 0x18, 0x03, 0xc0, 0x18, 0x03, 0x80, 0x99, 0x01, 0x80, 0x99, 0x01,
0x00, 0xdb, 0x00, 0x00, 0xdb, 0x00, 0x00, 0x7e, 0x00, 0x00, 0x7e, 0x00,
0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00};
static const ui_bitmap_t bitmap_antenna = {
{ 24, 24 }, bitmap_antenna_data
};
static const ui_bitmap_t bitmap_antenna = {{24, 24}, bitmap_antenna_data};
static const uint8_t bitmap_filter_hp_data[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0xf8, 0xc7, 0x03, 0xfc, 0xc7, 0x03, 0x0e, 0xc0, 0x03, 0x06, 0xc0, 0x03, 0x03, 0xc0, 0x03, 0x03, 0xc0, 0x83, 0x01, 0xc0, 0x83, 0x01, 0xc0, 0xc3, 0x00, 0xc0, 0xc3, 0x00, 0xc0, 0x63, 0x00, 0xc0, 0x63, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0,
0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0xf8, 0xc7, 0x03, 0xfc, 0xc7,
0x03, 0x0e, 0xc0, 0x03, 0x06, 0xc0, 0x03, 0x03, 0xc0, 0x03, 0x03, 0xc0,
0x83, 0x01, 0xc0, 0x83, 0x01, 0xc0, 0xc3, 0x00, 0xc0, 0xc3, 0x00, 0xc0,
0x63, 0x00, 0xc0, 0x63, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0,
0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static const ui_bitmap_t bitmap_filter_hp = {
{ 24, 24 }, bitmap_filter_hp_data
};
static const ui_bitmap_t bitmap_filter_hp = {{24, 24}, bitmap_filter_hp_data};
static const uint8_t bitmap_filter_lp_data[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0xe3, 0x1f, 0xc0, 0xe3, 0x3f, 0xc0, 0x03, 0x70, 0xc0, 0x03, 0x60, 0xc0, 0x03, 0xc0, 0xc0, 0x03, 0xc0, 0xc0, 0x03, 0x80, 0xc1, 0x03, 0x80, 0xc1, 0x03, 0x00, 0xc3, 0x03, 0x00, 0xc3, 0x03, 0x00, 0xc6, 0x03, 0x00, 0xc6, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0,
0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0xe3, 0x1f, 0xc0, 0xe3, 0x3f, 0xc0,
0x03, 0x70, 0xc0, 0x03, 0x60, 0xc0, 0x03, 0xc0, 0xc0, 0x03, 0xc0, 0xc0,
0x03, 0x80, 0xc1, 0x03, 0x80, 0xc1, 0x03, 0x00, 0xc3, 0x03, 0x00, 0xc3,
0x03, 0x00, 0xc6, 0x03, 0x00, 0xc6, 0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0,
0x03, 0x00, 0xc0, 0x03, 0x00, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
static const ui_bitmap_t bitmap_filter_lp = {
{ 24, 24 }, bitmap_filter_lp_data
};
static const ui_bitmap_t bitmap_filter_lp = {{24, 24}, bitmap_filter_lp_data};
static const uint8_t bitmap_mixer_data[] = {
0x00, 0x7e, 0x00, 0xc0, 0xff, 0x03, 0xe0, 0x81, 0x07, 0x70, 0x00, 0x0e, 0x38, 0x00, 0x1c, 0x7c, 0x00, 0x3e, 0xee, 0x00, 0x77, 0xc6, 0x81, 0x63, 0x86, 0xc3, 0x61, 0x03, 0xe7, 0xc0, 0x03, 0x7e, 0xc0, 0x03, 0x3c, 0xc0, 0x03, 0x3c, 0xc0, 0x03, 0x7e, 0xc0, 0x03, 0xe7, 0xc0, 0x86, 0xc3, 0x61, 0xc6, 0x81, 0x63, 0xee, 0x00, 0x77, 0x7c, 0x00, 0x3e, 0x38, 0x00, 0x1c, 0x70, 0x00, 0x0e, 0xe0, 0x81, 0x07, 0xc0, 0xff, 0x03, 0x00, 0x7e, 0x00
};
0x00, 0x7e, 0x00, 0xc0, 0xff, 0x03, 0xe0, 0x81, 0x07, 0x70, 0x00, 0x0e,
0x38, 0x00, 0x1c, 0x7c, 0x00, 0x3e, 0xee, 0x00, 0x77, 0xc6, 0x81, 0x63,
0x86, 0xc3, 0x61, 0x03, 0xe7, 0xc0, 0x03, 0x7e, 0xc0, 0x03, 0x3c, 0xc0,
0x03, 0x3c, 0xc0, 0x03, 0x7e, 0xc0, 0x03, 0xe7, 0xc0, 0x86, 0xc3, 0x61,
0xc6, 0x81, 0x63, 0xee, 0x00, 0x77, 0x7c, 0x00, 0x3e, 0x38, 0x00, 0x1c,
0x70, 0x00, 0x0e, 0xe0, 0x81, 0x07, 0xc0, 0xff, 0x03, 0x00, 0x7e, 0x00};
static const ui_bitmap_t bitmap_mixer = {
{ 24, 24 }, bitmap_mixer_data
};
static const ui_bitmap_t bitmap_mixer = {{24, 24}, bitmap_mixer_data};
static const uint8_t bitmap_oscillator_data[] = {
0x00, 0x7e, 0x00, 0xc0, 0xff, 0x03, 0xe0, 0x81, 0x07, 0x70, 0x00, 0x0e, 0x38, 0x00, 0x1c, 0x1c, 0x00, 0x38, 0x0e, 0x03, 0x70, 0x86, 0x07, 0x60, 0xc6, 0x0f, 0x60, 0xc3, 0x0c, 0xc0, 0xe3, 0x1c, 0xc0, 0x63, 0x18, 0xc6, 0x63, 0x18, 0xc6, 0x03, 0x38, 0xc7, 0x03, 0x30, 0xc3, 0x06, 0xf0, 0x63, 0x06, 0xe0, 0x61, 0x0e, 0xc0, 0x70, 0x1c, 0x00, 0x38, 0x38, 0x00, 0x1c, 0x70, 0x00, 0x0e, 0xe0, 0x81, 0x07, 0xc0, 0xff, 0x03, 0x00, 0x7e, 0x00
};
0x00, 0x7e, 0x00, 0xc0, 0xff, 0x03, 0xe0, 0x81, 0x07, 0x70, 0x00, 0x0e,
0x38, 0x00, 0x1c, 0x1c, 0x00, 0x38, 0x0e, 0x03, 0x70, 0x86, 0x07, 0x60,
0xc6, 0x0f, 0x60, 0xc3, 0x0c, 0xc0, 0xe3, 0x1c, 0xc0, 0x63, 0x18, 0xc6,
0x63, 0x18, 0xc6, 0x03, 0x38, 0xc7, 0x03, 0x30, 0xc3, 0x06, 0xf0, 0x63,
0x06, 0xe0, 0x61, 0x0e, 0xc0, 0x70, 0x1c, 0x00, 0x38, 0x38, 0x00, 0x1c,
0x70, 0x00, 0x0e, 0xe0, 0x81, 0x07, 0xc0, 0xff, 0x03, 0x00, 0x7e, 0x00};
static const ui_bitmap_t bitmap_oscillator = {
{ 24, 24 }, bitmap_oscillator_data
};
static const ui_bitmap_t bitmap_oscillator = {{24, 24}, bitmap_oscillator_data};
static const uint8_t bitmap_wire_8_data[] = {
0xff, 0xff
};
static const uint8_t bitmap_wire_8_data[] = {0xff, 0xff};
static const ui_bitmap_t bitmap_wire_8 = {
{ 2, 8 }, bitmap_wire_8_data
};
static const ui_bitmap_t bitmap_wire_8 = {{2, 8}, bitmap_wire_8_data};
static const uint8_t bitmap_wire_24_data[] = {
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00
};
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00,
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00,
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00,
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00,
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00,
0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00, 0x00, 0x18, 0x00};
static const ui_bitmap_t bitmap_wire_24 = {
{ 24, 24 }, bitmap_wire_24_data
};
static const ui_bitmap_t bitmap_wire_24 = {{24, 24}, bitmap_wire_24_data};
static const uint8_t bitmap_blank_24_data[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
static const ui_bitmap_t bitmap_blank_24 = {
{ 24, 24 }, bitmap_blank_24_data
};
static const ui_bitmap_t bitmap_blank_24 = {{24, 24}, bitmap_blank_24_data};
static const uint8_t bitmap_waves_rx_data[] = {
0xc0, 0x00, 0x60, 0x00, 0x70, 0x06, 0x30, 0x07, 0x38, 0x03, 0x98, 0x33, 0x98, 0x39, 0x98, 0x19, 0xcc, 0x18, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x18, 0x98, 0x19, 0x98, 0x39, 0x98, 0x33, 0x38, 0x03, 0x30, 0x07, 0x70, 0x06, 0x60, 0x00, 0xc0, 0x00
};
0xc0, 0x00, 0x60, 0x00, 0x70, 0x06, 0x30, 0x07, 0x38, 0x03, 0x98, 0x33,
0x98, 0x39, 0x98, 0x19, 0xcc, 0x18, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x0c,
0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x0c, 0xcc, 0x18, 0x98, 0x19, 0x98, 0x39,
0x98, 0x33, 0x38, 0x03, 0x30, 0x07, 0x70, 0x06, 0x60, 0x00, 0xc0, 0x00};
static const ui_bitmap_t bitmap_waves_rx = {
{ 16, 24 }, bitmap_waves_rx_data
};
static const ui_bitmap_t bitmap_waves_rx = {{16, 24}, bitmap_waves_rx_data};
static const uint8_t bitmap_waves_tx_data[] = {
0x00, 0x03, 0x00, 0x06, 0x60, 0x0e, 0xe0, 0x0c, 0xc0, 0x1c, 0xcc, 0x19, 0x9c, 0x19, 0x98, 0x19, 0x18, 0x33, 0x30, 0x33, 0x30, 0x33, 0x30, 0x33, 0x30, 0x33, 0x30, 0x33, 0x30, 0x33, 0x18, 0x33, 0x98, 0x19, 0x9c, 0x19, 0xcc, 0x19, 0xc0, 0x1c, 0xe0, 0x0c, 0x60, 0x0e, 0x00, 0x06, 0x00, 0x03
};
0x00, 0x03, 0x00, 0x06, 0x60, 0x0e, 0xe0, 0x0c, 0xc0, 0x1c, 0xcc, 0x19,
0x9c, 0x19, 0x98, 0x19, 0x18, 0x33, 0x30, 0x33, 0x30, 0x33, 0x30, 0x33,
0x30, 0x33, 0x30, 0x33, 0x30, 0x33, 0x18, 0x33, 0x98, 0x19, 0x9c, 0x19,
0xcc, 0x19, 0xc0, 0x1c, 0xe0, 0x0c, 0x60, 0x0e, 0x00, 0x06, 0x00, 0x03};
static const ui_bitmap_t bitmap_waves_tx = {
{ 16, 24 }, bitmap_waves_tx_data
};
static const ui_bitmap_t bitmap_waves_tx = {{16, 24}, bitmap_waves_tx_data};
__attribute__((unused)) static ui_color_t portapack_color_rgb(
const uint_fast8_t r,
const uint_fast8_t g,
const uint_fast8_t b
) {
const uint_fast8_t b)
{
const ui_color_t result = {
.v = ((r & 0xf8) << 8) | ((g & 0xfc) << 3) | ((b & 0xf8) >> 3)
};
.v = ((r & 0xf8) << 8) | ((g & 0xfc) << 3) | ((b & 0xf8) >> 3)};
return result;
}
static const ui_color_t color_background = {0x001f};
static const ui_color_t color_foreground = {0xffff};
static ui_point_t portapack_lcd_draw_int(const ui_point_t point, uint64_t value, size_t field_width) {
static ui_point_t portapack_lcd_draw_int(
const ui_point_t point,
uint64_t value,
size_t field_width)
{
const ui_point_t point_done = {
.x = point.x + font_fixed_8x16.glyph_size.width * field_width,
.y = point.y
};
.y = point.y};
ui_point_t point_next = point_done;
for (size_t i = 0; i < field_width; i++) {
@ -293,13 +364,18 @@ static ui_point_t portapack_lcd_draw_int(const ui_point_t point, uint64_t value,
const ui_bitmap_t glyph = portapack_font_glyph(&font_fixed_8x16, c);
point_next.x -= glyph.size.width;
portapack_draw_bitmap(point_next, glyph, color_foreground, color_background);
portapack_draw_bitmap(
point_next,
glyph,
color_foreground,
color_background);
}
return point_done;
}
static ui_point_t portapack_lcd_draw_string(ui_point_t point, const char* s) {
static ui_point_t portapack_lcd_draw_string(ui_point_t point, const char* s)
{
while (*s) {
const char c = *(s++);
const ui_bitmap_t glyph = portapack_font_glyph(&font_fixed_8x16, c);
@ -349,23 +425,33 @@ typedef enum {
RADIO_DRAW_LIST_ITEM_WAVES = 17,
} radio_draw_list_item_t;
static ui_point_t portapack_ui_label_point(const radio_draw_list_item_t item) {
static ui_point_t portapack_ui_label_point(const radio_draw_list_item_t item)
{
const uint8_t VALUES_X = 72;
ui_point_t point = {VALUES_X, radio_draw_list[item].point.y + 4};
return point;
}
static ui_point_t portapack_ui_draw_string(const radio_draw_list_item_t item, const char* s) {
static ui_point_t portapack_ui_draw_string(
const radio_draw_list_item_t item,
const char* s)
{
return portapack_lcd_draw_string(portapack_ui_label_point(item), s);
}
static ui_point_t portapack_ui_draw_db(const radio_draw_list_item_t item, const uint32_t db) {
static ui_point_t portapack_ui_draw_db(
const radio_draw_list_item_t item,
const uint32_t db)
{
ui_point_t point = portapack_ui_label_point(item);
point = portapack_lcd_draw_int(point, db, 2);
return portapack_lcd_draw_string(point, " dB");
}
static ui_point_t portapack_ui_draw_bw_mhz(const radio_draw_list_item_t item, const uint64_t hz) {
static ui_point_t portapack_ui_draw_bw_mhz(
const radio_draw_list_item_t item,
const uint64_t hz)
{
const uint32_t lsd = 1000000 / 100;
const uint32_t round_offset = lsd / 2;
@ -380,11 +466,19 @@ static ui_point_t portapack_ui_draw_bw_mhz(const radio_draw_list_item_t item, co
return portapack_lcd_draw_string(point, " MHz");
}
static void portapack_draw_radio_path_item(const radio_draw_list_item_t item) {
portapack_draw_bitmap(radio_draw_list[item].point, *radio_draw_list[item].bitmap, color_foreground, color_background);
static void portapack_draw_radio_path_item(const radio_draw_list_item_t item)
{
portapack_draw_bitmap(
radio_draw_list[item].point,
*radio_draw_list[item].bitmap,
color_foreground,
color_background);
}
static void portapack_radio_path_item_update(const radio_draw_list_item_t item, const ui_bitmap_t* const bitmap) {
static void portapack_radio_path_item_update(
const radio_draw_list_item_t item,
const ui_bitmap_t* const bitmap)
{
if (bitmap != radio_draw_list[item].bitmap) {
radio_draw_list[item].bitmap = bitmap;
portapack_draw_radio_path_item(item);
@ -394,24 +488,28 @@ static void portapack_radio_path_item_update(const radio_draw_list_item_t item,
static rf_path_direction_t portapack_direction = RF_PATH_DIRECTION_OFF;
static bool portapack_lna_on = false;
static void portapack_radio_path_redraw() {
static void portapack_radio_path_redraw()
{
for (size_t i = 0; i < ARRAY_SIZEOF(radio_draw_list); i++) {
portapack_draw_radio_path_item(i);
}
}
static void portapack_ui_init(void) {
static void portapack_ui_init(void)
{
portapack_clear_display(color_background);
portapack_backlight(true);
portapack_radio_path_redraw();
}
static void portapack_ui_deinit(void) {
static void portapack_ui_deinit(void)
{
portapack_clear_display(color_background);
portapack_backlight(false);
}
static void portapack_ui_set_frequency(uint64_t frequency) {
static void portapack_ui_set_frequency(uint64_t frequency)
{
static char last[10] = " ";
ui_point_t point = {240 - 20, 16};
@ -427,7 +525,8 @@ static void portapack_ui_set_frequency(uint64_t frequency) {
for (int i = 0; i < 10; i++) {
const char c = s[i];
const ui_font_t* const font = (i > 5) ? &font_fixed_24x19 : &font_fixed_16x14;
const ui_font_t* const font =
(i > 5) ? &font_fixed_24x19 : &font_fixed_16x14;
point.x -= font->glyph_size.width;
if ((i == 3) || (i == 6) || (i == 9)) {
point.x -= 4;
@ -441,14 +540,19 @@ static void portapack_ui_set_frequency(uint64_t frequency) {
const ui_rect_t rect = {point, glyph.size};
portapack_fill_rectangle(rect, color_background);
} else {
portapack_draw_bitmap(point, glyph, color_foreground, color_background);
portapack_draw_bitmap(
point,
glyph,
color_foreground,
color_background);
}
last[i] = c;
}
}
}
static void portapack_ui_set_sample_rate(uint32_t sample_rate) {
static void portapack_ui_set_sample_rate(uint32_t sample_rate)
{
#if 0
ui_point_t point = { VALUES_X, 320 - 1 * 16 };
portapack_lcd_draw_int(point, sample_rate, 8);
@ -457,54 +561,81 @@ static void portapack_ui_set_sample_rate(uint32_t sample_rate) {
#endif
}
static void portapack_ui_set_direction(const rf_path_direction_t direction) {
static void portapack_ui_set_direction(const rf_path_direction_t direction)
{
switch (direction) {
case RF_PATH_DIRECTION_TX:
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_WAVES, &bitmap_waves_tx);
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_RF_AMP, portapack_lna_on ? &bitmap_amp_tx : &bitmap_wire_24);
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_BB_LNA_AMP, &bitmap_amp_tx);
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_BB_VGA_AMP, &bitmap_wire_24);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_WAVES,
&bitmap_waves_tx);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_RF_AMP,
portapack_lna_on ? &bitmap_amp_tx : &bitmap_wire_24);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_BB_LNA_AMP,
&bitmap_amp_tx);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_BB_VGA_AMP,
&bitmap_wire_24);
portapack_ui_draw_string(RADIO_DRAW_LIST_ITEM_BB_VGA_AMP, " ");
break;
case RF_PATH_DIRECTION_RX:
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_WAVES, &bitmap_waves_rx);
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_RF_AMP, portapack_lna_on ? &bitmap_amp_rx : &bitmap_wire_24);
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_BB_LNA_AMP, &bitmap_amp_rx);
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_BB_VGA_AMP, &bitmap_amp_rx);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_WAVES,
&bitmap_waves_rx);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_RF_AMP,
portapack_lna_on ? &bitmap_amp_rx : &bitmap_wire_24);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_BB_LNA_AMP,
&bitmap_amp_rx);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_BB_VGA_AMP,
&bitmap_amp_rx);
break;
case RF_PATH_DIRECTION_OFF:
default:
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_WAVES, &bitmap_blank_24);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_WAVES,
&bitmap_blank_24);
break;
}
portapack_direction = direction;
}
static void portapack_ui_set_filter_bw(uint32_t bandwidth) {
static void portapack_ui_set_filter_bw(uint32_t bandwidth)
{
portapack_ui_draw_bw_mhz(RADIO_DRAW_LIST_ITEM_BB_FILTER, bandwidth);
}
static void portapack_ui_set_lna_power(bool lna_on) {
static void portapack_ui_set_lna_power(bool lna_on)
{
portapack_lna_on = lna_on;
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_RF_AMP, lna_on
? ((portapack_direction == RF_PATH_DIRECTION_TX) ? &bitmap_amp_tx : &bitmap_amp_rx)
: &bitmap_wire_24);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_RF_AMP,
lna_on ?
((portapack_direction == RF_PATH_DIRECTION_TX) ? &bitmap_amp_tx :
&bitmap_amp_rx) :
&bitmap_wire_24);
const char* const label = lna_on ? "14 dB" : " ";
portapack_ui_draw_string(RADIO_DRAW_LIST_ITEM_RF_AMP, label);
}
static void portapack_ui_set_bb_lna_gain(const uint32_t gain_db) {
static void portapack_ui_set_bb_lna_gain(const uint32_t gain_db)
{
portapack_ui_draw_db(RADIO_DRAW_LIST_ITEM_BB_LNA_AMP, gain_db);
}
static void portapack_ui_set_bb_vga_gain(const uint32_t gain_db) {
static void portapack_ui_set_bb_vga_gain(const uint32_t gain_db)
{
portapack_ui_draw_db(RADIO_DRAW_LIST_ITEM_BB_VGA_AMP, gain_db);
}
static void portapack_ui_set_bb_tx_vga_gain(const uint32_t gain_db) {
static void portapack_ui_set_bb_tx_vga_gain(const uint32_t gain_db)
{
/* TODO: This function (and code throughout the HackRF project) is mis-labeled?
* According to the MAX2837 datasheet diagram, there is no baseband gain in the TX path.
* This gets called when the TX IF gain is changed.
@ -512,53 +643,76 @@ static void portapack_ui_set_bb_tx_vga_gain(const uint32_t gain_db) {
portapack_ui_draw_db(RADIO_DRAW_LIST_ITEM_BB_LNA_AMP, gain_db);
}
static void portapack_ui_set_first_if_frequency(const uint64_t frequency) {
static void portapack_ui_set_first_if_frequency(const uint64_t frequency)
{
(void) frequency;
}
static void portapack_ui_set_filter(const rf_path_filter_t filter) {
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_RF_MIXER, (filter == RF_PATH_FILTER_BYPASS) ? &bitmap_wire_24 : &bitmap_mixer);
static void portapack_ui_set_filter(const rf_path_filter_t filter)
{
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_RF_MIXER,
(filter == RF_PATH_FILTER_BYPASS) ? &bitmap_wire_24 : &bitmap_mixer);
switch (filter) {
default:
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_IMAGE_FILTER, &bitmap_wire_24);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_IMAGE_FILTER,
&bitmap_wire_24);
break;
case RF_PATH_FILTER_LOW_PASS:
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_IMAGE_FILTER, &bitmap_filter_lp);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_IMAGE_FILTER,
&bitmap_filter_lp);
break;
case RF_PATH_FILTER_HIGH_PASS:
portapack_radio_path_item_update(RADIO_DRAW_LIST_ITEM_IMAGE_FILTER, &bitmap_filter_hp);
portapack_radio_path_item_update(
RADIO_DRAW_LIST_ITEM_IMAGE_FILTER,
&bitmap_filter_hp);
break;
}
}
static void portapack_ui_set_antenna_bias(bool antenna_bias) {
static void portapack_ui_set_antenna_bias(bool antenna_bias)
{
(void) antenna_bias;
}
static void portapack_ui_set_clock_source(clock_source_t source) {
static void portapack_ui_set_clock_source(clock_source_t source)
{
ui_point_t label_point = radio_draw_list[RADIO_DRAW_LIST_ITEM_CLOCK].point;
label_point.x -= 0;
label_point.y -= 16;
const char* s = "HRF";
switch (source) {
case CLOCK_SOURCE_EXTERNAL: { s = "EXT"; break; }
case CLOCK_SOURCE_PORTAPACK: { s = "PPK"; break; }
case CLOCK_SOURCE_EXTERNAL: {
s = "EXT";
break;
}
case CLOCK_SOURCE_PORTAPACK: {
s = "PPK";
break;
}
default:
case CLOCK_SOURCE_HACKRF: { s = "HRF"; break; }
case CLOCK_SOURCE_HACKRF: {
s = "HRF";
break;
}
}
portapack_lcd_draw_string(label_point, s);
}
static void portapack_ui_set_transceiver_mode(transceiver_mode_t mode) {
static void portapack_ui_set_transceiver_mode(transceiver_mode_t mode)
{
(void) mode;
}
static bool portapack_ui_operacake_gpio_compatible(void) {
static bool portapack_ui_operacake_gpio_compatible(void)
{
return false;
}
@ -581,7 +735,8 @@ const hackrf_ui_t portapack_hackrf_ui = {
&portapack_ui_operacake_gpio_compatible,
};
const hackrf_ui_t* portapack_hackrf_ui_init() {
const hackrf_ui_t* portapack_hackrf_ui_init()
{
if (portapack()) {
return &portapack_hackrf_ui;
} else {

View File

@ -277,8 +277,7 @@ static void rad1o_ui_set_first_if_frequency(const uint64_t frequency
// Not implemented
}
static void rad1o_ui_set_filter(const rf_path_filter_t filter
__attribute__((unused)))
static void rad1o_ui_set_filter(const rf_path_filter_t filter __attribute__((unused)))
{
// Not implemented
}
@ -288,8 +287,7 @@ static void rad1o_ui_set_antenna_bias(bool antenna_bias __attribute__((unused)))
// Not implemented
}
static void rad1o_ui_set_clock_source(clock_source_t source
__attribute__((unused)))
static void rad1o_ui_set_clock_source(clock_source_t source __attribute__((unused)))
{
// Not implemented
}

View File

@ -36,47 +36,51 @@ usb_device_t* usb_device_usb0 = 0;
usb_queue_head_t usb_qh[12] ATTR_ALIGNED(2048);
#define USB_QH_INDEX(endpoint_address) (((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
#define USB_QH_INDEX(endpoint_address) \
(((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
usb_queue_head_t* usb_queue_head(
const uint_fast8_t endpoint_address
) {
usb_queue_head_t* usb_queue_head(const uint_fast8_t endpoint_address)
{
return &usb_qh[USB_QH_INDEX(endpoint_address)];
}
usb_endpoint_t* usb_endpoint_from_address(
const uint_fast8_t endpoint_address
) {
usb_endpoint_t* usb_endpoint_from_address(const uint_fast8_t endpoint_address)
{
return (usb_endpoint_t*) usb_queue_head(endpoint_address)->_reserved_0;
}
static uint_fast8_t usb_endpoint_address(
const usb_transfer_direction_t direction,
const uint_fast8_t number
) {
const uint_fast8_t number)
{
return ((direction == USB_TRANSFER_DIRECTION_IN) ? 0x80 : 0x00) + number;
}
static bool usb_endpoint_is_in(const uint_fast8_t endpoint_address) {
static bool usb_endpoint_is_in(const uint_fast8_t endpoint_address)
{
return (endpoint_address & 0x80) ? true : false;
}
static uint_fast8_t usb_endpoint_number(const uint_fast8_t endpoint_address) {
static uint_fast8_t usb_endpoint_number(const uint_fast8_t endpoint_address)
{
return (endpoint_address & 0xF);
}
void usb_peripheral_reset() {
void usb_peripheral_reset()
{
RESET_CTRL0 = RESET_CTRL0_USB0_RST;
RESET_CTRL0 = 0;
while ((RESET_ACTIVE_STATUS0 & RESET_CTRL0_USB0_RST) == 0) {}
}
void usb_phy_enable() {
void usb_phy_enable()
{
CREG_CREG0 &= ~CREG_CREG0_USB0PHY;
}
static void usb_clear_pending_interrupts(const uint32_t mask) {
static void usb_clear_pending_interrupts(const uint32_t mask)
{
USB0_ENDPTNAK = mask;
USB0_ENDPTNAKEN = mask;
USB0_USBSTS_D = mask;
@ -84,80 +88,85 @@ static void usb_clear_pending_interrupts(const uint32_t mask) {
USB0_ENDPTCOMPLETE = USB0_ENDPTCOMPLETE & mask;
}
static void usb_clear_all_pending_interrupts() {
static void usb_clear_all_pending_interrupts()
{
usb_clear_pending_interrupts(0xFFFFFFFF);
}
static void usb_wait_for_endpoint_priming_to_finish(const uint32_t mask) {
static void usb_wait_for_endpoint_priming_to_finish(const uint32_t mask)
{
// Wait until controller has parsed new transfer descriptors and prepared
// receive buffers.
while (USB0_ENDPTPRIME & mask) {}
}
static void usb_flush_endpoints(const uint32_t mask) {
static void usb_flush_endpoints(const uint32_t mask)
{
// Clear any primed buffers. If a packet is in progress, that transfer
// will continue until completion.
USB0_ENDPTFLUSH = mask;
}
static void usb_wait_for_endpoint_flushing_to_finish(const uint32_t mask) {
static void usb_wait_for_endpoint_flushing_to_finish(const uint32_t mask)
{
// Wait until controller has flushed all endpoints / cleared any primed
// buffers.
while (USB0_ENDPTFLUSH & mask) {}
}
static void usb_flush_primed_endpoints(const uint32_t mask) {
static void usb_flush_primed_endpoints(const uint32_t mask)
{
usb_wait_for_endpoint_priming_to_finish(mask);
usb_flush_endpoints(mask);
usb_wait_for_endpoint_flushing_to_finish(mask);
}
static void usb_flush_all_primed_endpoints() {
static void usb_flush_all_primed_endpoints()
{
usb_flush_primed_endpoints(0xFFFFFFFF);
}
static void usb_endpoint_set_type(
const usb_endpoint_t* const endpoint,
const usb_transfer_type_t transfer_type
) {
const usb_transfer_type_t transfer_type)
{
// NOTE: UM10503 section 23.6.24 "Endpoint 1 to 5 control registers" says
// that the disabled side of an endpoint must be set to a non-control type
// (e.g. bulk, interrupt, or iso).
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
USB0_ENDPTCTRL(endpoint_number)
= ( USB0_ENDPTCTRL(endpoint_number)
& ~(USB0_ENDPTCTRL_TXT1_0_MASK | USB0_ENDPTCTRL_RXT_MASK)
)
| ( USB0_ENDPTCTRL_TXT1_0(transfer_type)
| USB0_ENDPTCTRL_RXT(transfer_type)
);
USB0_ENDPTCTRL(endpoint_number) =
(USB0_ENDPTCTRL(endpoint_number) &
~(USB0_ENDPTCTRL_TXT1_0_MASK | USB0_ENDPTCTRL_RXT_MASK)) |
(USB0_ENDPTCTRL_TXT1_0(transfer_type) |
USB0_ENDPTCTRL_RXT(transfer_type));
}
static void usb_endpoint_enable(
const usb_endpoint_t* const endpoint
) {
static void usb_endpoint_enable(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
USB0_ENDPTCTRL(endpoint_number) |= (USB0_ENDPTCTRL_TXE | USB0_ENDPTCTRL_TXR);
USB0_ENDPTCTRL(endpoint_number) |=
(USB0_ENDPTCTRL_TXE | USB0_ENDPTCTRL_TXR);
} else {
USB0_ENDPTCTRL(endpoint_number) |= (USB0_ENDPTCTRL_RXE | USB0_ENDPTCTRL_RXR);
USB0_ENDPTCTRL(endpoint_number) |=
(USB0_ENDPTCTRL_RXE | USB0_ENDPTCTRL_RXR);
}
}
static void usb_endpoint_clear_pending_interrupts(
const usb_endpoint_t* const endpoint
) {
static void usb_endpoint_clear_pending_interrupts(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
usb_clear_pending_interrupts(USB0_ENDPTCOMPLETE_ETCE(1 << endpoint_number));
usb_clear_pending_interrupts(
USB0_ENDPTCOMPLETE_ETCE(1 << endpoint_number));
} else {
usb_clear_pending_interrupts(USB0_ENDPTCOMPLETE_ERCE(1 << endpoint_number));
usb_clear_pending_interrupts(
USB0_ENDPTCOMPLETE_ERCE(1 << endpoint_number));
}
}
void usb_endpoint_disable(
const usb_endpoint_t* const endpoint
) {
void usb_endpoint_disable(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
USB0_ENDPTCTRL(endpoint_number) &= ~(USB0_ENDPTCTRL_TXE);
@ -171,16 +180,13 @@ void usb_endpoint_disable(
void usb_endpoint_prime(
const usb_endpoint_t* const endpoint,
usb_transfer_descriptor_t* const first_td
) {
usb_transfer_descriptor_t* const first_td)
{
usb_queue_head_t* const qh = usb_queue_head(endpoint->address);
qh->next_dtd_pointer = first_td;
qh->total_bytes
&= ~( USB_TD_DTD_TOKEN_STATUS_ACTIVE
| USB_TD_DTD_TOKEN_STATUS_HALTED
)
;
qh->total_bytes &=
~(USB_TD_DTD_TOKEN_STATUS_ACTIVE | USB_TD_DTD_TOKEN_STATUS_HALTED);
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
@ -190,9 +196,8 @@ void usb_endpoint_prime(
}
}
static bool usb_endpoint_is_priming(
const usb_endpoint_t* const endpoint
) {
static bool usb_endpoint_is_priming(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
return USB0_ENDPTPRIME & USB0_ENDPTPRIME_PETB(1 << endpoint_number);
@ -205,8 +210,8 @@ static bool usb_endpoint_is_priming(
// the given endpoint, waiting until the endpoint has finished.
void usb_endpoint_schedule_wait(
const usb_endpoint_t* const endpoint,
usb_transfer_descriptor_t* const td
) {
usb_transfer_descriptor_t* const td)
{
// Ensure that endpoint is ready to be primed.
// It may have been flushed due to an aborted transaction.
// TODO: This should be preceded by a flush?
@ -225,8 +230,8 @@ void usb_endpoint_schedule_wait(
void usb_endpoint_schedule_append(
const usb_endpoint_t* const endpoint,
usb_transfer_descriptor_t* const tail_td,
usb_transfer_descriptor_t* const new_td
) {
usb_transfer_descriptor_t* const new_td)
{
bool done;
tail_td->next_dtd_pointer = new_td;
@ -246,9 +251,8 @@ void usb_endpoint_schedule_append(
}
}
void usb_endpoint_flush(
const usb_endpoint_t* const endpoint
) {
void usb_endpoint_flush(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
usb_queue_flush_endpoint(endpoint);
if (usb_endpoint_is_in(endpoint->address)) {
@ -257,6 +261,7 @@ void usb_endpoint_flush(
usb_flush_primed_endpoints(USB0_ENDPTFLUSH_FERB(1 << endpoint_number));
}
}
/*
static bool usb_endpoint_is_flushing(
const usb_endpoint_t* const endpoint
@ -269,9 +274,8 @@ static bool usb_endpoint_is_flushing(
}
}
*/
bool usb_endpoint_is_ready(
const usb_endpoint_t* const endpoint
) {
bool usb_endpoint_is_ready(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
return USB0_ENDPTSTAT & USB0_ENDPTSTAT_ETBR(1 << endpoint_number);
@ -280,9 +284,8 @@ bool usb_endpoint_is_ready(
}
}
bool usb_endpoint_is_complete(
const usb_endpoint_t* const endpoint
) {
bool usb_endpoint_is_complete(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
return USB0_ENDPTCOMPLETE & USB0_ENDPTCOMPLETE_ETCE(1 << endpoint_number);
@ -291,9 +294,8 @@ bool usb_endpoint_is_complete(
}
}
void usb_endpoint_stall(
const usb_endpoint_t* const endpoint
) {
void usb_endpoint_stall(const usb_endpoint_t* const endpoint)
{
// Endpoint is to be stalled as a pair -- both OUT and IN.
// See UM10503 section 23.10.5.2 "Stalling"
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
@ -302,9 +304,8 @@ void usb_endpoint_stall(
// TODO: Also need to reset data toggle in both directions?
}
void usb_endpoint_reset_data_toggle(
const usb_endpoint_t* const endpoint
) {
void usb_endpoint_reset_data_toggle(const usb_endpoint_t* const endpoint)
{
const uint_fast8_t endpoint_number = usb_endpoint_number(endpoint->address);
if (usb_endpoint_is_in(endpoint->address)) {
USB0_ENDPTCTRL(endpoint_number) |= USB0_ENDPTCTRL_TXR;
@ -313,19 +314,23 @@ void usb_endpoint_reset_data_toggle(
}
}
static void usb_controller_run() {
static void usb_controller_run()
{
USB0_USBCMD_D |= USB0_USBCMD_D_RS;
}
static void usb_controller_stop() {
static void usb_controller_stop()
{
USB0_USBCMD_D &= ~USB0_USBCMD_D_RS;
}
static uint_fast8_t usb_controller_is_resetting() {
static uint_fast8_t usb_controller_is_resetting()
{
return (USB0_USBCMD_D & USB0_USBCMD_D_RST) != 0;
}
static void usb_controller_set_device_mode() {
static void usb_controller_set_device_mode()
{
// Set USB0 peripheral mode
USB0_USBMODE_D = USB0_USBMODE_D_CM1_0(2);
@ -334,9 +339,8 @@ static void usb_controller_set_device_mode() {
USB0_OTGSC = USB0_OTGSC_OT;
}
usb_speed_t usb_speed(
const usb_device_t* const device
) {
usb_speed_t usb_speed(const usb_device_t* const device)
{
if (device == usb_device_usb0) {
switch (USB0_PORTSC1_D & USB0_PORTSC1_D_PSPD_MASK) {
case USB0_PORTSC1_D_PSPD(0):
@ -356,11 +360,13 @@ usb_speed_t usb_speed(
}
}
static void usb_clear_status(const uint32_t status) {
static void usb_clear_status(const uint32_t status)
{
USB0_USBSTS_D = status;
}
static uint32_t usb_get_status() {
static uint32_t usb_get_status()
{
// Mask status flags with enabled flag interrupts.
const uint32_t status = USB0_USBSTS_D & USB0_USBINTR_D;
@ -372,23 +378,28 @@ static uint32_t usb_get_status() {
return status;
}
static void usb_clear_endpoint_setup_status(const uint32_t endpoint_setup_status) {
static void usb_clear_endpoint_setup_status(const uint32_t endpoint_setup_status)
{
USB0_ENDPTSETUPSTAT = endpoint_setup_status;
}
static uint32_t usb_get_endpoint_setup_status() {
static uint32_t usb_get_endpoint_setup_status()
{
return USB0_ENDPTSETUPSTAT;
}
static void usb_clear_endpoint_complete(const uint32_t endpoint_complete) {
static void usb_clear_endpoint_complete(const uint32_t endpoint_complete)
{
USB0_ENDPTCOMPLETE = endpoint_complete;
}
static uint32_t usb_get_endpoint_complete() {
static uint32_t usb_get_endpoint_complete()
{
return USB0_ENDPTCOMPLETE;
}
static void usb_disable_all_endpoints() {
static void usb_disable_all_endpoints()
{
// Endpoint 0 is always enabled. TODO: So why set ENDPTCTRL0?
USB0_ENDPTCTRL0 &= ~(USB0_ENDPTCTRL0_RXE | USB0_ENDPTCTRL0_TXE);
USB0_ENDPTCTRL1 &= ~(USB0_ENDPTCTRL1_RXE | USB0_ENDPTCTRL1_TXE);
@ -400,32 +411,30 @@ static void usb_disable_all_endpoints() {
void usb_set_address_immediate(
const usb_device_t* const device,
const uint_fast8_t address
) {
const uint_fast8_t address)
{
if (device == usb_device_usb0) {
USB0_DEVICEADDR = USB0_DEVICEADDR_USBADR(address);
}
}
void usb_set_address_deferred(
const usb_device_t* const device,
const uint_fast8_t address
) {
void usb_set_address_deferred(const usb_device_t* const device, const uint_fast8_t address)
{
if (device == usb_device_usb0) {
USB0_DEVICEADDR
= USB0_DEVICEADDR_USBADR(address)
| USB0_DEVICEADDR_USBADRA
;
USB0_DEVICEADDR =
USB0_DEVICEADDR_USBADR(address) | USB0_DEVICEADDR_USBADRA;
}
}
static void usb_reset_all_endpoints() {
static void usb_reset_all_endpoints()
{
usb_disable_all_endpoints();
usb_clear_all_pending_interrupts();
usb_flush_all_primed_endpoints();
}
static void usb_controller_reset() {
static void usb_controller_reset()
{
// TODO: Good to disable some USB interrupts to avoid priming new
// new endpoints before the controller is reset?
usb_reset_all_endpoints();
@ -440,7 +449,8 @@ static void usb_controller_reset() {
while (usb_controller_is_resetting()) {}
}
static void usb_bus_reset(usb_device_t* const device) {
static void usb_bus_reset(usb_device_t* const device)
{
// According to UM10503 v1.4 section 23.10.3 "Bus reset":
usb_reset_all_endpoints();
usb_set_address_immediate(device, 0);
@ -458,18 +468,15 @@ static void usb_bus_reset(usb_device_t* const device) {
//}
}
static void usb_interrupt_enable(
usb_device_t* const device
) {
static void usb_interrupt_enable(usb_device_t* const device)
{
if (device == usb_device_usb0) {
nvic_enable_irq(NVIC_USB0_IRQ);
}
}
void usb_device_init(
const uint_fast8_t device_ordinal,
usb_device_t* const device
) {
void usb_device_init(const uint_fast8_t device_ordinal, usb_device_t* const device)
{
if (device_ordinal == 0) {
usb_device_usb0 = device;
@ -484,11 +491,9 @@ void usb_device_init(
USB0_ENDPOINTLISTADDR = (uint32_t) usb_qh;
// Enable interrupts
USB0_USBINTR_D =
USB0_USBINTR_D_UE
| USB0_USBINTR_D_UEE
| USB0_USBINTR_D_PCE
| USB0_USBINTR_D_URE
USB0_USBINTR_D = USB0_USBINTR_D_UE | USB0_USBINTR_D_UEE |
USB0_USBINTR_D_PCE |
USB0_USBINTR_D_URE
//| USB0_USBINTR_D_SRE
| USB0_USBINTR_D_SLE
//| USB0_USBINTR_D_NAKE
@ -496,14 +501,14 @@ void usb_device_init(
}
}
void usb_run(
usb_device_t* const device
) {
void usb_run(usb_device_t* const device)
{
usb_interrupt_enable(device);
usb_controller_run(device);
}
static void copy_setup(usb_setup_t* const dst, const volatile uint8_t* const src) {
static void copy_setup(usb_setup_t* const dst, const volatile uint8_t* const src)
{
dst->request_type = src[0];
dst->request = src[1];
dst->value_l = src[2];
@ -514,34 +519,30 @@ static void copy_setup(usb_setup_t* const dst, const volatile uint8_t* const src
dst->length_h = src[7];
}
void usb_endpoint_init(
const usb_endpoint_t* const endpoint
) {
void usb_endpoint_init(const usb_endpoint_t* const endpoint)
{
usb_endpoint_flush(endpoint);
uint_fast16_t max_packet_size = endpoint->device->descriptor[7];
usb_transfer_type_t transfer_type = USB_TRANSFER_TYPE_CONTROL;
const uint8_t* const endpoint_descriptor = usb_endpoint_descriptor(endpoint);
if (endpoint_descriptor) {
max_packet_size = usb_endpoint_descriptor_max_packet_size(endpoint_descriptor);
transfer_type = usb_endpoint_descriptor_transfer_type(endpoint_descriptor);
max_packet_size =
usb_endpoint_descriptor_max_packet_size(endpoint_descriptor);
transfer_type =
usb_endpoint_descriptor_transfer_type(endpoint_descriptor);
}
// TODO: There are more capabilities to adjust based on the endpoint
// descriptor.
usb_queue_head_t* const qh = usb_queue_head(endpoint->address);
qh->capabilities
= USB_QH_CAPABILITIES_MULT(0)
| USB_QH_CAPABILITIES_ZLT
| USB_QH_CAPABILITIES_MPL(max_packet_size)
| ((transfer_type == USB_TRANSFER_TYPE_CONTROL) ? USB_QH_CAPABILITIES_IOS : 0)
;
qh->capabilities = USB_QH_CAPABILITIES_MULT(0) | USB_QH_CAPABILITIES_ZLT |
USB_QH_CAPABILITIES_MPL(max_packet_size) |
((transfer_type == USB_TRANSFER_TYPE_CONTROL) ? USB_QH_CAPABILITIES_IOS :
0);
qh->current_dtd_pointer = 0;
qh->next_dtd_pointer = USB_TD_NEXT_DTD_POINTER_TERMINATE;
qh->total_bytes
= USB_TD_DTD_TOKEN_TOTAL_BYTES(0)
| USB_TD_DTD_TOKEN_MULTO(0)
;
qh->total_bytes = USB_TD_DTD_TOKEN_TOTAL_BYTES(0) | USB_TD_DTD_TOKEN_MULTO(0);
qh->buffer_pointer_page[0] = 0;
qh->buffer_pointer_page[1] = 0;
qh->buffer_pointer_page[2] = 0;
@ -560,55 +561,65 @@ void usb_endpoint_init(
usb_endpoint_enable(endpoint);
}
static void usb_check_for_setup_events() {
static void usb_check_for_setup_events()
{
const uint32_t endptsetupstat = usb_get_endpoint_setup_status();
if (endptsetupstat) {
for (uint_fast8_t i = 0; i < 6; i++) {
const uint32_t endptsetupstat_bit = USB0_ENDPTSETUPSTAT_ENDPTSETUPSTAT(1 << i);
const uint32_t endptsetupstat_bit =
USB0_ENDPTSETUPSTAT_ENDPTSETUPSTAT(1 << i);
if (endptsetupstat & endptsetupstat_bit) {
usb_endpoint_t* const endpoint =
usb_endpoint_from_address(
usb_endpoint_address(USB_TRANSFER_DIRECTION_OUT, i)
);
usb_endpoint_from_address(usb_endpoint_address(
USB_TRANSFER_DIRECTION_OUT,
i));
if (endpoint && endpoint->setup_complete) {
copy_setup(&endpoint->setup, usb_queue_head(endpoint->address)->setup);
copy_setup(
&endpoint->setup,
usb_queue_head(endpoint->address)->setup);
// TODO: Clean up this duplicated effort by providing
// a cleaner way to get the SETUP data.
copy_setup(&endpoint->in->setup, usb_queue_head(endpoint->address)->setup);
usb_clear_endpoint_setup_status(endptsetupstat_bit);
copy_setup(
&endpoint->in->setup,
usb_queue_head(endpoint->address)->setup);
usb_clear_endpoint_setup_status(
endptsetupstat_bit);
endpoint->setup_complete(endpoint);
} else {
usb_clear_endpoint_setup_status(endptsetupstat_bit);
usb_clear_endpoint_setup_status(
endptsetupstat_bit);
}
}
}
}
}
static void usb_check_for_transfer_events() {
static void usb_check_for_transfer_events()
{
const uint32_t endptcomplete = usb_get_endpoint_complete();
if (endptcomplete) {
for (uint_fast8_t i = 0; i < 6; i++) {
const uint32_t endptcomplete_out_bit = USB0_ENDPTCOMPLETE_ERCE(1 << i);
const uint32_t endptcomplete_out_bit =
USB0_ENDPTCOMPLETE_ERCE(1 << i);
if (endptcomplete & endptcomplete_out_bit) {
usb_clear_endpoint_complete(endptcomplete_out_bit);
usb_endpoint_t* const endpoint =
usb_endpoint_from_address(
usb_endpoint_address(USB_TRANSFER_DIRECTION_OUT, i)
);
usb_endpoint_from_address(usb_endpoint_address(
USB_TRANSFER_DIRECTION_OUT,
i));
if (endpoint && endpoint->transfer_complete) {
endpoint->transfer_complete(endpoint);
}
}
const uint32_t endptcomplete_in_bit = USB0_ENDPTCOMPLETE_ETCE(1 << i);
const uint32_t endptcomplete_in_bit =
USB0_ENDPTCOMPLETE_ETCE(1 << i);
if (endptcomplete & endptcomplete_in_bit) {
usb_clear_endpoint_complete(endptcomplete_in_bit);
usb_endpoint_t* const endpoint =
usb_endpoint_from_address(
usb_endpoint_address(USB_TRANSFER_DIRECTION_IN, i)
);
usb_endpoint_from_address(usb_endpoint_address(
USB_TRANSFER_DIRECTION_IN,
i));
if (endpoint && endpoint->transfer_complete) {
endpoint->transfer_complete(endpoint);
}
@ -617,7 +628,8 @@ static void usb_check_for_transfer_events() {
}
}
void usb0_isr() {
void usb0_isr()
{
const uint32_t status = usb_get_status();
if (status == 0) {

View File

@ -31,75 +31,47 @@
void usb_peripheral_reset();
void usb_phy_enable();
void usb_device_init(
const uint_fast8_t device_ordinal,
usb_device_t* const device
);
void usb_device_init(const uint_fast8_t device_ordinal, usb_device_t* const device);
void usb_run(
usb_device_t* const device
);
void usb_run(usb_device_t* const device);
void usb_run_tasks(
const usb_device_t* const device
);
void usb_run_tasks(const usb_device_t* const device);
usb_speed_t usb_speed(
const usb_device_t* const device
);
usb_speed_t usb_speed(const usb_device_t* const device);
void usb_set_address_immediate(
const usb_device_t* const device,
const uint_fast8_t address
);
const uint_fast8_t address);
void usb_set_address_deferred(
const usb_device_t* const device,
const uint_fast8_t address
);
const uint_fast8_t address);
usb_endpoint_t* usb_endpoint_from_address(
const uint_fast8_t endpoint_address
);
usb_endpoint_t* usb_endpoint_from_address(const uint_fast8_t endpoint_address);
void usb_endpoint_init(
const usb_endpoint_t* const endpoint
);
void usb_endpoint_init(const usb_endpoint_t* const endpoint);
void usb_endpoint_stall(
const usb_endpoint_t* const endpoint
);
void usb_endpoint_stall(const usb_endpoint_t* const endpoint);
void usb_endpoint_disable(
const usb_endpoint_t* const endpoint
);
void usb_endpoint_disable(const usb_endpoint_t* const endpoint);
void usb_endpoint_reset_data_toggle(
const usb_endpoint_t* const endpoint
);
void usb_endpoint_reset_data_toggle(const usb_endpoint_t* const endpoint);
void usb_endpoint_flush(
const usb_endpoint_t* const endpoint
);
void usb_endpoint_flush(const usb_endpoint_t* const endpoint);
bool usb_endpoint_is_ready(
const usb_endpoint_t* const endpoint
);
bool usb_endpoint_is_ready(const usb_endpoint_t* const endpoint);
void usb_endpoint_prime(
const usb_endpoint_t* const endpoint,
usb_transfer_descriptor_t* const first_td
);
usb_transfer_descriptor_t* const first_td);
void usb_endpoint_schedule_wait(
const usb_endpoint_t* const endpoint,
usb_transfer_descriptor_t* const td
);
usb_transfer_descriptor_t* const td);
void usb_endpoint_schedule_append(
const usb_endpoint_t* const endpoint,
usb_transfer_descriptor_t* const tail_td,
usb_transfer_descriptor_t* const new_td
);
usb_transfer_descriptor_t* const new_td);
#endif //__USB_H__

View File

@ -33,20 +33,19 @@
usb_queue_t* endpoint_queues[12] = {};
#define USB_ENDPOINT_INDEX(endpoint_address) (((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
#define USB_ENDPOINT_INDEX(endpoint_address) \
(((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
static usb_queue_t* endpoint_queue(
const usb_endpoint_t* const endpoint
) {
static usb_queue_t* endpoint_queue(const usb_endpoint_t* const endpoint)
{
uint32_t index = USB_ENDPOINT_INDEX(endpoint->address);
if (endpoint_queues[index] == NULL)
while (1) {}
return endpoint_queues[index];
}
void usb_queue_init(
usb_queue_t* const queue
) {
void usb_queue_init(usb_queue_t* const queue)
{
uint32_t index = USB_ENDPOINT_INDEX(queue->endpoint->address);
if (endpoint_queues[index] != NULL)
while (1) {}
@ -62,9 +61,8 @@ void usb_queue_init(
}
/* Allocate a transfer */
static usb_transfer_t* allocate_transfer(
usb_queue_t* const queue
) {
static usb_transfer_t* allocate_transfer(usb_queue_t* const queue)
{
bool aborted;
usb_transfer_t* transfer;
if (queue->free_transfers == NULL)
@ -72,7 +70,9 @@ static usb_transfer_t* allocate_transfer(
do {
transfer = (void*) __ldrex((uint32_t*) &queue->free_transfers);
aborted = __strex((uint32_t) transfer->next, (uint32_t *) &queue->free_transfers);
aborted =
__strex((uint32_t) transfer->next,
(uint32_t*) &queue->free_transfers);
} while (aborted);
transfer->next = NULL;
return transfer;
@ -85,21 +85,22 @@ static void free_transfer(usb_transfer_t* const transfer)
bool aborted;
do {
transfer->next = (void*) __ldrex((uint32_t*) &queue->free_transfers);
aborted = __strex((uint32_t) transfer, (uint32_t *) &queue->free_transfers);
aborted =
__strex((uint32_t) transfer, (uint32_t*) &queue->free_transfers);
} while (aborted);
}
/* Add a transfer to the end of an endpoint's queue. Returns the old
* tail or NULL is the queue was empty
*/
static usb_transfer_t* endpoint_queue_transfer(
usb_transfer_t* const transfer
) {
static usb_transfer_t* endpoint_queue_transfer(usb_transfer_t* const transfer)
{
usb_queue_t* const queue = transfer->queue;
transfer->next = NULL;
if (queue->active != NULL) {
usb_transfer_t* t = queue->active;
while (t->next != NULL) t = t->next;
while (t->next != NULL)
t = t->next;
t->next = transfer;
return t;
} else {
@ -129,21 +130,19 @@ int usb_transfer_schedule(
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb,
void* const user_data
) {
void* const user_data)
{
usb_queue_t* const queue = endpoint_queue(endpoint);
usb_transfer_t* const transfer = allocate_transfer(queue);
if (transfer == NULL) return -1;
if (transfer == NULL)
return -1;
usb_transfer_descriptor_t* const td = &transfer->td;
// Configure the transfer descriptor
td->next_dtd_pointer = USB_TD_NEXT_DTD_POINTER_TERMINATE;
td->total_bytes =
USB_TD_DTD_TOKEN_TOTAL_BYTES(maximum_length)
| USB_TD_DTD_TOKEN_IOC
| USB_TD_DTD_TOKEN_MULTO(0)
| USB_TD_DTD_TOKEN_STATUS_ACTIVE
;
td->total_bytes = USB_TD_DTD_TOKEN_TOTAL_BYTES(maximum_length) |
USB_TD_DTD_TOKEN_IOC | USB_TD_DTD_TOKEN_MULTO(0) |
USB_TD_DTD_TOKEN_STATUS_ACTIVE;
td->buffer_pointer_page[0] = (uint32_t) data;
td->buffer_pointer_page[1] = ((uint32_t) data + 0x1000) & 0xfffff000;
td->buffer_pointer_page[2] = ((uint32_t) data + 0x2000) & 0xfffff000;
@ -173,19 +172,22 @@ int usb_transfer_schedule_block(
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb,
void* const user_data
) {
void* const user_data)
{
int ret;
do {
ret = usb_transfer_schedule(endpoint, data, maximum_length,
completion_cb, user_data);
ret = usb_transfer_schedule(
endpoint,
data,
maximum_length,
completion_cb,
user_data);
} while (ret == -1);
return 0;
}
int usb_transfer_schedule_ack(
const usb_endpoint_t* const endpoint
) {
int usb_transfer_schedule_ack(const usb_endpoint_t* const endpoint)
{
return usb_transfer_schedule_block(endpoint, 0, 0, NULL, NULL);
}
@ -201,9 +203,9 @@ void usb_queue_transfer_complete(usb_endpoint_t* const endpoint)
uint8_t status = transfer->td.total_bytes;
// Check for failures
if ( status & USB_TD_DTD_TOKEN_STATUS_HALTED
|| status & USB_TD_DTD_TOKEN_STATUS_BUFFER_ERROR
|| status & USB_TD_DTD_TOKEN_STATUS_TRANSACTION_ERROR) {
if (status & USB_TD_DTD_TOKEN_STATUS_HALTED ||
status & USB_TD_DTD_TOKEN_STATUS_BUFFER_ERROR ||
status & USB_TD_DTD_TOKEN_STATUS_TRANSACTION_ERROR) {
// TODO: Uh oh, do something useful here
while (1) {}
}
@ -218,7 +220,9 @@ void usb_queue_transfer_complete(usb_endpoint_t* const endpoint)
usb_transfer_t* next = transfer->next;
// Invoke completion callback
unsigned int total_bytes = (transfer->td.total_bytes & USB_TD_DTD_TOKEN_TOTAL_BYTES_MASK) >> USB_TD_DTD_TOKEN_TOTAL_BYTES_SHIFT;
unsigned int total_bytes =
(transfer->td.total_bytes & USB_TD_DTD_TOKEN_TOTAL_BYTES_MASK) >>
USB_TD_DTD_TOKEN_TOTAL_BYTES_SHIFT;
unsigned int transferred = transfer->maximum_length - total_bytes;
if (transfer->completion_cb)
transfer->completion_cb(transfer->user_data, transferred);

View File

@ -49,15 +49,13 @@ struct _usb_queue_t {
usb_transfer_t* volatile active;
};
#define USB_DECLARE_QUEUE(endpoint_name) \
struct _usb_queue_t endpoint_name##_queue;
#define USB_DECLARE_QUEUE(endpoint_name) struct _usb_queue_t endpoint_name##_queue;
#define USB_DEFINE_QUEUE(endpoint_name, _pool_size) \
struct _usb_transfer_t endpoint_name##_transfers[_pool_size]; \
struct _usb_queue_t endpoint_name##_queue = { \
.endpoint = &endpoint_name, \
.free_transfers = endpoint_name##_transfers, \
.pool_size = _pool_size \
};
.pool_size = _pool_size};
void usb_queue_flush_endpoint(const usb_endpoint_t* const endpoint);
@ -66,27 +64,19 @@ int usb_transfer_schedule(
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb,
void* const user_data
);
void* const user_data);
int usb_transfer_schedule_block(
const usb_endpoint_t* const endpoint,
void* const data,
const uint32_t maximum_length,
const transfer_completion_cb completion_cb,
void* const user_data
);
void* const user_data);
int usb_transfer_schedule_ack(
const usb_endpoint_t* const endpoint
);
int usb_transfer_schedule_ack(const usb_endpoint_t* const endpoint);
void usb_queue_init(
usb_queue_t* const queue
);
void usb_queue_init(usb_queue_t* const queue);
void usb_queue_transfer_complete(
usb_endpoint_t* const endpoint
);
void usb_queue_transfer_complete(usb_endpoint_t* const endpoint);
#endif //__USB_QUEUE_H__

View File

@ -25,10 +25,8 @@
#include <stdbool.h>
static void usb_request(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
static void usb_request(usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
{
usb_request_status_t status = USB_REQUEST_STATUS_STALL;
usb_request_handler_fn handler = 0;
@ -60,17 +58,15 @@ static void usb_request(
}
}
void usb_setup_complete(
usb_endpoint_t* const endpoint
) {
void usb_setup_complete(usb_endpoint_t* const endpoint)
{
usb_request(endpoint, USB_TRANSFER_STAGE_SETUP);
}
void usb_control_out_complete(
usb_endpoint_t* const endpoint
) {
const bool device_to_host =
endpoint->setup.request_type >> USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift;
void usb_control_out_complete(usb_endpoint_t* const endpoint)
{
const bool device_to_host = endpoint->setup.request_type >>
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift;
if (device_to_host) {
usb_request(endpoint, USB_TRANSFER_STAGE_STATUS);
} else {
@ -79,11 +75,10 @@ void usb_control_out_complete(
usb_queue_transfer_complete(endpoint);
}
void usb_control_in_complete(
usb_endpoint_t* const endpoint
) {
const bool device_to_host =
endpoint->setup.request_type >> USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift;
void usb_control_in_complete(usb_endpoint_t* const endpoint)
{
const bool device_to_host = endpoint->setup.request_type >>
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift;
if (device_to_host) {
usb_request(endpoint, USB_TRANSFER_STAGE_DATA);
} else {
@ -91,4 +86,3 @@ void usb_control_in_complete(
}
usb_queue_transfer_complete(endpoint);
}

View File

@ -44,8 +44,7 @@ typedef enum {
typedef usb_request_status_t (*usb_request_handler_fn)(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
typedef struct {
usb_request_handler_fn standard;
@ -56,16 +55,10 @@ typedef struct {
extern const usb_request_handlers_t usb_request_handlers;
void usb_setup_complete(
usb_endpoint_t* const endpoint
);
void usb_setup_complete(usb_endpoint_t* const endpoint);
void usb_control_in_complete(
usb_endpoint_t* const endpoint
);
void usb_control_in_complete(usb_endpoint_t* const endpoint);
void usb_control_out_complete(
usb_endpoint_t* const endpoint
);
void usb_control_out_complete(usb_endpoint_t* const endpoint);
#endif //__USB_REQUEST_H__

View File

@ -28,9 +28,8 @@
#include "usb_type.h"
#include "usb_queue.h"
const uint8_t* usb_endpoint_descriptor(
const usb_endpoint_t* const endpoint
) {
const uint8_t* usb_endpoint_descriptor(const usb_endpoint_t* const endpoint)
{
const usb_configuration_t* const configuration = endpoint->device->configuration;
if (configuration) {
const uint8_t* descriptor = configuration->descriptor;
@ -48,33 +47,30 @@ const uint8_t* usb_endpoint_descriptor(
}
uint_fast16_t usb_endpoint_descriptor_max_packet_size(
const uint8_t* const endpoint_descriptor
) {
const uint8_t* const endpoint_descriptor)
{
return (endpoint_descriptor[5] << 8) | endpoint_descriptor[4];
}
usb_transfer_type_t usb_endpoint_descriptor_transfer_type(
const uint8_t* const endpoint_descriptor
) {
const uint8_t* const endpoint_descriptor)
{
return (endpoint_descriptor[3] & 0x3);
}
void (*usb_configuration_changed_cb)(usb_device_t* const) = NULL;
void usb_set_configuration_changed_cb(
void (*callback)(usb_device_t* const)
) {
void usb_set_configuration_changed_cb(void (*callback)(usb_device_t* const))
{
usb_configuration_changed_cb = callback;
}
bool usb_set_configuration(
usb_device_t* const device,
const uint_fast8_t configuration_number
) {
const uint_fast8_t configuration_number)
{
const usb_configuration_t* new_configuration = 0;
if (configuration_number != 0) {
// Locate requested configuration.
if (device->configurations) {
usb_configuration_t** configurations = *(device->configurations);
@ -109,8 +105,8 @@ bool usb_set_configuration(
static usb_request_status_t usb_send_descriptor(
usb_endpoint_t* const endpoint,
const uint8_t* const descriptor_data
) {
const uint8_t* const descriptor_data)
{
const uint32_t setup_length = endpoint->setup.length;
uint32_t descriptor_length = descriptor_data[0];
if (descriptor_data[1] == USB_DESCRIPTOR_TYPE_CONFIGURATION) {
@ -121,23 +117,27 @@ static usb_request_status_t usb_send_descriptor(
endpoint->in,
(uint8_t* const) descriptor_data,
(setup_length > descriptor_length) ? descriptor_length : setup_length,
NULL, NULL
);
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
static usb_request_status_t usb_send_descriptor_string(
usb_endpoint_t* const endpoint
) {
static usb_request_status_t usb_send_descriptor_string(usb_endpoint_t* const endpoint)
{
if ((endpoint->setup.value_l == 0xee) &&
(endpoint->device->wcid_string_descriptor != NULL)) { /* MS WCID string */
return usb_send_descriptor(endpoint, endpoint->device->wcid_string_descriptor);
return usb_send_descriptor(
endpoint,
endpoint->device->wcid_string_descriptor);
} else {
uint_fast8_t index = endpoint->setup.value_l;
for( uint_fast8_t i=0; endpoint->device->descriptor_strings[i] != 0; i++ ) {
for (uint_fast8_t i = 0; endpoint->device->descriptor_strings[i] != 0;
i++) {
if (i == index) {
return usb_send_descriptor(endpoint, endpoint->device->descriptor_strings[i]);
return usb_send_descriptor(
endpoint,
endpoint->device->descriptor_strings[i]);
}
}
}
@ -147,14 +147,16 @@ static usb_request_status_t usb_send_descriptor_string(
static usb_request_status_t usb_send_descriptor_config(
usb_endpoint_t* const endpoint,
usb_speed_t speed,
const uint8_t config_num
) {
const uint8_t config_num)
{
usb_configuration_t** config = *(endpoint->device->configurations);
unsigned int i = 0;
for (; *config != NULL; config++) {
if ((*config)->speed == speed) {
if (i == config_num) {
return usb_send_descriptor(endpoint, (*config)->descriptor);
return usb_send_descriptor(
endpoint,
(*config)->descriptor);
} else {
i++;
}
@ -164,8 +166,8 @@ static usb_request_status_t usb_send_descriptor_config(
}
static usb_request_status_t usb_standard_request_get_descriptor_setup(
usb_endpoint_t* const endpoint
) {
usb_endpoint_t* const endpoint)
{
switch (endpoint->setup.value_h) {
case USB_DESCRIPTOR_TYPE_DEVICE:
return usb_send_descriptor(endpoint, endpoint->device->descriptor);
@ -173,20 +175,34 @@ static usb_request_status_t usb_standard_request_get_descriptor_setup(
case USB_DESCRIPTOR_TYPE_CONFIGURATION:
// TODO: Duplicated code. Refactor.
if (usb_speed(endpoint->device) == USB_SPEED_HIGH) {
return usb_send_descriptor_config(endpoint, USB_SPEED_HIGH, endpoint->setup.value_l);
return usb_send_descriptor_config(
endpoint,
USB_SPEED_HIGH,
endpoint->setup.value_l);
} else {
return usb_send_descriptor_config(endpoint, USB_SPEED_FULL, endpoint->setup.value_l);
return usb_send_descriptor_config(
endpoint,
USB_SPEED_FULL,
endpoint->setup.value_l);
}
case USB_DESCRIPTOR_TYPE_DEVICE_QUALIFIER:
return usb_send_descriptor(endpoint, endpoint->device->qualifier_descriptor);
return usb_send_descriptor(
endpoint,
endpoint->device->qualifier_descriptor);
case USB_DESCRIPTOR_TYPE_OTHER_SPEED_CONFIGURATION:
// TODO: Duplicated code. Refactor.
if (usb_speed(endpoint->device) == USB_SPEED_HIGH) {
return usb_send_descriptor_config(endpoint, USB_SPEED_FULL, endpoint->setup.value_l);
return usb_send_descriptor_config(
endpoint,
USB_SPEED_FULL,
endpoint->setup.value_l);
} else {
return usb_send_descriptor_config(endpoint, USB_SPEED_HIGH, endpoint->setup.value_l);
return usb_send_descriptor_config(
endpoint,
USB_SPEED_HIGH,
endpoint->setup.value_l);
}
case USB_DESCRIPTOR_TYPE_STRING:
@ -201,8 +217,8 @@ static usb_request_status_t usb_standard_request_get_descriptor_setup(
static usb_request_status_t usb_standard_request_get_descriptor(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
switch (stage) {
case USB_TRANSFER_STAGE_SETUP:
return usb_standard_request_get_descriptor_setup(endpoint);
@ -218,17 +234,21 @@ static usb_request_status_t usb_standard_request_get_descriptor(
usb_request_status_t usb_vendor_request_read_wcid(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
if ((endpoint->setup.index == 0x04) &&
(endpoint->device->wcid_feature_descriptor != NULL)) {
usb_send_descriptor(endpoint, endpoint->device->wcid_feature_descriptor);
usb_send_descriptor(
endpoint,
endpoint->device->wcid_feature_descriptor);
return USB_REQUEST_STATUS_OK;
}
if ((endpoint->setup.index == 0x05) &&
(endpoint->device->wcid_extended_properties_descriptor != NULL)) {
usb_send_descriptor(endpoint, endpoint->device->wcid_extended_properties_descriptor);
usb_send_descriptor(
endpoint,
endpoint->device->wcid_extended_properties_descriptor);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
@ -239,8 +259,8 @@ usb_request_status_t usb_vendor_request_read_wcid(
/*********************************************************************/
static usb_request_status_t usb_standard_request_set_address_setup(
usb_endpoint_t* const endpoint
) {
usb_endpoint_t* const endpoint)
{
usb_set_address_deferred(endpoint->device, endpoint->setup.value_l);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
@ -248,8 +268,8 @@ static usb_request_status_t usb_standard_request_set_address_setup(
static usb_request_status_t usb_standard_request_set_address(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
switch (stage) {
case USB_TRANSFER_STAGE_SETUP:
return usb_standard_request_set_address_setup(endpoint);
@ -270,8 +290,8 @@ static usb_request_status_t usb_standard_request_set_address(
/*********************************************************************/
static usb_request_status_t usb_standard_request_set_configuration_setup(
usb_endpoint_t* const endpoint
) {
usb_endpoint_t* const endpoint)
{
const uint8_t usb_configuration = endpoint->setup.value_l;
if (usb_set_configuration(endpoint->device, usb_configuration)) {
usb_transfer_schedule_ack(endpoint->in);
@ -283,8 +303,8 @@ static usb_request_status_t usb_standard_request_set_configuration_setup(
static usb_request_status_t usb_standard_request_set_configuration(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
switch (stage) {
case USB_TRANSFER_STAGE_SETUP:
return usb_standard_request_set_configuration_setup(endpoint);
@ -301,14 +321,19 @@ static usb_request_status_t usb_standard_request_set_configuration(
/*********************************************************************/
static usb_request_status_t usb_standard_request_get_configuration_setup(
usb_endpoint_t* const endpoint
) {
usb_endpoint_t* const endpoint)
{
if (endpoint->setup.length == 1) {
endpoint->buffer[0] = 0;
if (endpoint->device->configuration) {
endpoint->buffer[0] = endpoint->device->configuration->number;
}
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1, NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
} else {
@ -318,8 +343,8 @@ static usb_request_status_t usb_standard_request_get_configuration_setup(
static usb_request_status_t usb_standard_request_get_configuration(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
switch (stage) {
case USB_TRANSFER_STAGE_SETUP:
return usb_standard_request_get_configuration_setup(endpoint);
@ -334,13 +359,18 @@ static usb_request_status_t usb_standard_request_get_configuration(
}
static usb_request_status_t usb_standard_request_get_status_setup(
usb_endpoint_t* const endpoint
) {
usb_endpoint_t* const endpoint)
{
if (endpoint->setup.length == 2) {
endpoint->buffer[0] = 0;
endpoint->buffer[1] = 0;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2, NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
2,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
} else {
@ -348,11 +378,10 @@ static usb_request_status_t usb_standard_request_get_status_setup(
}
}
static usb_request_status_t usb_standard_request_get_status(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
switch (stage) {
case USB_TRANSFER_STAGE_SETUP:
return usb_standard_request_get_status_setup(endpoint);
@ -369,12 +398,10 @@ static usb_request_status_t usb_standard_request_get_status(
static usb_request_status_t usb_standard_request_clear_feature_setup(
usb_endpoint_t* const endpoint)
{
switch (endpoint->setup.value) {
case USB_FEATURE_SELECTOR_ENDPOINT_HALT:
usb_endpoint_reset_data_toggle(
usb_endpoint_from_address(endpoint->setup.index)
);
usb_endpoint_from_address(endpoint->setup.index));
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
default:
@ -403,8 +430,8 @@ static usb_request_status_t usb_standard_request_clear_feature(
usb_request_status_t usb_standard_request(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
switch (endpoint->setup.request) {
case USB_STANDARD_REQUEST_GET_STATUS:
return usb_standard_request_get_status(endpoint, stage);

View File

@ -25,35 +25,26 @@
#include "usb_type.h"
#include "usb_request.h"
void usb_set_configuration_changed_cb(
void (*callback)(usb_device_t* const)
);
void usb_set_configuration_changed_cb(void (*callback)(usb_device_t* const));
usb_request_status_t usb_vendor_request_read_wcid(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_standard_request(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
const uint8_t* usb_endpoint_descriptor(
const usb_endpoint_t* const endpoint
);
const uint8_t* usb_endpoint_descriptor(const usb_endpoint_t* const endpoint);
uint_fast16_t usb_endpoint_descriptor_max_packet_size(
const uint8_t* const endpoint_descriptor
);
const uint8_t* const endpoint_descriptor);
usb_transfer_type_t usb_endpoint_descriptor_transfer_type(
const uint8_t* const endpoint_descriptor
);
const uint8_t* const endpoint_descriptor);
bool usb_set_configuration(
usb_device_t* const device,
const uint_fast8_t configuration_number
);
const uint_fast8_t configuration_number);
#endif //__USB_STANDARD_REQUEST_H__

View File

@ -33,25 +33,31 @@
typedef struct ATTR_PACKED {
uint8_t request_type;
uint8_t request;
union {
struct {
uint8_t value_l;
uint8_t value_h;
};
uint16_t value;
};
union {
struct {
uint8_t index_l;
uint8_t index_h;
};
uint16_t index;
};
union {
struct {
uint8_t length_l;
uint8_t length_h;
};
uint16_t length;
};
} usb_setup_t;
@ -84,9 +90,12 @@ typedef enum {
USB_SETUP_REQUEST_TYPE_RESERVED = 3 << USB_SETUP_REQUEST_TYPE_shift,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift = 7,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_mask = 1 << USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_HOST_TO_DEVICE = 0 << USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_DEVICE_TO_HOST = 1 << USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_mask =
1 << USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_HOST_TO_DEVICE =
0 << USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift,
USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_DEVICE_TO_HOST =
1 << USB_SETUP_REQUEST_TYPE_DATA_TRANSFER_DIRECTION_shift,
} usb_setup_request_type_t;
typedef enum {
@ -137,6 +146,7 @@ typedef struct {
} usb_device_t;
typedef struct usb_endpoint_t usb_endpoint_t;
struct usb_endpoint_t {
usb_setup_t setup;
uint8_t buffer[8]; // Buffer for use during IN stage.

View File

@ -80,10 +80,7 @@ uint8_t w25q80bv_get_status(w25q80bv_driver_t* const drv)
/* Release power down / Device ID */
uint8_t w25q80bv_get_device_id(w25q80bv_driver_t* const drv)
{
uint8_t data[] = {
W25Q80BV_DEVICE_ID,
0xFF, 0xFF, 0xFF, 0xFF
};
uint8_t data[] = {W25Q80BV_DEVICE_ID, 0xFF, 0xFF, 0xFF, 0xFF};
spi_bus_transfer(drv->bus, data, ARRAY_SIZE(data));
return data[4];
}
@ -92,9 +89,18 @@ void w25q80bv_get_unique_id(w25q80bv_driver_t* const drv, w25q80bv_unique_id_t*
{
uint8_t data[] = {
W25Q80BV_UNIQUE_ID,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
0xFF};
spi_bus_transfer(drv->bus, data, ARRAY_SIZE(data));
for (size_t i = 0; i < 8; i++) {
@ -133,7 +139,11 @@ void w25q80bv_chip_erase(w25q80bv_driver_t* const drv)
}
/* write up a 256 byte page or partial page */
static void w25q80bv_page_program(w25q80bv_driver_t* const drv, const uint32_t addr, const uint16_t len, uint8_t* data)
static void w25q80bv_page_program(
w25q80bv_driver_t* const drv,
const uint32_t addr,
const uint16_t len,
uint8_t* data)
{
/* do nothing if asked to write beyond a page boundary */
if (((addr & 0xFF) + len) > drv->page_len)
@ -150,19 +160,19 @@ static void w25q80bv_page_program(w25q80bv_driver_t* const drv, const uint32_t a
W25Q80BV_PAGE_PROGRAM,
(addr & 0xFF0000) >> 16,
(addr & 0xFF00) >> 8,
addr & 0xFF
};
addr & 0xFF};
const spi_transfer_t transfers[] = {
{ header, ARRAY_SIZE(header) },
{ data, len }
};
const spi_transfer_t transfers[] = {{header, ARRAY_SIZE(header)}, {data, len}};
spi_bus_transfer_gather(drv->bus, transfers, ARRAY_SIZE(transfers));
}
/* write an arbitrary number of bytes */
void w25q80bv_program(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len, uint8_t* data)
void w25q80bv_program(
w25q80bv_driver_t* const drv,
uint32_t addr,
uint32_t len,
uint8_t* data)
{
uint16_t first_block_len;
uint8_t device_id;
@ -173,8 +183,8 @@ void w25q80bv_program(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len,
device_id != W25Q16DV_DEVICE_ID_RES);
/* do nothing if we would overflow the flash */
if ((len > drv->num_bytes) || (addr > drv->num_bytes)
|| ((addr + len) > drv->num_bytes))
if ((len > drv->num_bytes) || (addr > drv->num_bytes) ||
((addr + len) > drv->num_bytes))
return;
/* handle start not at page boundary */
@ -203,11 +213,15 @@ void w25q80bv_program(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len,
}
/* write an arbitrary number of bytes */
void w25q80bv_read(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len, uint8_t* const data)
void w25q80bv_read(
w25q80bv_driver_t* const drv,
uint32_t addr,
uint32_t len,
uint8_t* const data)
{
/* do nothing if we would overflow the flash */
if ((len > drv->num_bytes) || (addr > drv->num_bytes)
|| ((addr + len) > drv->num_bytes))
if ((len > drv->num_bytes) || (addr > drv->num_bytes) ||
((addr + len) > drv->num_bytes))
return;
w25q80bv_wait_while_busy(drv);
@ -217,13 +231,9 @@ void w25q80bv_read(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len, ui
(addr & 0xFF0000) >> 16,
(addr & 0xFF00) >> 8,
addr & 0xFF,
0x00
};
0x00};
const spi_transfer_t transfers[] = {
{ header, ARRAY_SIZE(header) },
{ data, len }
};
const spi_transfer_t transfers[] = {{header, ARRAY_SIZE(header)}, {data, len}};
spi_bus_transfer_gather(drv->bus, transfers, ARRAY_SIZE(transfers));
}

View File

@ -32,8 +32,7 @@
#include "spi_bus.h"
#include "gpio.h"
typedef union
{
typedef union {
uint64_t id_64b;
uint32_t id_32b[2]; /* 2*32bits 64bits Unique ID */
uint8_t id_8b[8]; /* 8*8bits 64bits Unique ID */
@ -55,10 +54,18 @@ struct w25q80bv_driver_t {
void w25q80bv_setup(w25q80bv_driver_t* const drv);
void w25q80bv_get_full_status(w25q80bv_driver_t* const drv, uint8_t* data);
void w25q80bv_chip_erase(w25q80bv_driver_t* const drv);
void w25q80bv_program(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len, uint8_t* data);
void w25q80bv_program(
w25q80bv_driver_t* const drv,
uint32_t addr,
uint32_t len,
uint8_t* data);
uint8_t w25q80bv_get_device_id(w25q80bv_driver_t* const drv);
void w25q80bv_get_unique_id(w25q80bv_driver_t* const drv, w25q80bv_unique_id_t* unique_id);
void w25q80bv_read(w25q80bv_driver_t* const drv, uint32_t addr, uint32_t len, uint8_t* const data);
void w25q80bv_read(
w25q80bv_driver_t* const drv,
uint32_t addr,
uint32_t len,
uint8_t* const data);
void w25q80bv_clear_status(w25q80bv_driver_t* const drv);
#endif //__W25Q80BV_H__

View File

@ -28,7 +28,8 @@
* automatically?
*/
void w25q80bv_target_init(w25q80bv_driver_t* const drv) {
void w25q80bv_target_init(w25q80bv_driver_t* const drv)
{
(void) drv;
/* Init SPIFI GPIO to Normal GPIO */

View File

@ -125,12 +125,13 @@ static const uint32_t vendor_request_handler_count =
usb_request_status_t usb_vendor_request(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
usb_request_status_t status = USB_REQUEST_STATUS_STALL;
if (endpoint->setup.request < vendor_request_handler_count) {
usb_request_handler_fn handler = vendor_request_handler[endpoint->setup.request];
usb_request_handler_fn handler =
vendor_request_handler[endpoint->setup.request];
if (handler) {
status = handler(endpoint, stage);
}
@ -146,9 +147,8 @@ const usb_request_handlers_t usb_request_handlers = {
.reserved = 0,
};
void usb_configuration_changed(
usb_device_t* const device
) {
void usb_configuration_changed(usb_device_t* const device)
{
/* Reset transceiver to idle state until other commands are received */
request_transceiver_mode(TRANSCEIVER_MODE_OFF);
if (device->configuration->number == 1) {
@ -171,13 +171,18 @@ void usb_set_descriptor_by_serial_number(void)
iap_cmd_call(&iap_cmd_res);
if (iap_cmd_res.status_res.status_ret == CMD_SUCCESS) {
usb_descriptor_string_serial_number[0] = USB_DESCRIPTOR_STRING_SERIAL_BUF_LEN;
usb_descriptor_string_serial_number[0] =
USB_DESCRIPTOR_STRING_SERIAL_BUF_LEN;
usb_descriptor_string_serial_number[1] = USB_DESCRIPTOR_TYPE_STRING;
/* 32 characters of serial number, convert to UTF-16LE */
for (size_t i = 0; i < USB_DESCRIPTOR_STRING_SERIAL_LEN; i++) {
const uint_fast8_t nibble = (iap_cmd_res.status_res.iap_result[i >> 3] >> (28 - (i & 7) * 4)) & 0xf;
const char c = (nibble > 9) ? ('a' + nibble - 10) : ('0' + nibble);
const uint_fast8_t nibble =
(iap_cmd_res.status_res.iap_result[i >> 3] >>
(28 - (i & 7) * 4)) &
0xf;
const char c =
(nibble > 9) ? ('a' + nibble - 10) : ('0' + nibble);
usb_descriptor_string_serial_number[2 + i * 2] = c;
usb_descriptor_string_serial_number[3 + i * 2] = 0x00;
}
@ -187,15 +192,20 @@ void usb_set_descriptor_by_serial_number(void)
}
}
static bool cpld_jtag_sram_load(jtag_t* const jtag) {
static bool cpld_jtag_sram_load(jtag_t* const jtag)
{
cpld_jtag_take(jtag);
cpld_xc2c64a_jtag_sram_write(jtag, &cpld_hackrf_program_sram);
const bool success = cpld_xc2c64a_jtag_sram_verify(jtag, &cpld_hackrf_program_sram, &cpld_hackrf_verify);
const bool success = cpld_xc2c64a_jtag_sram_verify(
jtag,
&cpld_hackrf_program_sram,
&cpld_hackrf_verify);
cpld_jtag_release(jtag);
return success;
}
static void m0_rom_to_ram() {
static void m0_rom_to_ram()
{
uint32_t* dest = &__ram_m0_start__;
// Calculate the base address of ROM
@ -208,7 +218,8 @@ static void m0_rom_to_ram() {
memcpy(dest, (uint32_t*) (base + src), len);
}
int main(void) {
int main(void)
{
// Copy M0 image from ROM before SPIFI is disabled
m0_rom_to_ram();

View File

@ -33,38 +33,51 @@
char version_string[] = VERSION_STRING;
usb_request_status_t usb_vendor_request_read_board_id(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
endpoint->buffer[0] = BOARD_ID;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1, NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_read_version_string(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint8_t length;
if (stage == USB_TRANSFER_STAGE_SETUP) {
length = (uint8_t) strlen(version_string);
usb_transfer_schedule_block(endpoint->in, version_string, length, NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
version_string,
length,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
static read_partid_serialno_t read_partid_serialno;
usb_request_status_t usb_vendor_request_read_partid_serialno(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint8_t length;
iap_cmd_res_t iap_cmd_res;
if (stage == USB_TRANSFER_STAGE_SETUP)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
/* Read IAP Part Number Identification */
iap_cmd_res.cmd_param.command_code = IAP_CMD_READ_PART_ID_NO;
iap_cmd_call(&iap_cmd_res);
@ -86,15 +99,20 @@ usb_request_status_t usb_vendor_request_read_partid_serialno(
read_partid_serialno.serial_no[3] = iap_cmd_res.status_res.iap_result[3];
length = (uint8_t) sizeof(read_partid_serialno_t);
usb_transfer_schedule_block(endpoint->in, &read_partid_serialno, length,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&read_partid_serialno,
length,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_reset(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
wwdt_reset(100000);

View File

@ -34,12 +34,16 @@ typedef struct {
} read_partid_serialno_t;
usb_request_status_t usb_vendor_request_read_board_id(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_read_version_string(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_read_partid_serialno(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_reset(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
#endif /* end of include guard: __USB_API_BOARD_INFO_H__ */

View File

@ -52,8 +52,7 @@ static void refill_cpld_buffer(void)
cpld_xsvf_buffer,
sizeof(cpld_xsvf_buffer),
cpld_buffer_refilled,
NULL
);
NULL);
// Wait until transfer finishes
while (cpld_wait) {}
@ -68,14 +67,14 @@ void cpld_update(void)
refill_cpld_buffer();
error = cpld_jtag_program(&jtag_cpld, sizeof(cpld_xsvf_buffer),
error = cpld_jtag_program(
&jtag_cpld,
sizeof(cpld_xsvf_buffer),
cpld_xsvf_buffer,
refill_cpld_buffer);
if(error == 0)
{
if (error == 0) {
halt_and_flash(6000000);
}else
{
} else {
/* LED3 (Red) steady on error */
led_on(LED3);
while (1) {}
@ -83,15 +82,18 @@ void cpld_update(void)
}
usb_request_status_t usb_vendor_request_cpld_checksum(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
static uint32_t cpld_crc;
uint8_t length;
if (stage == USB_TRANSFER_STAGE_SETUP)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
cpld_jtag_take(&jtag_cpld);
const bool checksum_success = cpld_xc2c64a_jtag_checksum(&jtag_cpld, &cpld_hackrf_verify, &cpld_crc);
const bool checksum_success = cpld_xc2c64a_jtag_checksum(
&jtag_cpld,
&cpld_hackrf_verify,
&cpld_crc);
cpld_jtag_release(&jtag_cpld);
if (!checksum_success) {
@ -100,8 +102,12 @@ usb_request_status_t usb_vendor_request_cpld_checksum(
length = (uint8_t) sizeof(cpld_crc);
memcpy(endpoint->buffer, &cpld_crc, length);
usb_transfer_schedule_block(endpoint->in, endpoint->buffer, length,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
endpoint->buffer,
length,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;

View File

@ -31,6 +31,7 @@
void cpld_update(void);
usb_request_status_t usb_vendor_request_cpld_checksum(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
#endif /* end of include guard: __USB_API_CPLD_H__ */

View File

@ -43,15 +43,15 @@ void m0_set_mode(enum m0_mode mode)
usb_request_status_t usb_vendor_request_get_m0_state(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP )
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(
endpoint->in,
(void*) &m0_state,
sizeof(m0_state),
NULL, NULL);
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
} else {

View File

@ -63,6 +63,7 @@ extern volatile struct m0_state m0_state;
void m0_set_mode(enum m0_mode mode);
usb_request_status_t usb_vendor_request_get_m0_state(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
#endif /*__M0_STATE_H__*/

View File

@ -28,7 +28,8 @@
#include <sct.h>
usb_request_status_t usb_vendor_request_operacake_get_boards(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
operacake_get_boards(endpoint->buffer);
@ -39,7 +40,8 @@ usb_request_status_t usb_vendor_request_operacake_get_boards(
}
usb_request_status_t usb_vendor_request_operacake_set_ports(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint8_t address, port_a, port_b;
address = endpoint->setup.value & 0xFF;
@ -53,8 +55,10 @@ usb_request_status_t usb_vendor_request_operacake_set_ports(
}
static unsigned char data[MAX_OPERACAKE_RANGES * 5];
usb_request_status_t usb_vendor_request_operacake_set_ranges(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint16_t i, freq_min, freq_max, num_ranges = 0;
uint8_t port;
@ -65,10 +69,13 @@ usb_request_status_t usb_vendor_request_operacake_set_ranges(
return USB_REQUEST_STATUS_STALL;
}
operacake_clear_ranges();
usb_transfer_schedule_block(endpoint->out, &data,
endpoint->setup.length, NULL, NULL);
usb_transfer_schedule_block(
endpoint->out,
&data,
endpoint->setup.length,
NULL,
NULL);
} else if (stage == USB_TRANSFER_STAGE_DATA) {
for (i = 0; i < endpoint->setup.length; i += 5) {
freq_min = data[i] << 8 | data[i + 1];
freq_max = data[i + 2] << 8 | data[i + 3];
@ -81,7 +88,8 @@ usb_request_status_t usb_vendor_request_operacake_set_ranges(
}
usb_request_status_t usb_vendor_request_operacake_gpio_test(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint16_t test_result;
uint8_t address = endpoint->setup.value & 0xFF;
@ -89,14 +97,20 @@ usb_request_status_t usb_vendor_request_operacake_gpio_test(
test_result = gpio_test(address);
endpoint->buffer[0] = test_result & 0xff;
endpoint->buffer[1] = test_result >> 8;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2, NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
2,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
}
return USB_REQUEST_STATUS_OK;
}
usb_request_status_t usb_vendor_request_operacake_set_mode(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint8_t address, mode;
address = endpoint->setup.value & 0xFF;
@ -109,7 +123,8 @@ usb_request_status_t usb_vendor_request_operacake_set_mode(
}
usb_request_status_t usb_vendor_request_operacake_get_mode(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint8_t address;
address = endpoint->setup.value & 0xFF;
@ -122,8 +137,10 @@ usb_request_status_t usb_vendor_request_operacake_get_mode(
}
static struct operacake_dwell_times dwell_times[SCT_EVENT_COUNT];
usb_request_status_t usb_vendor_request_operacake_set_dwell_times(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint16_t count;
uint32_t dwell;
@ -134,13 +151,18 @@ usb_request_status_t usb_vendor_request_operacake_set_dwell_times(
if ((count == 0) || (count > SCT_EVENT_COUNT)) {
return USB_REQUEST_STATUS_STALL;
}
usb_transfer_schedule_block(endpoint->out, &data,
endpoint->setup.length, NULL, NULL);
usb_transfer_schedule_block(
endpoint->out,
&data,
endpoint->setup.length,
NULL,
NULL);
} else if (stage == USB_TRANSFER_STAGE_DATA) {
count = endpoint->setup.length / 5;
for (int i = 0; i < count; i++) {
dwell = data[(i*5)+0] | (data[(i*5)+1] << 8) | (data[(i*5)+2] << 16) | (data[(i*5)+3] << 24);
dwell = data[(i * 5) + 0] | (data[(i * 5) + 1] << 8) |
(data[(i * 5) + 2] << 16) | (data[(i * 5) + 3] << 24);
port = data[(i * 5) + 4];
dwell_times[i].dwell = dwell;
dwell_times[i].port = port;

View File

@ -26,24 +26,31 @@
#include <usb_request.h>
usb_request_status_t usb_vendor_request_operacake_get_boards(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_operacake_set_ports(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_operacake_set_ranges(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_operacake_gpio_test(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_operacake_set_mode(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_operacake_get_mode(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_operacake_set_dwell_times(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
#endif /* end of include guard: __USB_API_OPERACAKE_H__ */

View File

@ -34,12 +34,15 @@
usb_request_status_t usb_vendor_request_write_max2837(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
if (endpoint->setup.index < MAX2837_NUM_REGS) {
if (endpoint->setup.value < MAX2837_DATA_REGS_MAX_VALUE) {
max2837_reg_write(&max2837, endpoint->setup.index, endpoint->setup.value);
max2837_reg_write(
&max2837,
endpoint->setup.index,
endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
@ -52,15 +55,20 @@ usb_request_status_t usb_vendor_request_write_max2837(
usb_request_status_t usb_vendor_request_read_max2837(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
if (endpoint->setup.index < MAX2837_NUM_REGS) {
const uint16_t value = max2837_reg_read(&max2837, endpoint->setup.index);
const uint16_t value =
max2837_reg_read(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value & 0xff;
endpoint->buffer[1] = value >> 8;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
2,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
@ -72,12 +80,15 @@ usb_request_status_t usb_vendor_request_read_max2837(
usb_request_status_t usb_vendor_request_write_si5351c(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
if (endpoint->setup.index < 256) {
if (endpoint->setup.value < 256) {
si5351c_write_single(&clock_gen, endpoint->setup.index, endpoint->setup.value);
si5351c_write_single(
&clock_gen,
endpoint->setup.index,
endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
@ -90,14 +101,19 @@ usb_request_status_t usb_vendor_request_write_si5351c(
usb_request_status_t usb_vendor_request_read_si5351c(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
if (endpoint->setup.index < 256) {
const uint8_t value = si5351c_read_single(&clock_gen, endpoint->setup.index);
const uint8_t value =
si5351c_read_single(&clock_gen, endpoint->setup.index);
endpoint->buffer[0] = value;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
@ -110,13 +126,14 @@ usb_request_status_t usb_vendor_request_read_si5351c(
#ifndef RAD1O
usb_request_status_t usb_vendor_request_write_rffc5071(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
if( stage == USB_TRANSFER_STAGE_SETUP )
const usb_transfer_stage_t stage)
{
if( endpoint->setup.index < RFFC5071_NUM_REGS )
{
rffc5071_reg_write(&mixer, endpoint->setup.index, endpoint->setup.value);
if (stage == USB_TRANSFER_STAGE_SETUP) {
if (endpoint->setup.index < RFFC5071_NUM_REGS) {
rffc5071_reg_write(
&mixer,
endpoint->setup.index,
endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
@ -128,18 +145,20 @@ usb_request_status_t usb_vendor_request_write_rffc5071(
usb_request_status_t usb_vendor_request_read_rffc5071(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
uint16_t value;
if( stage == USB_TRANSFER_STAGE_SETUP )
{
if( endpoint->setup.index < RFFC5071_NUM_REGS )
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
if (endpoint->setup.index < RFFC5071_NUM_REGS) {
value = rffc5071_reg_read(&mixer, endpoint->setup.index);
endpoint->buffer[0] = value & 0xff;
endpoint->buffer[1] = value >> 8;
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
2,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
@ -152,8 +171,8 @@ usb_request_status_t usb_vendor_request_read_rffc5071(
usb_request_status_t usb_vendor_request_set_clkout_enable(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
si5351c_clkout_enable(&clock_gen, endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);

View File

@ -28,31 +28,24 @@
usb_request_status_t usb_vendor_request_write_max2837(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_read_max2837(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_write_si5351c(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_read_si5351c(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_write_rffc5071(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_read_rffc5071(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_clkout_enable(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
#endif /* end of include guard: __USB_API_REGISTER_H__ */

View File

@ -34,7 +34,8 @@
uint8_t spiflash_buffer[256U];
usb_request_status_t usb_vendor_request_erase_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
spi_bus_start(spi_flash.bus, &ssp_config_w25q80bv);
@ -47,7 +48,8 @@ usb_request_status_t usb_vendor_request_erase_spiflash(
}
usb_request_status_t usb_vendor_request_write_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint32_t addr = 0;
uint16_t len = 0;
@ -55,12 +57,16 @@ usb_request_status_t usb_vendor_request_write_spiflash(
if (stage == USB_TRANSFER_STAGE_SETUP) {
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes)
|| ((addr + len) > spi_flash.num_bytes)) {
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes) ||
((addr + len) > spi_flash.num_bytes)) {
return USB_REQUEST_STATUS_STALL;
} else {
usb_transfer_schedule_block(endpoint->out, &spiflash_buffer[0], len,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->out,
&spiflash_buffer[0],
len,
NULL,
NULL);
spi_bus_start(spi_flash.bus, &ssp_config_w25q80bv);
w25q80bv_setup(&spi_flash);
return USB_REQUEST_STATUS_OK;
@ -69,8 +75,8 @@ usb_request_status_t usb_vendor_request_write_spiflash(
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
/* This check is redundant but makes me feel better. */
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes)
|| ((addr + len) > spi_flash.num_bytes)) {
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes) ||
((addr + len) > spi_flash.num_bytes)) {
return USB_REQUEST_STATUS_STALL;
} else {
w25q80bv_program(&spi_flash, addr, len, &spiflash_buffer[0]);
@ -83,50 +89,56 @@ usb_request_status_t usb_vendor_request_write_spiflash(
}
usb_request_status_t usb_vendor_request_read_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint32_t addr;
uint16_t len;
if (stage == USB_TRANSFER_STAGE_SETUP)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes)
|| ((addr + len) > spi_flash.num_bytes)) {
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes) ||
((addr + len) > spi_flash.num_bytes)) {
return USB_REQUEST_STATUS_STALL;
} else {
w25q80bv_read(&spi_flash, addr, len, &spiflash_buffer[0]);
usb_transfer_schedule_block(endpoint->in, &spiflash_buffer[0], len,
NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&spiflash_buffer[0],
len,
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
}
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
} else if (stage == USB_TRANSFER_STAGE_DATA) {
addr = (endpoint->setup.value << 16) | endpoint->setup.index;
len = endpoint->setup.length;
/* This check is redundant but makes me feel better. */
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes)
|| ((addr + len) > spi_flash.num_bytes))
{
if ((len > spi_flash.page_len) || (addr > spi_flash.num_bytes) ||
((addr + len) > spi_flash.num_bytes)) {
return USB_REQUEST_STATUS_STALL;
} else
{
} else {
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
} else
{
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_spiflash_status(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
w25q80bv_get_full_status(&spi_flash, endpoint->buffer);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 2, NULL, NULL);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
2,
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
usb_transfer_schedule_ack(endpoint->out);
@ -137,7 +149,8 @@ usb_request_status_t usb_vendor_request_spiflash_status(
}
usb_request_status_t usb_vendor_request_spiflash_clear_status(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
w25q80bv_clear_status(&spi_flash);

View File

@ -27,14 +27,19 @@
#include <usb_request.h>
usb_request_status_t usb_vendor_request_erase_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_write_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_read_spiflash(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_spiflash_status(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_spiflash_clear_status(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
#endif /* end of include guard: __USB_API_SPIFLASH_H__ */

View File

@ -49,7 +49,8 @@ static enum sweep_style style = LINEAR;
/* Do this before starting sweep mode with request_transceiver_mode(). */
usb_request_status_t usb_vendor_request_init_sweep(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
uint32_t num_bytes;
int i;
@ -63,22 +64,27 @@ usb_request_status_t usb_vendor_request_init_sweep(
if ((1 > num_ranges) || (MAX_RANGES < num_ranges)) {
return USB_REQUEST_STATUS_STALL;
}
usb_transfer_schedule_block(endpoint->out, &data,
endpoint->setup.length, NULL, NULL);
usb_transfer_schedule_block(
endpoint->out,
&data,
endpoint->setup.length,
NULL,
NULL);
} else if (stage == USB_TRANSFER_STAGE_DATA) {
step_width = ((uint32_t)(data[3]) << 24) | ((uint32_t)(data[2]) << 16)
| ((uint32_t)(data[1]) << 8) | data[0];
step_width = ((uint32_t) (data[3]) << 24) | ((uint32_t) (data[2]) << 16) |
((uint32_t) (data[1]) << 8) | data[0];
if (1 > step_width) {
return USB_REQUEST_STATUS_STALL;
}
offset = ((uint32_t)(data[7]) << 24) | ((uint32_t)(data[6]) << 16)
| ((uint32_t)(data[5]) << 8) | data[4];
offset = ((uint32_t) (data[7]) << 24) | ((uint32_t) (data[6]) << 16) |
((uint32_t) (data[5]) << 8) | data[4];
style = data[8];
if (INTERLEAVED < style) {
return USB_REQUEST_STATUS_STALL;
}
for (i = 0; i < (num_ranges * 2); i++) {
frequencies[i] = ((uint16_t)(data[10+i*2]) << 8) + data[9+i*2];
frequencies[i] =
((uint16_t) (data[10 + i * 2]) << 8) + data[9 + i * 2];
}
sweep_freq = (uint64_t) frequencies[0] * FREQ_GRANULARITY;
set_freq(sweep_freq + offset);
@ -97,7 +103,8 @@ void sweep_bulk_transfer_complete(void *user_data, unsigned int bytes_transferre
m0_state.m4_count += 3 * 0x4000;
}
void sweep_mode(uint32_t seq) {
void sweep_mode(uint32_t seq)
{
// Sweep mode is implemented using timed M0 operations, as follows:
//
// 0. M4 initially puts the M0 into RX mode, with an m0_count threshold
@ -137,7 +144,6 @@ void sweep_mode(uint32_t seq) {
baseband_streaming_enable(&sgpio_config);
while (transceiver_request.seq == seq) {
// Wait for M0 to finish receiving a buffer.
while (m0_state.active_mode != M0_MODE_WAIT)
if (transceiver_request.seq != seq)
@ -165,8 +171,8 @@ void sweep_mode(uint32_t seq) {
&usb_endpoint_bulk_in,
buffer,
0x4000,
sweep_bulk_transfer_complete, NULL
);
sweep_bulk_transfer_complete,
NULL);
// Use other buffer next time.
phase = (phase + 1) % 2;
@ -174,9 +180,13 @@ void sweep_mode(uint32_t seq) {
if (++blocks_queued == dwell_blocks) {
// Calculate next sweep frequency.
if (INTERLEAVED == style) {
if(!odd && ((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY))) {
if (!odd &&
((sweep_freq + step_width) >=
((uint64_t) frequencies[1 + range * 2] *
FREQ_GRANULARITY))) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
sweep_freq = (uint64_t) frequencies[range * 2] *
FREQ_GRANULARITY;
} else {
if (odd) {
sweep_freq += step_width / 4;
@ -186,9 +196,12 @@ void sweep_mode(uint32_t seq) {
}
odd = !odd;
} else {
if((sweep_freq + step_width) >= ((uint64_t)frequencies[1+range*2] * FREQ_GRANULARITY)) {
if ((sweep_freq + step_width) >=
((uint64_t) frequencies[1 + range * 2] *
FREQ_GRANULARITY)) {
range = (range + 1) % num_ranges;
sweep_freq = (uint64_t)frequencies[range*2] * FREQ_GRANULARITY;
sweep_freq = (uint64_t) frequencies[range * 2] *
FREQ_GRANULARITY;
} else {
sweep_freq += step_width;
}

View File

@ -32,7 +32,8 @@ enum sweep_style {
};
usb_request_status_t usb_vendor_request_init_sweep(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
void sweep_mode(uint32_t seq);

View File

@ -70,10 +70,11 @@ set_sample_r_params_t set_sample_r_params;
usb_request_status_t usb_vendor_request_set_baseband_filter_bandwidth(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
const uint32_t bandwidth = (endpoint->setup.index << 16) | endpoint->setup.value;
const uint32_t bandwidth =
(endpoint->setup.index << 16) | endpoint->setup.value;
if (baseband_filter_bandwidth_set(bandwidth)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
@ -88,22 +89,23 @@ usb_request_status_t usb_vendor_request_set_freq(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP)
{
usb_transfer_schedule_block(endpoint->out, &set_freq_params, sizeof(set_freq_params_t),
NULL, NULL);
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(
endpoint->out,
&set_freq_params,
sizeof(set_freq_params_t),
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
const uint64_t freq = set_freq_params.freq_mhz * 1000000ULL + set_freq_params.freq_hz;
if( set_freq(freq) )
{
} else if (stage == USB_TRANSFER_STAGE_DATA) {
const uint64_t freq =
set_freq_params.freq_mhz * 1000000ULL + set_freq_params.freq_hz;
if (set_freq(freq)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else
{
} else {
return USB_REQUEST_STATUS_OK;
}
}
@ -112,27 +114,30 @@ usb_request_status_t usb_vendor_request_set_sample_rate_frac(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP)
{
usb_transfer_schedule_block(endpoint->out, &set_sample_r_params, sizeof(set_sample_r_params_t),
NULL, NULL);
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(
endpoint->out,
&set_sample_r_params,
sizeof(set_sample_r_params_t),
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA)
{
if( sample_rate_frac_set(set_sample_r_params.freq_hz * 2, set_sample_r_params.divider ) )
{
} else if (stage == USB_TRANSFER_STAGE_DATA) {
if (sample_rate_frac_set(
set_sample_r_params.freq_hz * 2,
set_sample_r_params.divider)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
return USB_REQUEST_STATUS_STALL;
} else
{
} else {
return USB_REQUEST_STATUS_OK;
}
}
usb_request_status_t usb_vendor_request_set_amp_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
@ -157,11 +162,17 @@ usb_request_status_t usb_vendor_request_set_lna_gain(
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
const uint8_t value = max2837_set_lna_gain(&max2837, endpoint->setup.index);
const uint8_t value =
max2837_set_lna_gain(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value;
if(value) hackrf_ui()->set_bb_lna_gain(endpoint->setup.index);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
if (value)
hackrf_ui()->set_bb_lna_gain(endpoint->setup.index);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
@ -169,14 +180,21 @@ usb_request_status_t usb_vendor_request_set_lna_gain(
}
usb_request_status_t usb_vendor_request_set_vga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
const uint8_t value = max2837_set_vga_gain(&max2837, endpoint->setup.index);
const uint8_t value =
max2837_set_vga_gain(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value;
if(value) hackrf_ui()->set_bb_vga_gain(endpoint->setup.index);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
if (value)
hackrf_ui()->set_bb_vga_gain(endpoint->setup.index);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
@ -184,14 +202,21 @@ usb_request_status_t usb_vendor_request_set_vga_gain(
}
usb_request_status_t usb_vendor_request_set_txvga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
const uint8_t value = max2837_set_txvga_gain(&max2837, endpoint->setup.index);
const uint8_t value =
max2837_set_txvga_gain(&max2837, endpoint->setup.index);
endpoint->buffer[0] = value;
if(value) hackrf_ui()->set_bb_tx_vga_gain(endpoint->setup.index);
usb_transfer_schedule_block(endpoint->in, &endpoint->buffer, 1,
NULL, NULL);
if (value)
hackrf_ui()->set_bb_tx_vga_gain(endpoint->setup.index);
usb_transfer_schedule_block(
endpoint->in,
&endpoint->buffer,
1,
NULL,
NULL);
usb_transfer_schedule_ack(endpoint->out);
return USB_REQUEST_STATUS_OK;
}
@ -199,7 +224,8 @@ usb_request_status_t usb_vendor_request_set_txvga_gain(
}
usb_request_status_t usb_vendor_request_set_antenna_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage)
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
switch (endpoint->setup.value) {
@ -224,12 +250,18 @@ usb_request_status_t usb_vendor_request_set_freq_explicit(
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
usb_transfer_schedule_block(endpoint->out, &explicit_params,
sizeof(struct set_freq_explicit_params), NULL, NULL);
usb_transfer_schedule_block(
endpoint->out,
&explicit_params,
sizeof(struct set_freq_explicit_params),
NULL,
NULL);
return USB_REQUEST_STATUS_OK;
} else if (stage == USB_TRANSFER_STAGE_DATA) {
if (set_freq_explicit(explicit_params.if_freq_hz,
explicit_params.lo_freq_hz, explicit_params.path)) {
if (set_freq_explicit(
explicit_params.if_freq_hz,
explicit_params.lo_freq_hz,
explicit_params.path)) {
usb_transfer_schedule_ack(endpoint->in);
return USB_REQUEST_STATUS_OK;
}
@ -243,7 +275,8 @@ static volatile hw_sync_mode_t _hw_sync_mode = HW_SYNC_MODE_OFF;
static volatile uint32_t _tx_underrun_limit;
static volatile uint32_t _rx_overrun_limit;
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode) {
void set_hw_sync_mode(const hw_sync_mode_t new_hw_sync_mode)
{
_hw_sync_mode = new_hw_sync_mode;
}
@ -276,8 +309,8 @@ void transceiver_shutdown(void)
m0_set_mode(M0_MODE_IDLE);
}
void transceiver_startup(const transceiver_mode_t mode) {
void transceiver_startup(const transceiver_mode_t mode)
{
hackrf_ui()->set_transceiver_mode(mode);
switch (mode) {
@ -341,8 +374,8 @@ usb_request_status_t usb_vendor_request_set_hw_sync_mode(
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
_tx_underrun_limit = value;
@ -353,8 +386,8 @@ usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
uint32_t value = (endpoint->setup.index << 16) + endpoint->setup.value;
_rx_overrun_limit = value;
@ -369,7 +402,8 @@ void transceiver_bulk_transfer_complete(void *user_data, unsigned int bytes_tran
m0_state.m4_count += bytes_transferred;
}
void rx_mode(uint32_t seq) {
void rx_mode(uint32_t seq)
{
uint32_t usb_count = 0;
transceiver_startup(TRANSCEIVER_MODE_RX);
@ -383,8 +417,7 @@ void rx_mode(uint32_t seq) {
&usb_bulk_buffer[usb_count & USB_BULK_BUFFER_MASK],
USB_TRANSFER_SIZE,
transceiver_bulk_transfer_complete,
NULL
);
NULL);
usb_count += USB_TRANSFER_SIZE;
}
}
@ -392,7 +425,8 @@ void rx_mode(uint32_t seq) {
transceiver_shutdown();
}
void tx_mode(uint32_t seq) {
void tx_mode(uint32_t seq)
{
unsigned int usb_count = 0;
transceiver_startup(TRANSCEIVER_MODE_TX);
@ -403,8 +437,7 @@ void tx_mode(uint32_t seq) {
&usb_bulk_buffer[0x0000],
USB_TRANSFER_SIZE,
transceiver_bulk_transfer_complete,
NULL
);
NULL);
usb_count += USB_TRANSFER_SIZE;
// Enable streaming. The M0 is in TX_START mode, and will automatically
@ -420,8 +453,7 @@ void tx_mode(uint32_t seq) {
&usb_bulk_buffer[usb_count & USB_BULK_BUFFER_MASK],
USB_TRANSFER_SIZE,
transceiver_bulk_transfer_complete,
NULL
);
NULL);
usb_count += USB_TRANSFER_SIZE;
}
}

View File

@ -48,24 +48,32 @@ usb_request_status_t usb_vendor_request_set_sample_rate_frac(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_amp_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_lna_gain(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_vga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_txvga_gain(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_antenna_enable(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_freq_explicit(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_hw_sync_mode(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_tx_underrun_limit(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
usb_request_status_t usb_vendor_request_set_rx_overrun_limit(
usb_endpoint_t* const endpoint, const usb_transfer_stage_t stage);
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage);
void request_transceiver_mode(transceiver_mode_t mode);
void transceiver_startup(transceiver_mode_t mode);

View File

@ -30,8 +30,8 @@
usb_request_status_t usb_vendor_request_set_ui_enable(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
) {
const usb_transfer_stage_t stage)
{
if (stage == USB_TRANSFER_STAGE_SETUP) {
hackrf_ui_set_enable(endpoint->setup.value);
usb_transfer_schedule_ack(endpoint->in);

View File

@ -27,7 +27,6 @@
usb_request_status_t usb_vendor_request_set_ui_enable(
usb_endpoint_t* const endpoint,
const usb_transfer_stage_t stage
);
const usb_transfer_stage_t stage);
#endif /* end of include guard: __USB_API_UI_H__ */

View File

@ -152,7 +152,6 @@ uint8_t usb_descriptor_configuration_high_speed[] = {
0, // TERMINATOR
};
uint8_t usb_descriptor_string_languages[] = {
0x04, // bLength
USB_DESCRIPTOR_TYPE_STRING, // bDescriptorType

View File

@ -30,7 +30,8 @@ extern uint8_t usb_descriptor_string_manufacturer[];
extern uint8_t usb_descriptor_string_product[];
#define USB_DESCRIPTOR_STRING_SERIAL_LEN 32
#define USB_DESCRIPTOR_STRING_SERIAL_BUF_LEN (USB_DESCRIPTOR_STRING_SERIAL_LEN*2 + 2) /* UTF-16LE */
#define USB_DESCRIPTOR_STRING_SERIAL_BUF_LEN \
(USB_DESCRIPTOR_STRING_SERIAL_LEN * 2 + 2) /* UTF-16LE */
extern uint8_t usb_descriptor_string_serial_number[];
extern uint8_t* usb_descriptor_strings[];

View File

@ -38,7 +38,6 @@ usb_configuration_t usb_configuration_full_speed = {
.descriptor = usb_descriptor_configuration_full_speed,
};
usb_configuration_t* usb_configurations[] = {
&usb_configuration_high_speed,
&usb_configuration_full_speed,

View File

@ -56,8 +56,7 @@ usb_endpoint_t usb_endpoint_bulk_in = {
.in = &usb_endpoint_bulk_in,
.out = 0,
.setup_complete = 0,
.transfer_complete = usb_queue_transfer_complete
};
.transfer_complete = usb_queue_transfer_complete};
static USB_DEFINE_QUEUE(usb_endpoint_bulk_in, 1);
usb_endpoint_t usb_endpoint_bulk_out = {
@ -66,8 +65,5 @@ usb_endpoint_t usb_endpoint_bulk_out = {
.in = 0,
.out = &usb_endpoint_bulk_out,
.setup_complete = 0,
.transfer_complete = usb_queue_transfer_complete
};
.transfer_complete = usb_queue_transfer_complete};
static USB_DEFINE_QUEUE(usb_endpoint_bulk_out, 1);

View File

@ -35,7 +35,8 @@ typedef int bool;
#define CLOCK_UNDEFINED 0xFF
#define REGISTER_INVALID 32767
int parse_int(char* s, uint8_t* const value) {
int parse_int(char* s, uint8_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
long long_value;
@ -62,14 +63,17 @@ int parse_int(char* s, uint8_t* const value) {
}
}
int si5351c_read_register(hackrf_device* device, const uint16_t register_number) {
int si5351c_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result = hackrf_si5351c_read(device, register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%3d] -> 0x%02x\n", register_number, register_value);
} else {
printf("hackrf_si5351c_read() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_si5351c_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
@ -78,15 +82,17 @@ int si5351c_read_register(hackrf_device* device, const uint16_t register_number)
int si5351c_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_si5351c_write(device, register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%2x -> [%3d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_max2837_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
@ -101,7 +107,8 @@ int si5351c_write_register(
#define SI5351C_CLK_SRC_MULTISYNTH_0_4 2
#define SI5351C_CLK_SRC_MULTISYNTH_SELF 3
void print_clk_control(uint16_t clk_ctrl) {
void print_clk_control(uint16_t clk_ctrl)
{
uint8_t clk_src, clk_pwr;
printf("\tclock control = ");
if (clk_ctrl & SI5351C_CLK_POWERDOWN)
@ -150,7 +157,8 @@ void print_clk_control(uint16_t clk_ctrl) {
}
}
int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number) {
int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number)
{
uint_fast8_t i, reg_base, reg_number;
uint16_t parameters[8], clk_control;
uint32_t p1, p2, p3, r_div;
@ -173,22 +181,22 @@ int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_
}
}
p1 = ((parameters[2] & 0x03) << 16)
| (parameters[3] << 8)
| parameters[4];
p2 = ((parameters[5] & 0x0F) << 16)
| (parameters[6] << 8)
| parameters[7];
p3 = ((parameters[5] & 0xF0) << 12)
| (parameters[0] << 8)
| parameters[1];
p1 = ((parameters[2] & 0x03) << 16) | (parameters[3] << 8) |
parameters[4];
p2 = ((parameters[5] & 0x0F) << 16) | (parameters[6] << 8) |
parameters[7];
p3 = ((parameters[5] & 0xF0) << 12) | (parameters[0] << 8) |
parameters[1];
r_div = (parameters[2] >> 4) & 0x7;
printf("\tp1 = %u\n", p1);
printf("\tp2 = %u\n", p2);
printf("\tp3 = %u\n", p3);
if (p3)
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", ((double)800 / (double)(((double)p1*p3 + p2 + 512*p3)/(double)(128*p3))) / div_lut[r_div] );
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n",
((double) 800 /
(double) (((double) p1 * p3 + p2 + 512 * p3) / (double) (128 * p3))) /
div_lut[r_div]);
} else {
// MS6 and 7 are integer only
unsigned int parms;
@ -196,22 +204,26 @@ int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_
for (i = 0; i < 3; i++) {
uint_fast8_t reg_number = reg_base + i;
int result = hackrf_si5351c_read(device, reg_number, &parameters[i]);
int result =
hackrf_si5351c_read(device, reg_number, &parameters[i]);
if (result != HACKRF_SUCCESS) {
return result;
}
}
r_div = (ms_number == 6) ? parameters[2] & 0x7 : (parameters[2] & 0x70) >> 4 ;
r_div = (ms_number == 6) ? parameters[2] & 0x7 :
(parameters[2] & 0x70) >> 4;
parms = (ms_number == 6) ? parameters[0] : parameters[1];
printf("\tp1_int = %u\n", parms);
if (parms)
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", (800.0f / parms) / div_lut[r_div] );
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n",
(800.0f / parms) / div_lut[r_div]);
}
printf("\toutput divider = %u\n", div_lut[r_div]);
return HACKRF_SUCCESS;
}
int si5351c_read_configuration(hackrf_device* device) {
int si5351c_read_configuration(hackrf_device* device)
{
uint_fast8_t ms_number;
int result;
@ -224,7 +236,8 @@ int si5351c_read_configuration(hackrf_device* device) {
return HACKRF_SUCCESS;
}
static void usage() {
static void usage()
{
printf("hackrf_clock - HackRF clock configuration utility\n");
printf("Usage:\n");
printf("\t-h, --help: this help\n");
@ -245,7 +258,8 @@ static struct option long_options[] = {
{0, 0, 0, 0},
};
int main(int argc, char** argv) {
int main(int argc, char** argv)
{
hackrf_device* device = NULL;
int opt, option_index = 0;
bool read = false;
@ -256,11 +270,14 @@ int main(int argc, char** argv) {
int result = hackrf_init();
if (result) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
while( (opt = getopt_long(argc, argv, "r:ao:d:h?", long_options, &option_index)) != EOF ) {
while ((opt = getopt_long(argc, argv, "r:ao:d:h?", long_options, &option_index)) !=
EOF) {
switch (opt) {
case 'r':
read = true;
@ -291,28 +308,35 @@ int main(int argc, char** argv) {
}
if (result != HACKRF_SUCCESS) {
printf("argument error: %s (%d)\n", hackrf_error_name(result), result);
printf("argument error: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (!clkout && !read) {
fprintf(stderr, "Either read or enable CLKOUT option must be specified.\n");
fprintf(stderr,
"Either read or enable CLKOUT option must be specified.\n");
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result) {
printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (clkout) {
result = hackrf_set_clkout_enable(device, clkout_enable);
if (result) {
printf("hackrf_set_clkout_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_set_clkout_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
@ -328,7 +352,9 @@ int main(int argc, char** argv) {
result = hackrf_close(device);
if (result) {
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}

View File

@ -100,8 +100,8 @@ int main(int argc, char** argv)
ssize_t bytes_read;
uint8_t* pdata = &data[0];
while ((opt = getopt_long(argc, argv, "x:d:h?", long_options,
&option_index)) != EOF) {
while ((opt = getopt_long(argc, argv, "x:d:h?", long_options, &option_index)) !=
EOF) {
switch (opt) {
case 'x':
path = optarg;
@ -129,8 +129,7 @@ int main(int argc, char** argv)
}
infile = fopen(path, "rb");
if (infile == NULL)
{
if (infile == NULL) {
fprintf(stderr, "Failed to open file: %s\n", path);
return EXIT_FAILURE;
}
@ -150,10 +149,11 @@ int main(int argc, char** argv)
total_length = length;
bytes_read = fread(data, 1, total_length, infile);
if (bytes_read != total_length)
{
fprintf(stderr, "Failed to read all bytes (read %d bytes instead of %d bytes).\n",
(int)bytes_read, total_length);
if (bytes_read != total_length) {
fprintf(stderr,
"Failed to read all bytes (read %d bytes instead of %d bytes).\n",
(int) bytes_read,
total_length);
fclose(infile);
infile = NULL;
return EXIT_FAILURE;
@ -161,25 +161,30 @@ int main(int argc, char** argv)
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
printf("LED1/2/3 blinking means CPLD program success.\nLED3/RED steady means error.\n");
printf("Wait message 'Write finished' or in case of LED3/RED steady, Power OFF/Disconnect the HackRF.\n");
result = hackrf_cpld_write(device, pdata, total_length);
if (result != HACKRF_SUCCESS)
{
fprintf(stderr, "hackrf_cpld_write() failed: %s (%d)\n",
hackrf_error_name(result), result);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_cpld_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
fclose(infile);
infile = NULL;
return EXIT_FAILURE;
@ -190,10 +195,11 @@ int main(int argc, char** argv)
fflush(stdout);
result = hackrf_close(device);
if( result != HACKRF_SUCCESS )
{
fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result), result);
if (result != HACKRF_SUCCESS) {
fprintf(stderr,
"hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
fclose(infile);
infile = NULL;
return EXIT_FAILURE;

View File

@ -36,7 +36,8 @@ typedef int bool;
#define REGISTER_INVALID 32767
int parse_int(char* s, uint32_t* const value) {
int parse_int(char* s, uint32_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
long long_value;
@ -63,19 +64,24 @@ int parse_int(char* s, uint32_t* const value) {
}
}
int max2837_read_register(hackrf_device* device, const uint16_t register_number) {
int max2837_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result = hackrf_max2837_read(device, (uint8_t)register_number, &register_value);
int result =
hackrf_max2837_read(device, (uint8_t) register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%2d] -> 0x%03x\n", register_number, register_value);
} else {
printf("hackrf_max2837_read() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_max2837_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int max2837_read_registers(hackrf_device* device) {
int max2837_read_registers(hackrf_device* device)
{
uint16_t register_number;
int result = HACKRF_SUCCESS;
@ -91,33 +97,39 @@ int max2837_read_registers(hackrf_device* device) {
int max2837_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_max2837_write(device, (uint8_t) register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%03x -> [%2d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_max2837_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int si5351c_read_register(hackrf_device* device, const uint16_t register_number) {
int si5351c_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result = hackrf_si5351c_read(device, register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%3d] -> 0x%02x\n", register_number, register_value);
} else {
printf("hackrf_si5351c_read() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_si5351c_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int si5351c_read_registers(hackrf_device* device) {
int si5351c_read_registers(hackrf_device* device)
{
uint16_t register_number;
int result = HACKRF_SUCCESS;
@ -134,15 +146,17 @@ int si5351c_read_registers(hackrf_device* device) {
int si5351c_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_si5351c_write(device, register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%2x -> [%3d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_max2837_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
@ -157,7 +171,8 @@ int si5351c_write_register(
#define SI5351C_CLK_SRC_MULTISYNTH_0_4 2
#define SI5351C_CLK_SRC_MULTISYNTH_SELF 3
void print_clk_control(uint16_t clk_ctrl) {
void print_clk_control(uint16_t clk_ctrl)
{
uint8_t clk_src, clk_pwr;
printf("\tclock control = \n");
if (clk_ctrl & SI5351C_CLK_POWERDOWN)
@ -206,7 +221,8 @@ void print_clk_control(uint16_t clk_ctrl) {
}
}
int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number) {
int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number)
{
uint_fast8_t i, reg_base, reg_number;
uint16_t parameters[8], clk_control;
uint32_t p1, p2, p3, r_div;
@ -229,22 +245,22 @@ int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_
}
}
p1 = ((parameters[2] & 0x03) << 16)
| (parameters[3] << 8)
| parameters[4];
p2 = ((parameters[5] & 0x0F) << 16)
| (parameters[6] << 8)
| parameters[7];
p3 = ((parameters[5] & 0xF0) << 12)
| (parameters[0] << 8)
| parameters[1];
p1 = ((parameters[2] & 0x03) << 16) | (parameters[3] << 8) |
parameters[4];
p2 = ((parameters[5] & 0x0F) << 16) | (parameters[6] << 8) |
parameters[7];
p3 = ((parameters[5] & 0xF0) << 12) | (parameters[0] << 8) |
parameters[1];
r_div = (parameters[2] >> 4) & 0x7;
printf("\tp1 = %u\n", p1);
printf("\tp2 = %u\n", p2);
printf("\tp3 = %u\n", p3);
if (p3)
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", ((double)800 / (double)(((double)p1*p3 + p2 + 512*p3)/(double)(128*p3))) / div_lut[r_div] );
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n",
((double) 800 /
(double) (((double) p1 * p3 + p2 + 512 * p3) / (double) (128 * p3))) /
div_lut[r_div]);
} else {
// MS6 and 7 are integer only
unsigned int parms;
@ -252,22 +268,26 @@ int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_
for (i = 0; i < 3; i++) {
uint_fast8_t reg_number = reg_base + i;
int result = hackrf_si5351c_read(device, reg_number, &parameters[i]);
int result =
hackrf_si5351c_read(device, reg_number, &parameters[i]);
if (result != HACKRF_SUCCESS) {
return result;
}
}
r_div = (ms_number == 6) ? parameters[2] & 0x7 : (parameters[2] & 0x70) >> 4 ;
r_div = (ms_number == 6) ? parameters[2] & 0x7 :
(parameters[2] & 0x70) >> 4;
parms = (ms_number == 6) ? parameters[0] : parameters[1];
printf("\tp1_int = %u\n", parms);
if (parms)
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", (800.0f / parms) / div_lut[r_div] );
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n",
(800.0f / parms) / div_lut[r_div]);
}
printf("\toutput divider = %u\n", div_lut[r_div]);
return HACKRF_SUCCESS;
}
int si5351c_read_configuration(hackrf_device* device) {
int si5351c_read_configuration(hackrf_device* device)
{
uint_fast8_t ms_number;
int result;
@ -287,20 +307,25 @@ int si5351c_read_configuration(hackrf_device* device) {
* we use that name here and present it to the user.
*/
int rffc5072_read_register(hackrf_device* device, const uint16_t register_number) {
int rffc5072_read_register(hackrf_device* device, const uint16_t register_number)
{
uint16_t register_value;
int result = hackrf_rffc5071_read(device, (uint8_t)register_number, &register_value);
int result =
hackrf_rffc5071_read(device, (uint8_t) register_number, &register_value);
if (result == HACKRF_SUCCESS) {
printf("[%2d] -> 0x%03x\n", register_number, register_value);
} else {
printf("hackrf_rffc5071_read() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_rffc5071_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
}
int rffc5072_read_registers(hackrf_device* device) {
int rffc5072_read_registers(hackrf_device* device)
{
uint16_t register_number;
int result = HACKRF_SUCCESS;
@ -317,15 +342,17 @@ int rffc5072_read_registers(hackrf_device* device) {
int rffc5072_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
const uint16_t register_value)
{
int result = HACKRF_SUCCESS;
result = hackrf_rffc5071_write(device, (uint8_t) register_number, register_value);
if (result == HACKRF_SUCCESS) {
printf("0x%03x -> [%2d]\n", register_value, register_number);
} else {
printf("hackrf_rffc5071_write() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_rffc5071_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return result;
@ -338,8 +365,8 @@ enum parts {
PART_RFFC5072 = 3,
};
int read_register(hackrf_device* device, uint8_t part,
const uint16_t register_number) {
int read_register(hackrf_device* device, uint8_t part, const uint16_t register_number)
{
switch (part) {
case PART_MAX2837:
return max2837_read_register(device, register_number);
@ -351,7 +378,8 @@ int read_register(hackrf_device* device, uint8_t part,
return HACKRF_ERROR_INVALID_PARAM;
}
int read_registers(hackrf_device* device, uint8_t part) {
int read_registers(hackrf_device* device, uint8_t part)
{
switch (part) {
case PART_MAX2837:
return max2837_read_registers(device);
@ -363,9 +391,12 @@ int read_registers(hackrf_device* device, uint8_t part) {
return HACKRF_ERROR_INVALID_PARAM;
}
int write_register(hackrf_device* device, uint8_t part,
int write_register(
hackrf_device* device,
uint8_t part,
const uint16_t register_number,
const uint16_t register_value) {
const uint16_t register_value)
{
switch (part) {
case PART_MAX2837:
return max2837_write_register(device, register_number, register_value);
@ -377,7 +408,8 @@ int write_register(hackrf_device* device, uint8_t part,
return HACKRF_ERROR_INVALID_PARAM;
}
static const char * mode_name(uint32_t mode) {
static const char* mode_name(uint32_t mode)
{
const char* mode_names[] = {"IDLE", "WAIT", "RX", "TX_START", "TX_RUN"};
const uint32_t num_modes = sizeof(mode_names) / sizeof(mode_names[0]);
if (mode < num_modes)
@ -386,7 +418,8 @@ static const char * mode_name(uint32_t mode) {
return "UNKNOWN";
}
static const char * error_name(uint32_t error) {
static const char* error_name(uint32_t error)
{
const char* error_names[] = {"NONE", "RX_TIMEOUT", "TX_TIMEOUT"};
const uint32_t num_errors = sizeof(error_names) / sizeof(error_names[0]);
if (error < num_errors)
@ -395,12 +428,16 @@ static const char * error_name(uint32_t error) {
return "UNKNOWN";
}
static void print_state(hackrf_m0_state *state) {
static void print_state(hackrf_m0_state* state)
{
printf("M0 state:\n");
printf("Requested mode: %u (%s) [%s]\n",
state->requested_mode, mode_name(state->requested_mode),
state->requested_mode,
mode_name(state->requested_mode),
state->request_flag ? "pending" : "complete");
printf("Active mode: %u (%s)\n", state->active_mode, mode_name(state->active_mode));
printf("Active mode: %u (%s)\n",
state->active_mode,
mode_name(state->active_mode));
printf("M0 count: %u bytes\n", state->m0_count);
printf("M4 count: %u bytes\n", state->m4_count);
printf("Number of shortfalls: %u\n", state->num_shortfalls);
@ -411,7 +448,8 @@ static void print_state(hackrf_m0_state *state) {
printf("Error: %u (%s)\n", state->error, error_name(state->error));
}
static void usage() {
static void usage()
{
printf("\nUsage:\n");
printf("\t-h, --help: this help\n");
printf("\t-n, --register <n>: set register number for read/write operations\n");
@ -451,7 +489,8 @@ static struct option long_options[] = {
{0, 0, 0, 0},
};
int main(int argc, char** argv) {
int main(int argc, char** argv)
{
int opt;
uint32_t register_number = REGISTER_INVALID;
uint32_t register_value;
@ -472,11 +511,18 @@ int main(int argc, char** argv) {
int result = hackrf_init();
if (result) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfST:R:h?u:", long_options, &option_index)) != EOF ) {
while ((opt = getopt_long(
argc,
argv,
"n:rw:d:cmsfST:R:h?u:",
long_options,
&option_index)) != EOF) {
switch (opt) {
case 'n':
result = parse_int(optarg, &register_number);
@ -552,7 +598,9 @@ int main(int argc, char** argv) {
}
if (result != HACKRF_SUCCESS) {
printf("argument error: %s (%d)\n", hackrf_error_name(result), result);
printf("argument error: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -576,13 +624,15 @@ int main(int argc, char** argv) {
return EXIT_FAILURE;
}
if(!(write || read || dump_config || dump_state || set_tx_limit || set_rx_limit || set_ui)) {
if (!(write || read || dump_config || dump_state || set_tx_limit ||
set_rx_limit || set_ui)) {
fprintf(stderr, "Specify read, write, or config option.\n");
usage();
return EXIT_FAILURE;
}
if(part == PART_NONE && !set_ui && !dump_state && !set_tx_limit && !set_rx_limit) {
if (part == PART_NONE && !set_ui && !dump_state && !set_tx_limit &&
!set_rx_limit) {
fprintf(stderr, "Specify a part to read, write, or print config from.\n");
usage();
return EXIT_FAILURE;
@ -590,7 +640,9 @@ int main(int argc, char** argv) {
result = hackrf_open_by_serial(serial_number, &device);
if (result) {
printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
@ -613,7 +665,9 @@ int main(int argc, char** argv) {
if (set_tx_limit) {
result = hackrf_set_tx_underrun_limit(device, tx_limit);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
@ -621,7 +675,9 @@ int main(int argc, char** argv) {
if (set_rx_limit) {
result = hackrf_set_rx_overrun_limit(device, rx_limit);
if (result != HACKRF_SUCCESS) {
printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
@ -630,7 +686,9 @@ int main(int argc, char** argv) {
hackrf_m0_state state;
result = hackrf_get_m0_state(device, &state);
if (result != HACKRF_SUCCESS) {
printf("hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_get_m0_state() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
print_state(&state);
@ -642,7 +700,9 @@ int main(int argc, char** argv) {
result = hackrf_close(device);
if (result) {
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}

View File

@ -40,13 +40,16 @@ int main(void)
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
printf("hackrf_info version: %s\n", TOOL_RELEASE);
printf("libhackrf version: %s (%s)\n", hackrf_library_release(),
printf("libhackrf version: %s (%s)\n",
hackrf_library_release(),
hackrf_library_version());
list = hackrf_device_list();
@ -69,8 +72,10 @@ int main(void)
device = NULL;
result = hackrf_device_list_open(list, i, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
if (result == HACKRF_ERROR_LIBUSB) {
continue;
}
@ -79,33 +84,44 @@ int main(void)
result = hackrf_board_id_read(device, &board_id);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_board_id_read() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_board_id_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
printf("Board ID Number: %d (%s)\n", board_id,
printf("Board ID Number: %d (%s)\n",
board_id,
hackrf_board_id_name(board_id));
result = hackrf_version_string_read(device, &version[0], 255);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_version_string_read() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_version_string_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
result = hackrf_usb_api_version_read(device, &usb_version);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_usb_api_version_read() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_usb_api_version_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
printf("Firmware Version: %s (API:%x.%02x)\n", version,
(usb_version>>8)&0xFF, usb_version&0xFF);
printf("Firmware Version: %s (API:%x.%02x)\n",
version,
(usb_version >> 8) & 0xFF,
usb_version & 0xFF);
result = hackrf_board_partid_serialno_read(device, &read_partid_serialno);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_board_partid_serialno_read() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_board_partid_serialno_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
printf("Part ID Number: 0x%08x 0x%08x\n",
@ -113,9 +129,12 @@ int main(void)
read_partid_serialno.part_id[1]);
result = hackrf_get_operacake_boards(device, &operacakes[0]);
if ((result != HACKRF_SUCCESS) && (result != HACKRF_ERROR_USB_API_VERSION)) {
fprintf(stderr, "hackrf_get_operacake_boards() failed: %s (%d)\n",
hackrf_error_name(result), result);
if ((result != HACKRF_SUCCESS) &&
(result != HACKRF_ERROR_USB_API_VERSION)) {
fprintf(stderr,
"hackrf_get_operacake_boards() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (result == HACKRF_SUCCESS) {
@ -129,9 +148,12 @@ int main(void)
#ifdef HACKRF_ISSUE_609_IS_FIXED
uint32_t cpld_crc = 0;
result = hackrf_cpld_checksum(device, &cpld_crc);
if ((result != HACKRF_SUCCESS) && (result != HACKRF_ERROR_USB_API_VERSION)) {
fprintf(stderr, "hackrf_cpld_checksum() failed: %s (%d)\n",
hackrf_error_name(result), result);
if ((result != HACKRF_SUCCESS) &&
(result != HACKRF_ERROR_USB_API_VERSION)) {
fprintf(stderr,
"hackrf_cpld_checksum() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (result == HACKRF_SUCCESS) {
@ -141,8 +163,10 @@ int main(void)
result = hackrf_close(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
}

View File

@ -41,7 +41,8 @@ typedef int bool;
#define GPIO_TEST_DISABLED 0xFFFF
static void usage() {
static void usage()
{
printf("\nUsage:\n");
printf("\t-h, --help: this help\n");
printf("\t-d, --device <n>: specify a particular device by serial number\n");
@ -66,7 +67,8 @@ static struct option long_options[] = {
{0, 0, 0, 0},
};
int parse_uint16(char* const s, uint16_t* const value) {
int parse_uint16(char* const s, uint16_t* const value)
{
char* s_end = s;
const long long_value = strtol(s, &s_end, 10);
if ((s != s_end) && (*s_end == 0)) {
@ -77,7 +79,8 @@ int parse_uint16(char* const s, uint16_t* const value) {
}
}
int parse_uint32(char* const s, uint32_t* const value) {
int parse_uint32(char* const s, uint32_t* const value)
{
char* s_end = s;
const long long_value = strtol(s, &s_end, 10);
if ((s != s_end) && (*s_end == 0)) {
@ -88,7 +91,8 @@ int parse_uint32(char* const s, uint32_t* const value) {
}
}
int parse_port(char* str, uint8_t* port) {
int parse_port(char* str, uint8_t* port)
{
uint16_t tmp_port;
int result;
@ -122,7 +126,8 @@ int parse_port(char* str, uint8_t* port) {
return HACKRF_SUCCESS;
}
int parse_range(char* s, hackrf_operacake_freq_range* range) {
int parse_range(char* s, hackrf_operacake_freq_range* range)
{
char port[16];
float min;
float max;
@ -141,7 +146,8 @@ int parse_range(char* s, hackrf_operacake_freq_range* range) {
return HACKRF_ERROR_INVALID_PARAM;
}
int parse_dwell(char* s, hackrf_operacake_dwell_time* dwell_time) {
int parse_dwell(char* s, hackrf_operacake_dwell_time* dwell_time)
{
int result;
char port[16];
float dwell;
@ -170,7 +176,8 @@ int parse_dwell(char* s, hackrf_operacake_dwell_time* dwell_time) {
return HACKRF_ERROR_INVALID_PARAM;
}
int main(int argc, char** argv) {
int main(int argc, char** argv)
{
int opt;
const char* serial_number = NULL;
uint8_t operacake_address = 0;
@ -194,11 +201,18 @@ int main(int argc, char** argv) {
int result = hackrf_init();
if (result) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return -1;
}
while( (opt = getopt_long(argc, argv, "d:o:a:m:b:lf:t:w:hg?", long_options, &option_index)) != EOF ) {
while ((opt = getopt_long(
argc,
argv,
"d:o:a:m:b:lf:t:w:hg?",
long_options,
&option_index)) != EOF) {
switch (opt) {
case 'd':
serial_number = optarg;
@ -325,16 +339,20 @@ int main(int argc, char** argv) {
result = hackrf_open_by_serial(serial_number, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (set_mode) {
result = hackrf_set_operacake_mode(device, operacake_address, mode);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_operacake_mode() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_operacake_mode() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
@ -342,8 +360,10 @@ int main(int argc, char** argv) {
if (list) {
result = hackrf_get_operacake_boards(device, operacakes);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_get_operacake_boards() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_get_operacake_boards() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
printf("Opera Cakes found: ");
@ -373,10 +393,15 @@ int main(int argc, char** argv) {
if (gpio_test) {
uint16_t test_result;
uint8_t reg, mask = 0x7;
result = hackrf_operacake_gpio_test(device, operacake_address, &test_result);
result = hackrf_operacake_gpio_test(
device,
operacake_address,
&test_result);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_operacake_gpio_test() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_operacake_gpio_test() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
@ -387,31 +412,36 @@ int main(int argc, char** argv) {
fprintf(stderr, "GPIO test failed\n");
fprintf(stderr, "Pin\tHigh\tShorts\tLow\n");
reg = test_result & mask;
fprintf(stderr, "u2ctrl1\t%d\t%d\t%d\n",
fprintf(stderr,
"u2ctrl1\t%d\t%d\t%d\n",
(reg >> 2) & 1,
(reg >> 1) & 1,
reg & 1);
test_result >>= 3;
reg = test_result & mask;
fprintf(stderr, "u2ctrl0\t%d\t%d\t%d\n",
fprintf(stderr,
"u2ctrl0\t%d\t%d\t%d\n",
(reg >> 2) & 1,
(reg >> 1) & 1,
reg & 1);
test_result >>= 3;
reg = test_result & mask;
fprintf(stderr, "u3ctrl1\t%d\t%d\t%d\n",
fprintf(stderr,
"u3ctrl1\t%d\t%d\t%d\n",
(reg >> 2) & 1,
(reg >> 1) & 1,
reg & 1);
test_result >>= 3;
reg = test_result & mask;
fprintf(stderr, "u3ctrl0\t%d\t%d\t%d\n",
fprintf(stderr,
"u3ctrl0\t%d\t%d\t%d\n",
(reg >> 2) & 1,
(reg >> 1) & 1,
reg & 1);
test_result >>= 3;
reg = test_result & mask;
fprintf(stderr, "u1ctrl \t%d\t%d\t%d\n",
fprintf(stderr,
"u1ctrl \t%d\t%d\t%d\n",
(reg >> 2) & 1,
(reg >> 1) & 1,
reg & 1);
@ -436,13 +466,21 @@ int main(int argc, char** argv) {
port_b = 4;
}
}
if(((port_a<=3) && (port_b<=3)) || ((port_a>=4) && (port_b>=4))) {
fprintf(stderr, "Port A and B cannot be connected to the same side\n");
if (((port_a <= 3) && (port_b <= 3)) ||
((port_a >= 4) && (port_b >= 4))) {
fprintf(stderr,
"Port A and B cannot be connected to the same side\n");
return EXIT_FAILURE;
}
result = hackrf_set_operacake_ports(device, operacake_address, port_a, port_b);
result = hackrf_set_operacake_ports(
device,
operacake_address,
port_a,
port_b);
if (result) {
printf("hackrf_set_operacake_ports() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_set_operacake_ports() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
@ -450,7 +488,9 @@ int main(int argc, char** argv) {
if (range_idx) {
result = hackrf_set_operacake_freq_ranges(device, ranges, range_idx);
if (result) {
printf("hackrf_set_operacake_freq_ranges() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_set_operacake_freq_ranges() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return -1;
}
}
@ -459,7 +499,8 @@ int main(int argc, char** argv) {
for (i = 0; i < dwell_idx; i++) {
if (dwell_times[i].dwell == 0) {
if (default_dwell == 0) {
fprintf(stderr, "port '%u' set to use default dwell time, but default dwell time is not set. Use -w argument to set default dwell time.\n",
fprintf(stderr,
"port '%u' set to use default dwell time, but default dwell time is not set. Use -w argument to set default dwell time.\n",
dwell_times[i].port);
return EXIT_FAILURE;
}
@ -468,14 +509,18 @@ int main(int argc, char** argv) {
}
result = hackrf_set_operacake_dwell_times(device, dwell_times, dwell_idx);
if (result) {
printf("hackrf_set_operacake_dwell_times() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_set_operacake_dwell_times() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return -1;
}
}
result = hackrf_close(device);
if (result) {
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
printf("hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return -1;
}
hackrf_exit();

View File

@ -73,8 +73,7 @@ int compatibility_check(uint8_t* data, int length, hackrf_device* device)
uint8_t board_id;
char* dev_str;
hackrf_board_id_read(device, &board_id);
switch(board_id)
{
switch (board_id) {
case BOARD_ID_JAWBREAKER:
dev_str = "HackRF Jawbreaker";
str_len = 17;
@ -178,7 +177,11 @@ int main(int argc, char** argv)
bool clear_status = false;
uint16_t usb_api;
while ((opt = getopt_long(argc, argv, "a:l:r:w:id:scvRh?", long_options,
while ((opt = getopt_long(
argc,
argv,
"a:l:r:w:id:scvRh?",
long_options,
&option_index)) != EOF) {
switch (opt) {
case 'a':
@ -235,8 +238,10 @@ int main(int argc, char** argv)
}
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "argument error: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"argument error: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -254,16 +259,16 @@ int main(int argc, char** argv)
return EXIT_FAILURE;
}
if( write )
{
if (write) {
infile = fopen(path, "rb");
if(infile == NULL)
{
if (infile == NULL) {
printf("Error opening file %s\n", path);
return EXIT_FAILURE;
}
/* Get size of the file */
fseek(infile, 0, SEEK_END); /* Not really portable but work on major OS Linux/Win32 */
fseek(infile,
0,
SEEK_END); /* Not really portable but work on major OS Linux/Win32 */
length = ftell(infile);
/* Move to start */
rewind(infile);
@ -278,8 +283,8 @@ int main(int argc, char** argv)
return EXIT_FAILURE;
}
if ((length > MAX_LENGTH) || (address > MAX_LENGTH)
|| ((address + length) > MAX_LENGTH)) {
if ((length > MAX_LENGTH) || (address > MAX_LENGTH) ||
((address + length) > MAX_LENGTH)) {
fprintf(stderr, "Request exceeds size of flash memory.\n");
if (infile != NULL)
fclose(infile);
@ -289,8 +294,7 @@ int main(int argc, char** argv)
if (read) {
infile = fopen(path, "wb");
if(infile == NULL)
{
if (infile == NULL) {
printf("Error to open file %s\n", path);
return EXIT_FAILURE;
}
@ -298,23 +302,29 @@ int main(int argc, char** argv)
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (read_status) {
result = hackrf_spiflash_status(device, status);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_spiflash_status() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_spiflash_status() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
if (!verbose) {
@ -340,8 +350,10 @@ int main(int argc, char** argv)
if (clear_status) {
result = hackrf_spiflash_clear_status(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_spiflash_clear_status() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_spiflash_clear_status() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
}
@ -349,14 +361,18 @@ int main(int argc, char** argv)
if (read) {
ssize_t bytes_written;
tmp_length = length;
while (tmp_length)
{
while (tmp_length) {
xfer_len = (tmp_length > 256) ? 256 : tmp_length;
if( verbose ) printf("Reading %d bytes from 0x%06x.\n", xfer_len, address);
if (verbose)
printf("Reading %d bytes from 0x%06x.\n",
xfer_len,
address);
result = hackrf_spiflash_read(device, address, xfer_len, pdata);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_spiflash_read() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_spiflash_read() failed: %s (%d)\n",
hackrf_error_name(result),
result);
fclose(infile);
infile = NULL;
return EXIT_FAILURE;
@ -367,7 +383,8 @@ int main(int argc, char** argv)
}
bytes_written = fwrite(data, 1, length, infile);
if (bytes_written != length) {
fprintf(stderr, "Failed write to file (wrote %d bytes).\n",
fprintf(stderr,
"Failed write to file (wrote %d bytes).\n",
(int) bytes_written);
fclose(infile);
infile = NULL;
@ -378,7 +395,8 @@ int main(int argc, char** argv)
if (write) {
ssize_t bytes_read = fread(data, 1, length, infile);
if (bytes_read != length) {
fprintf(stderr, "Failed read file (read %d bytes).\n",
fprintf(stderr,
"Failed read file (read %d bytes).\n",
(int) bytes_read);
fclose(infile);
infile = NULL;
@ -397,20 +415,28 @@ int main(int argc, char** argv)
printf("Erasing SPI flash.\n");
result = hackrf_spiflash_erase(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_spiflash_erase() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_spiflash_erase() failed: %s (%d)\n",
hackrf_error_name(result),
result);
fclose(infile);
infile = NULL;
return EXIT_FAILURE;
}
if( !verbose ) printf("Writing %d bytes at 0x%06x.\n", length, address);
if (!verbose)
printf("Writing %d bytes at 0x%06x.\n", length, address);
while (length) {
xfer_len = (length > 256) ? 256 : length;
if( verbose ) printf("Writing %d bytes at 0x%06x.\n", xfer_len, address);
if (verbose)
printf("Writing %d bytes at 0x%06x.\n",
xfer_len,
address);
result = hackrf_spiflash_write(device, address, xfer_len, pdata);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_spiflash_write() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_spiflash_write() failed: %s (%d)\n",
hackrf_error_name(result),
result);
fclose(infile);
infile = NULL;
return EXIT_FAILURE;
@ -431,11 +457,15 @@ int main(int argc, char** argv)
if (result != HACKRF_SUCCESS) {
if (result == HACKRF_ERROR_USB_API_VERSION) {
hackrf_usb_api_version_read(device, &usb_api);
fprintf(stderr, "Reset is not supported by firmware API %x.%02x\n",
(usb_api>>8)&0xFF, usb_api&0xFF);
fprintf(stderr,
"Reset is not supported by firmware API %x.%02x\n",
(usb_api >> 8) & 0xFF,
usb_api & 0xFF);
} else {
fprintf(stderr, "hackrf_reset() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_reset() failed: %s (%d)\n",
hackrf_error_name(result),
result);
}
return EXIT_FAILURE;
}
@ -443,8 +473,10 @@ int main(int argc, char** argv)
result = hackrf_close(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}

View File

@ -58,7 +58,8 @@ typedef int32_t ssize_t;
#define strtoull _strtoui64
#define snprintf _snprintf
int gettimeofday(struct timeval *tv, void* ignored) {
int gettimeofday(struct timeval* tv, void* ignored)
{
FILETIME ft;
unsigned __int64 tmp = 0;
if (NULL != tv) {
@ -112,11 +113,13 @@ int num_ranges = 0;
uint16_t frequencies[MAX_SWEEP_RANGES * 2];
int step_count;
static float TimevalDiff(const struct timeval *a, const struct timeval *b) {
static float TimevalDiff(const struct timeval* a, const struct timeval* b)
{
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
}
int parse_u32(char* s, uint32_t* const value) {
int parse_u32(char* s, uint32_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
uint64_t ulong_value;
@ -143,7 +146,8 @@ int parse_u32(char* s, uint32_t* const value) {
}
}
int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max) {
int parse_u32_range(char* s, uint32_t* const value_min, uint32_t* const value_max)
{
int result;
char* sep = strchr(s, ':');
@ -203,7 +207,8 @@ float logPower(fftwf_complex in, float scale)
return (float) (log2(magsq) * 10.0f / log2(10.0f));
}
int rx_callback(hackrf_transfer* transfer) {
int rx_callback(hackrf_transfer* transfer)
{
int8_t* buf;
uint8_t* ubuf;
uint64_t frequency; /* in Hz */
@ -228,9 +233,13 @@ int rx_callback(hackrf_transfer* transfer) {
for (j = 0; j < BLOCKS_PER_TRANSFER; j++) {
ubuf = (uint8_t*) buf;
if (ubuf[0] == 0x7F && ubuf[1] == 0x7F) {
frequency = ((uint64_t)(ubuf[9]) << 56) | ((uint64_t)(ubuf[8]) << 48) | ((uint64_t)(ubuf[7]) << 40)
| ((uint64_t)(ubuf[6]) << 32) | ((uint64_t)(ubuf[5]) << 24) | ((uint64_t)(ubuf[4]) << 16)
| ((uint64_t)(ubuf[3]) << 8) | ubuf[2];
frequency = ((uint64_t) (ubuf[9]) << 56) |
((uint64_t) (ubuf[8]) << 48) |
((uint64_t) (ubuf[7]) << 40) |
((uint64_t) (ubuf[6]) << 32) |
((uint64_t) (ubuf[5]) << 24) |
((uint64_t) (ubuf[4]) << 16) |
((uint64_t) (ubuf[3]) << 8) | ubuf[2];
} else {
buf += BYTES_PER_BLOCK;
continue;
@ -242,15 +251,20 @@ int rx_callback(hackrf_transfer* transfer) {
for (i = 0; i < ifft_bins; i++) {
ifftwOut[i][0] *= 1.0f / ifft_bins;
ifftwOut[i][1] *= 1.0f / ifft_bins;
fwrite(&ifftwOut[i][0], sizeof(float), 1, outfile);
fwrite(&ifftwOut[i][1], sizeof(float), 1, outfile);
fwrite(&ifftwOut[i][0],
sizeof(float),
1,
outfile);
fwrite(&ifftwOut[i][1],
sizeof(float),
1,
outfile);
}
}
sweep_count++;
if (one_shot) {
do_exit = true;
}
else if(finite_mode && sweep_count == num_sweeps) {
} else if (finite_mode && sweep_count == num_sweeps) {
do_exit = true;
}
}
@ -279,15 +293,18 @@ int rx_callback(hackrf_transfer* transfer) {
pwr[i] = logPower(fftwOut[i], 1.0f / fftSize);
}
if (binary_output) {
record_length = 2 * sizeof(band_edge)
+ (fftSize/4) * sizeof(float);
record_length =
2 * sizeof(band_edge) + (fftSize / 4) * sizeof(float);
fwrite(&record_length, sizeof(record_length), 1, outfile);
band_edge = frequency;
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 4;
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
fwrite(&pwr[1+(fftSize*5)/8], sizeof(float), fftSize/4, outfile);
fwrite(&pwr[1 + (fftSize * 5) / 8],
sizeof(float),
fftSize / 4,
outfile);
fwrite(&record_length, sizeof(record_length), 1, outfile);
band_edge = frequency + DEFAULT_SAMPLE_RATE_HZ / 2;
@ -296,24 +313,30 @@ int rx_callback(hackrf_transfer* transfer) {
fwrite(&band_edge, sizeof(band_edge), 1, outfile);
fwrite(&pwr[1 + fftSize / 8], sizeof(float), fftSize / 4, outfile);
} else if (ifft_output) {
ifft_idx = (uint32_t) round((frequency - (uint64_t)(FREQ_ONE_MHZ*frequencies[0]))
/ fft_bin_width);
ifft_idx = (uint32_t) round(
(frequency - (uint64_t) (FREQ_ONE_MHZ * frequencies[0])) /
fft_bin_width);
ifft_idx = (ifft_idx + ifft_bins / 2) % ifft_bins;
for (i = 0; (fftSize / 4) > i; i++) {
ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize*5)/8][0];
ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize*5)/8][1];
ifftwIn[ifft_idx + i][0] =
fftwOut[i + 1 + (fftSize * 5) / 8][0];
ifftwIn[ifft_idx + i][1] =
fftwOut[i + 1 + (fftSize * 5) / 8][1];
}
ifft_idx += fftSize / 2;
ifft_idx %= ifft_bins;
for (i = 0; (fftSize / 4) > i; i++) {
ifftwIn[ifft_idx + i][0] = fftwOut[i + 1 + (fftSize/8)][0];
ifftwIn[ifft_idx + i][1] = fftwOut[i + 1 + (fftSize/8)][1];
ifftwIn[ifft_idx + i][0] =
fftwOut[i + 1 + (fftSize / 8)][0];
ifftwIn[ifft_idx + i][1] =
fftwOut[i + 1 + (fftSize / 8)][1];
}
} else {
time_t time_stamp_seconds = usb_transfer_time.tv_sec;
fft_time = localtime(&time_stamp_seconds);
strftime(time_str, 50, "%Y-%m-%d, %H:%M:%S", fft_time);
fprintf(outfile, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
fprintf(outfile,
"%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
time_str,
(long int) usb_transfer_time.tv_usec,
(uint64_t) (frequency),
@ -321,10 +344,13 @@ int rx_callback(hackrf_transfer* transfer) {
fft_bin_width,
fftSize);
for (i = 0; (fftSize / 4) > i; i++) {
fprintf(outfile, ", %.2f", pwr[i + 1 + (fftSize*5)/8]);
fprintf(outfile,
", %.2f",
pwr[i + 1 + (fftSize * 5) / 8]);
}
fprintf(outfile, "\n");
fprintf(outfile, "%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
fprintf(outfile,
"%s.%06ld, %" PRIu64 ", %" PRIu64 ", %.2f, %u",
time_str,
(long int) usb_transfer_time.tv_usec,
(uint64_t) (frequency + (DEFAULT_SAMPLE_RATE_HZ / 2)),
@ -340,16 +366,20 @@ int rx_callback(hackrf_transfer* transfer) {
return 0;
}
static void usage() {
static void usage()
{
fprintf(stderr, "Usage:\n");
fprintf(stderr, "\t[-h] # this help\n");
fprintf(stderr, "\t[-d serial_number] # Serial number of desired HackRF\n");
fprintf(stderr, "\t[-a amp_enable] # RX RF amplifier 1=Enable, 0=Disable\n");
fprintf(stderr, "\t[-f freq_min:freq_max] # minimum and maximum frequencies in MHz\n");
fprintf(stderr, "\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable\n");
fprintf(stderr,
"\t[-f freq_min:freq_max] # minimum and maximum frequencies in MHz\n");
fprintf(stderr,
"\t[-p antenna_enable] # Antenna port power, 1=Enable, 0=Disable\n");
fprintf(stderr, "\t[-l gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps\n");
fprintf(stderr, "\t[-g gain_db] # RX VGA (baseband) gain, 0-62dB, 2dB steps\n");
fprintf(stderr, "\t[-w bin_width] # FFT bin width (frequency resolution) in Hz, 2445-5000000\n");
fprintf(stderr,
"\t[-w bin_width] # FFT bin width (frequency resolution) in Hz, 2445-5000000\n");
fprintf(stderr, "\t[-1] # one shot mode\n");
fprintf(stderr, "\t[-N num_sweeps] # Number of sweeps to perform\n");
fprintf(stderr, "\t[-B] # binary output\n");
@ -357,14 +387,15 @@ static void usage() {
fprintf(stderr, "\t-r filename # output file\n");
fprintf(stderr, "\n");
fprintf(stderr, "Output fields:\n");
fprintf(stderr, "\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n");
fprintf(stderr,
"\tdate, time, hz_low, hz_high, hz_bin_width, num_samples, dB, dB, . . .\n");
}
static hackrf_device* device = NULL;
#ifdef _MSC_VER
BOOL WINAPI
sighandler(int signum) {
BOOL WINAPI sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
@ -373,13 +404,15 @@ sighandler(int signum) {
return FALSE;
}
#else
void sigint_callback_handler(int signum) {
void sigint_callback_handler(int signum)
{
fprintf(stderr, "Caught signal %d\n", signum);
do_exit = true;
}
#endif
int main(int argc, char** argv) {
int main(int argc, char** argv)
{
int opt, i, result = 0;
const char* path = NULL;
const char* serial_number = NULL;
@ -393,11 +426,9 @@ int main(int argc, char** argv) {
uint32_t freq_max = 6000;
uint32_t requested_fft_bin_width;
while ((opt = getopt(argc, argv, "a:f:p:l:g:d:n:N:w:1BIr:h?")) != EOF) {
result = HACKRF_SUCCESS;
switch( opt )
{
switch (opt) {
case 'd':
serial_number = optarg;
break;
@ -485,7 +516,12 @@ int main(int argc, char** argv) {
}
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
fprintf(stderr,
"argument error: '-%c %s' %s (%d)\n",
opt,
optarg,
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -507,7 +543,8 @@ int main(int argc, char** argv) {
if (antenna) {
if (antenna_enable > 1) {
fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n");
fprintf(stderr,
"argument error: antenna_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
@ -520,12 +557,14 @@ int main(int argc, char** argv) {
}
if (binary_output && ifft_output) {
fprintf(stderr, "argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n");
fprintf(stderr,
"argument error: binary output (-B) and IFFT output (-I) are mutually exclusive.\n");
return EXIT_FAILURE;
}
if (ifft_output && (1 < num_ranges)) {
fprintf(stderr, "argument error: only one frequency range is supported in IFFT output (-I) mode.\n");
fprintf(stderr,
"argument error: only one frequency range is supported in IFFT output (-I) mode.\n");
return EXIT_FAILURE;
}
@ -565,7 +604,8 @@ int main(int argc, char** argv) {
fft_bin_width = (double) DEFAULT_SAMPLE_RATE_HZ / fftSize;
fftwIn = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
fftwOut = (fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex) * fftSize);
fftwPlan = fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, FFTW_MEASURE);
fftwPlan =
fftwf_plan_dft_1d(fftSize, fftwIn, fftwOut, FFTW_FORWARD, FFTW_MEASURE);
pwr = (float*) fftwf_malloc(sizeof(float) * fftSize);
window = (float*) fftwf_malloc(sizeof(float) * fftSize);
for (i = 0; i < fftSize; i++) {
@ -580,14 +620,20 @@ int main(int argc, char** argv) {
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -620,22 +666,30 @@ int main(int argc, char** argv) {
signal(SIGTERM, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
#endif
fprintf(stderr, "call hackrf_sample_rate_set(%.03f MHz)\n",
fprintf(stderr,
"call hackrf_sample_rate_set(%.03f MHz)\n",
((float) DEFAULT_SAMPLE_RATE_HZ / (float) FREQ_ONE_MHZ));
result = hackrf_set_sample_rate_manual(device, DEFAULT_SAMPLE_RATE_HZ, 1);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_sample_rate_set() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_sample_rate_set() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
fprintf(stderr,
"call hackrf_baseband_filter_bandwidth_set(%.03f MHz)\n",
((float) DEFAULT_BASEBAND_FILTER_BANDWIDTH / (float) FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, DEFAULT_BASEBAND_FILTER_BANDWIDTH);
result = hackrf_set_baseband_filter_bandwidth(
device,
DEFAULT_BASEBAND_FILTER_BANDWIDTH);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -649,30 +703,51 @@ int main(int argc, char** argv) {
* whole number of steps, minimum 1.
*/
for (i = 0; i < num_ranges; i++) {
step_count = 1 + (frequencies[2*i+1] - frequencies[2*i] - 1)
/ TUNE_STEP;
frequencies[2*i+1] = (uint16_t) (frequencies[2*i] + step_count * TUNE_STEP);
fprintf(stderr, "Sweeping from %u MHz to %u MHz\n",
frequencies[2*i], frequencies[2*i+1]);
step_count =
1 + (frequencies[2 * i + 1] - frequencies[2 * i] - 1) / TUNE_STEP;
frequencies[2 * i + 1] =
(uint16_t) (frequencies[2 * i] + step_count * TUNE_STEP);
fprintf(stderr,
"Sweeping from %u MHz to %u MHz\n",
frequencies[2 * i],
frequencies[2 * i + 1]);
}
if (ifft_output) {
ifftwIn = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count);
ifftwOut = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * fftSize * step_count);
ifftwPlan = fftwf_plan_dft_1d(fftSize * step_count, ifftwIn, ifftwOut, FFTW_BACKWARD, FFTW_MEASURE);
ifftwIn = (fftwf_complex*) fftwf_malloc(
sizeof(fftwf_complex) * fftSize * step_count);
ifftwOut = (fftwf_complex*) fftwf_malloc(
sizeof(fftwf_complex) * fftSize * step_count);
ifftwPlan = fftwf_plan_dft_1d(
fftSize * step_count,
ifftwIn,
ifftwOut,
FFTW_BACKWARD,
FFTW_MEASURE);
}
result = hackrf_init_sweep(device, frequencies, num_ranges, BYTES_PER_BLOCK,
TUNE_STEP * FREQ_ONE_MHZ, OFFSET, INTERLEAVED);
result = hackrf_init_sweep(
device,
frequencies,
num_ranges,
BYTES_PER_BLOCK,
TUNE_STEP * FREQ_ONE_MHZ,
OFFSET,
INTERLEAVED);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init_sweep() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_init_sweep() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
result |= hackrf_start_rx_sweep(device, rx_callback, NULL);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_rx_sweep() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_start_rx_sweep() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -681,8 +756,10 @@ int main(int argc, char** argv) {
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_amp_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -692,8 +769,10 @@ int main(int argc, char** argv) {
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_antenna_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -711,12 +790,16 @@ int main(int argc, char** argv) {
if (TimevalDiff(&time_now, &time_prev) >= 1.0f) {
time_difference = TimevalDiff(&time_now, &t_start);
sweep_rate = (float) sweep_count / time_difference;
fprintf(stderr, "%" PRIu64 " total sweeps completed, %.2f sweeps/second\n",
sweep_count, sweep_rate);
fprintf(stderr,
"%" PRIu64
" total sweeps completed, %.2f sweeps/second\n",
sweep_count,
sweep_rate);
if (byte_count == 0) {
exit_code = EXIT_FAILURE;
fprintf(stderr, "\nCouldn't transfer any data for one second.\n");
fprintf(stderr,
"\nCouldn't transfer any data for one second.\n");
break;
}
byte_count = 0;
@ -729,22 +812,29 @@ int main(int argc, char** argv) {
if (do_exit) {
fprintf(stderr, "\nExiting...\n");
} else {
fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"\nExiting... hackrf_is_streaming() result: %s (%d)\n",
hackrf_error_name(result),
result);
}
gettimeofday(&time_now, NULL);
time_diff = TimevalDiff(&time_now, &t_start);
if ((sweep_rate == 0) && (time_diff > 0))
sweep_rate = sweep_count / time_diff;
fprintf(stderr, "Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n",
sweep_count, time_diff, sweep_rate);
fprintf(stderr,
"Total sweeps: %" PRIu64 " in %.5f seconds (%.2f sweeps/second)\n",
sweep_count,
time_diff,
sweep_rate);
if (device != NULL) {
result = hackrf_close(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_close() done\n");
}

View File

@ -128,14 +128,14 @@ typedef struct {
} stats_t;
/* WAVE or RIFF WAVE file format containing IQ 2x8bits data for HackRF compatible with SDR# Wav IQ file */
typedef struct
{
typedef struct {
char groupID[4]; /* 'RIFF' */
uint32_t size; /* File size + 8bytes */
char riffType[4]; /* 'WAVE'*/
} t_WAVRIFF_hdr;
#define FormatID "fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */
#define FormatID \
"fmt " /* chunkID for Format Chunk. NOTE: There is a space at the end of this ID. */
typedef struct {
char chunkID[4]; /* 'fmt ' */
@ -163,12 +163,10 @@ typedef struct {
t_wav_file_hdr wave_file_hdr = {
/* t_WAVRIFF_hdr */
{
/* groupID */
{/* groupID */
{'R', 'I', 'F', 'F'},
0, /* size to update later */
{ 'W', 'A', 'V', 'E' }
},
{'W', 'A', 'V', 'E'}},
/* t_FormatChunk */
{
/* char chunkID[4]; */
@ -186,27 +184,26 @@ t_wav_file_hdr wave_file_hdr = {
/* char chunkID[4]; */
{'d', 'a', 't', 'a'},
0, /* uint32_t chunkSize; to update later */
}
};
}};
static transceiver_mode_t transceiver_mode = TRANSCEIVER_MODE_RX;
#define U64TOA_MAX_DIGIT (31)
typedef struct
{
typedef struct {
char data[U64TOA_MAX_DIGIT + 1];
} t_u64toa;
t_u64toa ascii_u64_data1;
t_u64toa ascii_u64_data2;
static float
TimevalDiff(const struct timeval *a, const struct timeval *b)
static float TimevalDiff(const struct timeval* a, const struct timeval* b)
{
return (a->tv_sec - b->tv_sec) + 1e-6f * (a->tv_usec - b->tv_usec);
}
int parse_u64(char* s, uint64_t* const value) {
int parse_u64(char* s, uint64_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
uint64_t u64_value;
@ -233,7 +230,8 @@ int parse_u64(char* s, uint64_t* const value) {
}
}
int parse_u32(char* s, uint32_t* const value) {
int parse_u32(char* s, uint32_t* const value)
{
uint_fast8_t base = 10;
char* s_end;
uint64_t ulong_value;
@ -261,7 +259,8 @@ int parse_u32(char* s, uint32_t* const value) {
}
/* Parse frequencies as doubles to take advantage of notation parsing */
int parse_frequency_i64(char* optarg, char* endptr, int64_t* value) {
int parse_frequency_i64(char* optarg, char* endptr, int64_t* value)
{
*value = (int64_t) strtod(optarg, &endptr);
if (optarg == endptr) {
return HACKRF_ERROR_INVALID_PARAM;
@ -269,7 +268,8 @@ int parse_frequency_i64(char* optarg, char* endptr, int64_t* value) {
return HACKRF_SUCCESS;
}
int parse_frequency_u32(char* optarg, char* endptr, uint32_t* value) {
int parse_frequency_u32(char* optarg, char* endptr, uint32_t* value)
{
*value = (uint32_t) strtod(optarg, &endptr);
if (optarg == endptr) {
return HACKRF_ERROR_INVALID_PARAM;
@ -284,8 +284,7 @@ static char *stringrev(char *str)
if (!str || !*str)
return str;
for(p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2)
{
for (p1 = str, p2 = str + strlen(str) - 1; p2 > p1; ++p1, --p2) {
*p1 ^= *p2;
*p2 ^= *p1;
*p1 ^= *p2;
@ -306,8 +305,7 @@ char* u64toa(uint64_t val, t_u64toa* str)
max_len = U64TOA_MAX_DIGIT;
pos = 0;
do
{
do {
digit = (sum % BASE);
str->data[pos] = digit + '0';
pos++;
@ -352,7 +350,8 @@ uint8_t *stream_buf = NULL;
* Clamping would produce a sigmoid curve, so with a signal of variable intensity you're
* probably getting substantial overload anytime this reports more than about -6dBfs.
*/
uint64_t stream_amplitude = 0; /* sum of magnitudes of all I&Q samples, reset on the periodic report */
uint64_t stream_amplitude =
0; /* sum of magnitudes of all I&Q samples, reset on the periodic report */
bool transmit = false;
struct timeval time_start;
@ -395,13 +394,13 @@ uint32_t crystal_correct_ppm ;
int requested_mode_count = 0;
int rx_callback(hackrf_transfer* transfer) {
int rx_callback(hackrf_transfer* transfer)
{
size_t bytes_to_write;
size_t bytes_written;
unsigned int i;
if( file != NULL )
{
if (file != NULL) {
byte_count += transfer->valid_length;
bytes_to_write = transfer->valid_length;
if (limit_num_samples) {
@ -424,23 +423,35 @@ int rx_callback(hackrf_transfer* transfer) {
}
if (stream_size > 0) {
#ifndef _WIN32
if ((stream_size-1+stream_head-stream_tail)%stream_size <bytes_to_write) {
if ((stream_size - 1 + stream_head - stream_tail) % stream_size <
bytes_to_write) {
stream_drop++;
} else {
if (stream_tail + bytes_to_write <= stream_size) {
memcpy(stream_buf+stream_tail,transfer->buffer,bytes_to_write);
memcpy(stream_buf + stream_tail,
transfer->buffer,
bytes_to_write);
} else {
memcpy(stream_buf+stream_tail,transfer->buffer,(stream_size-stream_tail));
memcpy(stream_buf,transfer->buffer+(stream_size-stream_tail),bytes_to_write-(stream_size-stream_tail));
memcpy(stream_buf + stream_tail,
transfer->buffer,
(stream_size - stream_tail));
memcpy(stream_buf,
transfer->buffer +
(stream_size - stream_tail),
bytes_to_write -
(stream_size - stream_tail));
};
__atomic_store_n(&stream_tail,(stream_tail+bytes_to_write)%stream_size,__ATOMIC_RELEASE);
__atomic_store_n(
&stream_tail,
(stream_tail + bytes_to_write) % stream_size,
__ATOMIC_RELEASE);
}
#endif
return 0;
} else {
bytes_written = fwrite(transfer->buffer, 1, bytes_to_write, file);
if ((bytes_written != bytes_to_write)
|| (limit_num_samples && (bytes_to_xfer == 0))) {
if ((bytes_written != bytes_to_write) ||
(limit_num_samples && (bytes_to_xfer == 0))) {
return -1;
} else {
return 0;
@ -451,7 +462,8 @@ int rx_callback(hackrf_transfer* transfer) {
}
}
int tx_callback(hackrf_transfer* transfer) {
int tx_callback(hackrf_transfer* transfer)
{
size_t bytes_to_read;
size_t bytes_read;
unsigned int i;
@ -465,8 +477,7 @@ int tx_callback(hackrf_transfer* transfer) {
stream_amplitude += abs((signed char) transfer->buffer[i]);
}
if( file != NULL )
{
if (file != NULL) {
if (limit_num_samples) {
if (bytes_to_read >= bytes_to_xfer) {
/*
@ -483,9 +494,13 @@ int tx_callback(hackrf_transfer* transfer) {
}
if (bytes_read != bytes_to_read) {
if (repeat) {
fprintf(stderr, "Input file end reached. Rewind to beginning.\n");
fprintf(stderr,
"Input file end reached. Rewind to beginning.\n");
rewind(file);
fread(transfer->buffer + bytes_read, 1, bytes_to_read - bytes_read, file);
fread(transfer->buffer + bytes_read,
1,
bytes_to_read - bytes_read,
file);
return 0;
} else {
return -1; /* not repeat mode, end of file */
@ -543,14 +558,17 @@ static int update_stats(hackrf_device *device, hackrf_m0_state *state, stats_t *
stats->m0_total += 0x100000000;
if (state->m4_count < (stats->m4_total & 0xFFFFFFFF))
stats->m4_total += 0x100000000;
stats->m0_total = (stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
stats->m4_total = (stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
stats->m0_total =
(stats->m0_total & 0xFFFFFFFF00000000) | state->m0_count;
stats->m4_total =
(stats->m4_total & 0xFFFFFFFF00000000) | state->m4_count;
}
return result;
}
static void usage() {
static void usage()
{
printf("Usage:\n");
printf("\t-h # this help\n");
printf("\t[-d serial_number] # Serial number of desired HackRF.\n");
@ -592,8 +610,7 @@ static void usage() {
static hackrf_device* device = NULL;
#ifdef _MSC_VER
BOOL WINAPI
sighandler(int signum)
BOOL WINAPI sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Caught signal %d\n", signum);
@ -613,7 +630,8 @@ void sigint_callback_handler(int signum)
#define PATH_FILE_MAX_LEN (FILENAME_MAX)
#define DATE_TIME_MAX_LEN (32)
int main(int argc, char** argv) {
int main(int argc, char** argv)
{
int opt;
char path_file[PATH_FILE_MAX_LEN];
char date_time[DATE_TIME_MAX_LEN];
@ -631,11 +649,10 @@ int main(int argc, char** argv) {
hackrf_m0_state state;
stats_t stats = {0, 0};
while( (opt = getopt(argc, argv, "H:wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:Bh?")) != EOF )
{
while ((opt = getopt(argc, argv, "H:wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:C:RS:Bh?")) !=
EOF) {
result = HACKRF_SUCCESS;
switch( opt )
{
switch (opt) {
case 'H':
hw_sync = true;
result = parse_u32(optarg, &hw_sync_enable);
@ -724,7 +741,10 @@ int main(int argc, char** argv) {
break;
case 'b':
result = parse_frequency_u32(optarg, endptr, &baseband_filter_bw_hz);
result = parse_frequency_u32(
optarg,
endptr,
&baseband_filter_bw_hz);
baseband_filter_bw = true;
break;
@ -755,7 +775,12 @@ int main(int argc, char** argv) {
}
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result);
fprintf(stderr,
"argument error: '-%c %s' %s (%d)\n",
opt,
optarg,
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -768,7 +793,8 @@ int main(int argc, char** argv) {
fprintf(stderr, "warning: vga_gain (-g) must be a multiple of 2\n");
if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) {
fprintf(stderr, "argument error: num_samples must be less than %s/%sMio\n",
fprintf(stderr,
"argument error: num_samples must be less than %s/%sMio\n",
u64toa(SAMPLES_TO_XFER_MAX, &ascii_u64_data1),
u64toa((SAMPLES_TO_XFER_MAX / FREQ_ONE_MHZ), &ascii_u64_data2));
usage();
@ -778,41 +804,48 @@ int main(int argc, char** argv) {
if (if_freq || lo_freq || image_reject) {
/* explicit tuning selected */
if (!if_freq) {
fprintf(stderr, "argument error: if_freq_hz must be specified for explicit tuning.\n");
fprintf(stderr,
"argument error: if_freq_hz must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!image_reject) {
fprintf(stderr, "argument error: image_reject must be specified for explicit tuning.\n");
fprintf(stderr,
"argument error: image_reject must be specified for explicit tuning.\n");
usage();
return EXIT_FAILURE;
}
if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) {
fprintf(stderr, "argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
fprintf(stderr,
"argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n");
usage();
return EXIT_FAILURE;
}
if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) {
fprintf(stderr, "argument error: if_freq_hz shall be between %s and %s.\n",
fprintf(stderr,
"argument error: if_freq_hz shall be between %s and %s.\n",
u64toa(IF_MIN_HZ, &ascii_u64_data1),
u64toa(IF_MAX_HZ, &ascii_u64_data2));
usage();
return EXIT_FAILURE;
}
if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) {
fprintf(stderr, "argument error: lo_freq_hz shall be between %s and %s.\n",
fprintf(stderr,
"argument error: lo_freq_hz shall be between %s and %s.\n",
u64toa(LO_MIN_HZ, &ascii_u64_data1),
u64toa(LO_MAX_HZ, &ascii_u64_data2));
usage();
return EXIT_FAILURE;
}
if (image_reject_selection > 2) {
fprintf(stderr, "argument error: image_reject must be 0, 1, or 2 .\n");
fprintf(stderr,
"argument error: image_reject must be 0, 1, or 2 .\n");
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
fprintf(stderr, "warning: freq_hz ignored by explicit tuning selection.\n");
fprintf(stderr,
"warning: freq_hz ignored by explicit tuning selection.\n");
automatic_tuning = false;
}
switch (image_reject_selection) {
@ -829,13 +862,14 @@ int main(int argc, char** argv) {
freq_hz = DEFAULT_FREQ_HZ;
break;
}
fprintf(stderr, "explicit tuning specified for %s Hz.\n",
fprintf(stderr,
"explicit tuning specified for %s Hz.\n",
u64toa(freq_hz, &ascii_u64_data1));
} else if (automatic_tuning) {
if(freq_hz > FREQ_MAX_HZ)
{
fprintf(stderr, "argument error: freq_hz shall be between %s and %s.\n",
if (freq_hz > FREQ_MAX_HZ) {
fprintf(stderr,
"argument error: freq_hz shall be between %s and %s.\n",
u64toa(FREQ_MIN_HZ, &ascii_u64_data1),
u64toa(FREQ_MAX_HZ, &ascii_u64_data2));
usage();
@ -848,8 +882,7 @@ int main(int argc, char** argv) {
}
if (amp) {
if( amp_enable > 1 )
{
if (amp_enable > 1) {
fprintf(stderr, "argument error: amp_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
@ -858,35 +891,39 @@ int main(int argc, char** argv) {
if (antenna) {
if (antenna_enable > 1) {
fprintf(stderr, "argument error: antenna_enable shall be 0 or 1.\n");
fprintf(stderr,
"argument error: antenna_enable shall be 0 or 1.\n");
usage();
return EXIT_FAILURE;
}
}
if( sample_rate == false )
{
if (sample_rate == false) {
sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ;
}
if( baseband_filter_bw )
{
if (baseband_filter_bw) {
if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) {
fprintf(stderr, "argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ));
fprintf(stderr,
"argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MAX,
(float) (BASEBAND_FILTER_BW_MAX / FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) {
fprintf(stderr, "argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ));
fprintf(stderr,
"argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n",
BASEBAND_FILTER_BW_MIN,
(float) (BASEBAND_FILTER_BW_MIN / FREQ_ONE_MHZ));
usage();
return EXIT_FAILURE;
}
/* Compute nearest freq for bw filter */
baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
baseband_filter_bw_hz =
hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz);
}
if (requested_mode_count > 1) {
@ -912,20 +949,25 @@ int main(int argc, char** argv) {
if (signalsource) {
transceiver_mode = TRANSCEIVER_MODE_SS;
if (amplitude > 127) {
fprintf(stderr, "argument error: amplitude shall be in between 0 and 127.\n");
fprintf(stderr,
"argument error: amplitude shall be in between 0 and 127.\n");
usage();
return EXIT_FAILURE;
}
}
if( receive_wav )
{
if (receive_wav) {
time(&rawtime);
timeinfo = localtime(&rawtime);
transceiver_mode = TRANSCEIVER_MODE_RX;
/* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */
strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo);
snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) );
snprintf(
path_file,
PATH_FILE_MAX_LEN,
"HackRF_%sZ_%ukHz_IQ.wav",
date_time,
(uint32_t) (freq_hz / (1000ull)));
path = path_file;
fprintf(stderr, "Receive wav file: %s\n", path);
}
@ -941,29 +983,33 @@ int main(int argc, char** argv) {
// Change the freq and sample rate to correct the crystal clock error.
if (crystal_correct) {
sample_rate_hz = (uint32_t)((double)sample_rate_hz * (1000000 - crystal_correct_ppm)/1000000+0.5);
sample_rate_hz =
(uint32_t) ((double) sample_rate_hz * (1000000 - crystal_correct_ppm) / 1000000 + 0.5);
freq_hz = freq_hz * (1000000 - crystal_correct_ppm) / 1000000;
}
result = hackrf_init();
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_init() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_open() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
if (transceiver_mode != TRANSCEIVER_MODE_SS) {
if( transceiver_mode == TRANSCEIVER_MODE_RX )
{
if (transceiver_mode == TRANSCEIVER_MODE_RX) {
if (strcmp(path, "-") == 0) {
file = stdout;
} else {
@ -991,8 +1037,7 @@ int main(int argc, char** argv) {
}
/* Write Wav header */
if( receive_wav )
{
if (receive_wav) {
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);
}
@ -1006,29 +1051,47 @@ int main(int argc, char** argv) {
signal(SIGTERM, &sigint_callback_handler);
signal(SIGABRT, &sigint_callback_handler);
#endif
fprintf(stderr, "call hackrf_set_sample_rate(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ));
fprintf(stderr,
"call hackrf_set_sample_rate(%u Hz/%.03f MHz)\n",
sample_rate_hz,
((float) sample_rate_hz / (float) FREQ_ONE_MHZ));
result = hackrf_set_sample_rate(device, sample_rate_hz);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_sample_rate() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_sample_rate() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
if (baseband_filter_bw) {
fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n",
baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz);
fprintf(stderr,
"call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n",
baseband_filter_bw_hz,
((float) baseband_filter_bw_hz / (float) FREQ_ONE_MHZ));
result = hackrf_set_baseband_filter_bandwidth(
device,
baseband_filter_bw_hz);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
fprintf(stderr, "call hackrf_set_hw_sync_mode(%d)\n", hw_sync_enable);
result = hackrf_set_hw_sync_mode(device, hw_sync_enable ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF);
result = hackrf_set_hw_sync_mode(
device,
hw_sync_enable ? HW_SYNC_MODE_ON : HW_SYNC_MODE_OFF);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_hw_sync_mode() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_hw_sync_mode() failed: %s (%d)\n",
hackrf_error_name(result),
result);
return EXIT_FAILURE;
}
@ -1041,30 +1104,44 @@ int main(int argc, char** argv) {
result |= hackrf_start_tx(device, tx_callback, NULL);
}
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_start_?x() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
if (automatic_tuning) {
fprintf(stderr, "call hackrf_set_freq(%s Hz/%.03f MHz)\n",
u64toa(freq_hz, &ascii_u64_data1),((double)freq_hz/(double)FREQ_ONE_MHZ) );
fprintf(stderr,
"call hackrf_set_freq(%s Hz/%.03f MHz)\n",
u64toa(freq_hz, &ascii_u64_data1),
((double) freq_hz / (double) FREQ_ONE_MHZ));
result = hackrf_set_freq(device, freq_hz);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_freq() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
} else {
fprintf(stderr, "call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
fprintf(stderr,
"call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n",
u64toa(if_freq_hz, &ascii_u64_data1),
u64toa(lo_freq_hz, &ascii_u64_data2),
hackrf_filter_path_name(image_reject_selection));
result = hackrf_set_freq_explicit(device, if_freq_hz, lo_freq_hz,
result = hackrf_set_freq_explicit(
device,
if_freq_hz,
lo_freq_hz,
image_reject_selection);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_freq_explicit() failed: %s (%d)\n",
hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_freq_explicit() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -1074,7 +1151,10 @@ int main(int argc, char** argv) {
fprintf(stderr, "call hackrf_set_amp_enable(%u)\n", amp_enable);
result = hackrf_set_amp_enable(device, (uint8_t) amp_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_amp_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
@ -1084,14 +1164,18 @@ int main(int argc, char** argv) {
fprintf(stderr, "call hackrf_set_antenna_enable(%u)\n", antenna_enable);
result = hackrf_set_antenna_enable(device, (uint8_t) antenna_enable);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_set_antenna_enable() failed: %s (%d)\n",
hackrf_error_name(result),
result);
usage();
return EXIT_FAILURE;
}
}
if (limit_num_samples) {
fprintf(stderr, "samples_to_xfer %s/%sMio\n",
fprintf(stderr,
"samples_to_xfer %s/%sMio\n",
u64toa(samples_to_xfer, &ascii_u64_data1),
u64toa((samples_to_xfer / FREQ_ONE_MHZ), &ascii_u64_data2));
}
@ -1100,9 +1184,7 @@ int main(int argc, char** argv) {
gettimeofday(&time_start, NULL);
fprintf(stderr, "Stop with Ctrl-C\n");
while( (hackrf_is_streaming(device) == HACKRF_TRUE) &&
(do_exit == false) )
{
while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
uint32_t byte_count_now;
struct timeval time_now;
float time_difference, rate;
@ -1113,12 +1195,14 @@ int main(int argc, char** argv) {
} else {
ssize_t len;
ssize_t bytes_written;
uint32_t _st= __atomic_load_n(&stream_tail,__ATOMIC_ACQUIRE);
uint32_t _st =
__atomic_load_n(&stream_tail, __ATOMIC_ACQUIRE);
if (stream_head < _st)
len = _st - stream_head;
else
len = stream_size - stream_head;
bytes_written = fwrite(stream_buf+stream_head, 1, len, file);
bytes_written =
fwrite(stream_buf + stream_head, 1, len, file);
if (len != bytes_written) {
fprintf(stderr, "write failed");
do_exit = true;
@ -1126,7 +1210,10 @@ int main(int argc, char** argv) {
stream_head = (stream_head + len) % stream_size;
}
if (stream_drop > 0) {
uint32_t drops= __atomic_exchange_n (&stream_drop,0,__ATOMIC_SEQ_CST);
uint32_t drops = __atomic_exchange_n(
&stream_drop,
0,
__ATOMIC_SEQ_CST);
fprintf(stderr, "dropped frames: [%d]\n", drops);
}
#endif
@ -1139,34 +1226,46 @@ int main(int argc, char** argv) {
byte_count = 0;
stream_amplitude_now = stream_amplitude;
stream_amplitude = 0;
if (byte_count_now < sample_rate_hz/20) // Don't report on very short frames
if (byte_count_now <
sample_rate_hz / 20) // Don't report on very short frames
stream_amplitude_now = 0;
time_difference = TimevalDiff(&time_now, &time_start);
rate = (float) byte_count_now / time_difference;
if (byte_count_now == 0 && hw_sync == true && hw_sync_enable != 0) {
if (byte_count_now == 0 && hw_sync == true &&
hw_sync_enable != 0) {
fprintf(stderr, "Waiting for sync...\n");
} else {
// This is only an approximate measure, to assist getting receive levels right:
double full_scale_ratio = ((double)stream_amplitude_now / (byte_count_now ? byte_count_now : 1))/128;
double full_scale_ratio =
((double) stream_amplitude_now /
(byte_count_now ? byte_count_now : 1)) /
128;
double dB_full_scale_ratio = 10 * log10(full_scale_ratio);
// Guard against ridiculous reports
if (dB_full_scale_ratio > 1)
dB_full_scale_ratio = -0.0;
fprintf(stderr, "%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs",
fprintf(stderr,
"%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs",
(byte_count_now / 1e6f),
time_difference,
(rate / 1e6f),
dB_full_scale_ratio
);
dB_full_scale_ratio);
if (display_stats) {
bool tx = transmit || signalsource;
result = update_stats(device, &state, &stats);
if (result != HACKRF_SUCCESS)
fprintf(stderr, "\nhackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"\nhackrf_get_m0_state() failed: %s (%d)\n",
hackrf_error_name(result),
result);
else
fprintf(stderr, ", %d bytes %s in buffer, %u %s, longest %u bytes\n",
tx ? state.m4_count - state.m0_count : state.m0_count - state.m4_count,
fprintf(stderr,
", %d bytes %s in buffer, %u %s, longest %u bytes\n",
tx ? state.m4_count -
state.m0_count :
state.m0_count -
state.m4_count,
tx ? "filled" : "free",
state.num_shortfalls,
tx ? "underruns" : "overruns",
@ -1178,20 +1277,24 @@ int main(int argc, char** argv) {
time_start = time_now;
if (byte_count_now == 0 && (hw_sync == false || hw_sync_enable == 0)) {
if (byte_count_now == 0 &&
(hw_sync == false || hw_sync_enable == 0)) {
exit_code = EXIT_FAILURE;
fprintf(stderr, "\nCouldn't transfer any bytes for one second.\n");
fprintf(stderr,
"\nCouldn't transfer any bytes for one second.\n");
break;
}
}
}
result = hackrf_is_streaming(device);
if (do_exit)
{
if (do_exit) {
fprintf(stderr, "\nExiting...\n");
} else {
fprintf(stderr, "\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"\nExiting... hackrf_is_streaming() result: %s (%d)\n",
hackrf_error_name(result),
result);
}
gettimeofday(&t_end, NULL);
@ -1202,7 +1305,10 @@ int main(int argc, char** argv) {
if (receive || receive_wav) {
result = hackrf_stop_rx(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_stop_rx() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_stop_rx() done\n");
}
@ -1211,7 +1317,10 @@ int main(int argc, char** argv) {
if (transmit || signalsource) {
result = hackrf_stop_tx(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_stop_tx() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_stop_tx() done\n");
}
@ -1220,7 +1329,10 @@ int main(int argc, char** argv) {
if (display_stats) {
result = update_stats(device, &state, &stats);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_get_m0_state() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr,
"Transfer statistics:\n"
@ -1230,14 +1342,18 @@ int main(int argc, char** argv) {
stats.m0_total,
stats.m4_total,
state.num_shortfalls,
(transmit || signalsource) ? "underruns" : "overruns",
(transmit || signalsource) ? "underruns" :
"overruns",
state.longest_shortfall);
}
}
result = hackrf_close(device);
if (result != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
fprintf(stderr,
"hackrf_close() failed: %s (%d)\n",
hackrf_error_name(result),
result);
} else {
fprintf(stderr, "hackrf_close() done\n");
}
@ -1246,17 +1362,17 @@ int main(int argc, char** argv) {
fprintf(stderr, "hackrf_exit() done\n");
}
if(file != NULL)
{
if( receive_wav )
{
if (file != NULL) {
if (receive_wav) {
/* Get size of file */
file_pos = ftell(file);
/* Update Wav Header */
wave_file_hdr.hdr.size = file_pos - 8;
wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz;
wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2;
wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr);
wave_file_hdr.fmt_chunk.dwAvgBytesPerSec =
wave_file_hdr.fmt_chunk.dwSamplesPerSec * 2;
wave_file_hdr.data_chunk.chunkSize =
file_pos - sizeof(t_wav_file_hdr);
/* Overwrite header with updated data */
rewind(file);
fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), file);

File diff suppressed because it is too large Load Diff

View File

@ -196,8 +196,7 @@ typedef struct hackrf_device_list hackrf_device_list_t;
typedef int (*hackrf_sample_block_cb_fn)(hackrf_transfer* transfer);
#ifdef __cplusplus
extern "C"
{
extern "C" {
#endif
extern ADDAPI int ADDCALL hackrf_init();
@ -207,64 +206,127 @@ extern ADDAPI const char* ADDCALL hackrf_library_version();
extern ADDAPI const char* ADDCALL hackrf_library_release();
extern ADDAPI hackrf_device_list_t* ADDCALL hackrf_device_list();
extern ADDAPI int ADDCALL hackrf_device_list_open(hackrf_device_list_t *list, int idx, hackrf_device** device);
extern ADDAPI int ADDCALL hackrf_device_list_open(
hackrf_device_list_t* list,
int idx,
hackrf_device** device);
extern ADDAPI void ADDCALL hackrf_device_list_free(hackrf_device_list_t* list);
extern ADDAPI int ADDCALL hackrf_open(hackrf_device** device);
extern ADDAPI int ADDCALL hackrf_open_by_serial(const char* const desired_serial_number, hackrf_device** device);
extern ADDAPI int ADDCALL hackrf_open_by_serial(
const char* const desired_serial_number,
hackrf_device** device);
extern ADDAPI int ADDCALL hackrf_close(hackrf_device* device);
extern ADDAPI int ADDCALL hackrf_start_rx(hackrf_device* device, hackrf_sample_block_cb_fn callback, void* rx_ctx);
extern ADDAPI int ADDCALL hackrf_start_rx(
hackrf_device* device,
hackrf_sample_block_cb_fn callback,
void* rx_ctx);
extern ADDAPI int ADDCALL hackrf_stop_rx(hackrf_device* device);
extern ADDAPI int ADDCALL hackrf_start_tx(hackrf_device* device, hackrf_sample_block_cb_fn callback, void* tx_ctx);
extern ADDAPI int ADDCALL hackrf_start_tx(
hackrf_device* device,
hackrf_sample_block_cb_fn callback,
void* tx_ctx);
extern ADDAPI int ADDCALL hackrf_stop_tx(hackrf_device* device);
extern ADDAPI int ADDCALL hackrf_get_m0_state(hackrf_device* device, hackrf_m0_state* value);
extern ADDAPI int ADDCALL hackrf_set_tx_underrun_limit(hackrf_device* device, uint32_t value);
extern ADDAPI int ADDCALL hackrf_set_rx_overrun_limit(hackrf_device* device, uint32_t value);
extern ADDAPI int ADDCALL hackrf_get_m0_state(
hackrf_device* device,
hackrf_m0_state* value);
extern ADDAPI int ADDCALL hackrf_set_tx_underrun_limit(
hackrf_device* device,
uint32_t value);
extern ADDAPI int ADDCALL hackrf_set_rx_overrun_limit(
hackrf_device* device,
uint32_t value);
/* return HACKRF_TRUE if success */
extern ADDAPI int ADDCALL hackrf_is_streaming(hackrf_device* device);
extern ADDAPI int ADDCALL hackrf_max2837_read(hackrf_device* device, uint8_t register_number, uint16_t* value);
extern ADDAPI int ADDCALL hackrf_max2837_write(hackrf_device* device, uint8_t register_number, uint16_t value);
extern ADDAPI int ADDCALL hackrf_max2837_read(
hackrf_device* device,
uint8_t register_number,
uint16_t* value);
extern ADDAPI int ADDCALL hackrf_max2837_write(
hackrf_device* device,
uint8_t register_number,
uint16_t value);
extern ADDAPI int ADDCALL hackrf_si5351c_read(hackrf_device* device, uint16_t register_number, uint16_t* value);
extern ADDAPI int ADDCALL hackrf_si5351c_write(hackrf_device* device, uint16_t register_number, uint16_t value);
extern ADDAPI int ADDCALL hackrf_si5351c_read(
hackrf_device* device,
uint16_t register_number,
uint16_t* value);
extern ADDAPI int ADDCALL hackrf_si5351c_write(
hackrf_device* device,
uint16_t register_number,
uint16_t value);
extern ADDAPI int ADDCALL hackrf_set_baseband_filter_bandwidth(hackrf_device* device, const uint32_t bandwidth_hz);
extern ADDAPI int ADDCALL hackrf_set_baseband_filter_bandwidth(
hackrf_device* device,
const uint32_t bandwidth_hz);
extern ADDAPI int ADDCALL hackrf_rffc5071_read(hackrf_device* device, uint8_t register_number, uint16_t* value);
extern ADDAPI int ADDCALL hackrf_rffc5071_write(hackrf_device* device, uint8_t register_number, uint16_t value);
extern ADDAPI int ADDCALL hackrf_rffc5071_read(
hackrf_device* device,
uint8_t register_number,
uint16_t* value);
extern ADDAPI int ADDCALL hackrf_rffc5071_write(
hackrf_device* device,
uint8_t register_number,
uint16_t value);
extern ADDAPI int ADDCALL hackrf_spiflash_erase(hackrf_device* device);
extern ADDAPI int ADDCALL hackrf_spiflash_write(hackrf_device* device, const uint32_t address, const uint16_t length, unsigned char* const data);
extern ADDAPI int ADDCALL hackrf_spiflash_read(hackrf_device* device, const uint32_t address, const uint16_t length, unsigned char* data);
extern ADDAPI int ADDCALL hackrf_spiflash_write(
hackrf_device* device,
const uint32_t address,
const uint16_t length,
unsigned char* const data);
extern ADDAPI int ADDCALL hackrf_spiflash_read(
hackrf_device* device,
const uint32_t address,
const uint16_t length,
unsigned char* data);
extern ADDAPI int ADDCALL hackrf_spiflash_status(hackrf_device* device, uint8_t* data);
extern ADDAPI int ADDCALL hackrf_spiflash_clear_status(hackrf_device* device);
/* device will need to be reset after hackrf_cpld_write */
extern ADDAPI int ADDCALL hackrf_cpld_write(hackrf_device* device,
unsigned char* const data, const unsigned int total_length);
extern ADDAPI int ADDCALL hackrf_cpld_write(
hackrf_device* device,
unsigned char* const data,
const unsigned int total_length);
extern ADDAPI int ADDCALL hackrf_board_id_read(hackrf_device* device, uint8_t* value);
extern ADDAPI int ADDCALL hackrf_version_string_read(hackrf_device* device, char* version, uint8_t length);
extern ADDAPI int ADDCALL hackrf_usb_api_version_read(hackrf_device* device, uint16_t* version);
extern ADDAPI int ADDCALL hackrf_version_string_read(
hackrf_device* device,
char* version,
uint8_t length);
extern ADDAPI int ADDCALL hackrf_usb_api_version_read(
hackrf_device* device,
uint16_t* version);
extern ADDAPI int ADDCALL hackrf_set_freq(hackrf_device* device, const uint64_t freq_hz);
extern ADDAPI int ADDCALL hackrf_set_freq_explicit(hackrf_device* device,
const uint64_t if_freq_hz, const uint64_t lo_freq_hz,
extern ADDAPI int ADDCALL hackrf_set_freq_explicit(
hackrf_device* device,
const uint64_t if_freq_hz,
const uint64_t lo_freq_hz,
const enum rf_path_filter path);
/* 2-20Mhz - either as a fraction, i.e. freq 20000000hz divider 2 -> 10Mhz or as plain old 10000000hz (double) */
extern ADDAPI int ADDCALL hackrf_set_sample_rate_manual(hackrf_device* device, const uint32_t freq_hz, const uint32_t divider);
extern ADDAPI int ADDCALL hackrf_set_sample_rate(hackrf_device* device, const double freq_hz);
extern ADDAPI int ADDCALL hackrf_set_sample_rate_manual(
hackrf_device* device,
const uint32_t freq_hz,
const uint32_t divider);
extern ADDAPI int ADDCALL hackrf_set_sample_rate(
hackrf_device* device,
const double freq_hz);
/* external amp, bool on/off */
extern ADDAPI int ADDCALL hackrf_set_amp_enable(hackrf_device* device, const uint8_t value);
extern ADDAPI int ADDCALL hackrf_set_amp_enable(
hackrf_device* device,
const uint8_t value);
extern ADDAPI int ADDCALL hackrf_board_partid_serialno_read(hackrf_device* device, read_partid_serialno_t* read_partid_serialno);
extern ADDAPI int ADDCALL hackrf_board_partid_serialno_read(
hackrf_device* device,
read_partid_serialno_t* read_partid_serialno);
/* range 0-40 step 8d, IF gain in osmosdr */
extern ADDAPI int ADDCALL hackrf_set_lna_gain(hackrf_device* device, uint32_t value);
@ -276,58 +338,90 @@ extern ADDAPI int ADDCALL hackrf_set_vga_gain(hackrf_device* device, uint32_t va
extern ADDAPI int ADDCALL hackrf_set_txvga_gain(hackrf_device* device, uint32_t value);
/* antenna port power control */
extern ADDAPI int ADDCALL hackrf_set_antenna_enable(hackrf_device* device, const uint8_t value);
extern ADDAPI int ADDCALL hackrf_set_antenna_enable(
hackrf_device* device,
const uint8_t value);
extern ADDAPI const char* ADDCALL hackrf_error_name(enum hackrf_error errcode);
extern ADDAPI const char* ADDCALL hackrf_board_id_name(enum hackrf_board_id board_id);
extern ADDAPI const char* ADDCALL hackrf_usb_board_id_name(enum hackrf_usb_board_id usb_board_id);
extern ADDAPI const char* ADDCALL hackrf_usb_board_id_name(
enum hackrf_usb_board_id usb_board_id);
extern ADDAPI const char* ADDCALL hackrf_filter_path_name(const enum rf_path_filter path);
/* Compute nearest freq for bw filter (manual filter) */
extern ADDAPI uint32_t ADDCALL hackrf_compute_baseband_filter_bw_round_down_lt(const uint32_t bandwidth_hz);
extern ADDAPI uint32_t ADDCALL hackrf_compute_baseband_filter_bw_round_down_lt(
const uint32_t bandwidth_hz);
/* Compute best default value depending on sample rate (auto filter) */
extern ADDAPI uint32_t ADDCALL hackrf_compute_baseband_filter_bw(const uint32_t bandwidth_hz);
extern ADDAPI uint32_t ADDCALL hackrf_compute_baseband_filter_bw(
const uint32_t bandwidth_hz);
/* All features below require USB API version 0x1002 or higher) */
/* set hardware sync mode */
extern ADDAPI int ADDCALL hackrf_set_hw_sync_mode(hackrf_device* device, const uint8_t value);
extern ADDAPI int ADDCALL hackrf_set_hw_sync_mode(
hackrf_device* device,
const uint8_t value);
/* Start sweep mode */
extern ADDAPI int ADDCALL hackrf_init_sweep(hackrf_device* device,
const uint16_t* frequency_list, const int num_ranges,
const uint32_t num_bytes, const uint32_t step_width,
const uint32_t offset, const enum sweep_style style);
extern ADDAPI int ADDCALL hackrf_init_sweep(
hackrf_device* device,
const uint16_t* frequency_list,
const int num_ranges,
const uint32_t num_bytes,
const uint32_t step_width,
const uint32_t offset,
const enum sweep_style style);
/* Operacake functions */
extern ADDAPI int ADDCALL hackrf_get_operacake_boards(hackrf_device* device, uint8_t* boards);
extern ADDAPI int ADDCALL hackrf_set_operacake_mode(hackrf_device* device, uint8_t address, enum operacake_switching_mode mode);
extern ADDAPI int ADDCALL hackrf_get_operacake_mode(hackrf_device* device, uint8_t address, enum operacake_switching_mode *mode);
extern ADDAPI int ADDCALL hackrf_set_operacake_ports(hackrf_device* device,
extern ADDAPI int ADDCALL hackrf_get_operacake_boards(
hackrf_device* device,
uint8_t* boards);
extern ADDAPI int ADDCALL hackrf_set_operacake_mode(
hackrf_device* device,
uint8_t address,
enum operacake_switching_mode mode);
extern ADDAPI int ADDCALL hackrf_get_operacake_mode(
hackrf_device* device,
uint8_t address,
enum operacake_switching_mode* mode);
extern ADDAPI int ADDCALL hackrf_set_operacake_ports(
hackrf_device* device,
uint8_t address,
uint8_t port_a,
uint8_t port_b);
extern ADDAPI int ADDCALL hackrf_set_operacake_dwell_times(hackrf_device* device, hackrf_operacake_dwell_time *dwell_times, uint8_t count);
extern ADDAPI int ADDCALL hackrf_set_operacake_freq_ranges(hackrf_device* device, hackrf_operacake_freq_range *freq_ranges, uint8_t count);
extern ADDAPI int ADDCALL hackrf_set_operacake_dwell_times(
hackrf_device* device,
hackrf_operacake_dwell_time* dwell_times,
uint8_t count);
extern ADDAPI int ADDCALL hackrf_set_operacake_freq_ranges(
hackrf_device* device,
hackrf_operacake_freq_range* freq_ranges,
uint8_t count);
extern ADDAPI int ADDCALL hackrf_reset(hackrf_device* device);
extern ADDAPI int ADDCALL hackrf_set_operacake_ranges(hackrf_device* device,
extern ADDAPI int ADDCALL hackrf_set_operacake_ranges(
hackrf_device* device,
uint8_t* ranges,
uint8_t num_ranges);
extern ADDAPI int ADDCALL hackrf_set_clkout_enable(hackrf_device* device, const uint8_t value);
extern ADDAPI int ADDCALL hackrf_set_clkout_enable(
hackrf_device* device,
const uint8_t value);
extern ADDAPI int ADDCALL hackrf_operacake_gpio_test(hackrf_device* device,
extern ADDAPI int ADDCALL hackrf_operacake_gpio_test(
hackrf_device* device,
uint8_t address,
uint16_t* test_result);
#ifdef HACKRF_ISSUE_609_IS_FIXED
extern ADDAPI int ADDCALL hackrf_cpld_checksum(hackrf_device* device,
uint32_t* crc);
extern ADDAPI int ADDCALL hackrf_cpld_checksum(hackrf_device* device, uint32_t* crc);
#endif /* HACKRF_ISSUE_609_IS_FIXED */
extern ADDAPI int ADDCALL hackrf_set_ui_enable(hackrf_device* device, const uint8_t value);
extern ADDAPI int ADDCALL hackrf_start_rx_sweep(hackrf_device* device, hackrf_sample_block_cb_fn callback, void* rx_ctx);
extern ADDAPI int ADDCALL hackrf_start_rx_sweep(
hackrf_device* device,
hackrf_sample_block_cb_fn callback,
void* rx_ctx);
#ifdef __cplusplus
} // __cplusplus defined.