Merge pull request #600 from jboone/cpld_sram_load

CPLD SRAM loading
This commit is contained in:
Dominic Spill
2019-03-06 17:00:16 -07:00
committed by GitHub
12 changed files with 706 additions and 48 deletions

2
.gitignore vendored
View File

@ -68,3 +68,5 @@ firmware/cpld/**/*.xst
firmware/cpld/**/*.xwbt firmware/cpld/**/*.xwbt
firmware/**/build firmware/**/build
*.pyc

View File

@ -25,5 +25,23 @@ set(CMAKE_TOOLCHAIN_FILE toolchain-arm-cortex-m.cmake)
project (hackrf_firmware_all C) project (hackrf_firmware_all C)
SET(PATH_HACKRF_FIRMWARE ${CMAKE_CURRENT_LIST_DIR})
SET(PATH_HACKRF_CPLD_XSVF ${PATH_HACKRF_FIRMWARE}/cpld/sgpio_if/default.xsvf)
SET(PATH_HACKRF ${PATH_HACKRF_FIRMWARE}/..)
SET(PATH_HACKRF_FIRMWARE_COMMON ${PATH_HACKRF_FIRMWARE}/common)
SET(LIBOPENCM3 ${PATH_HACKRF_FIRMWARE}/libopencm3)
SET(PATH_DFU_PY ${PATH_HACKRF_FIRMWARE}/dfu.py)
SET(PATH_CPLD_BITSTREAM_TOOL ${PATH_HACKRF_FIRMWARE}/tools/cpld_bitstream.py)
set(PATH_HACKRF_CPLD_DATA_C ${CMAKE_CURRENT_BINARY_DIR}/hackrf_cpld_data.c)
include(ExternalProject)
ExternalProject_Add(libopencm3
SOURCE_DIR "${LIBOPENCM3}"
BUILD_IN_SOURCE true
DOWNLOAD_COMMAND ""
CONFIGURE_COMMAND ""
INSTALL_COMMAND ""
)
add_subdirectory(blinky) add_subdirectory(blinky)
add_subdirectory(hackrf_usb) add_subdirectory(hackrf_usb)

View File

@ -26,10 +26,6 @@
#include <stddef.h> #include <stddef.h>
#include <string.h> #include <string.h>
#define CPLD_XC2C64A_ROWS (98)
#define CPLD_XC2C64A_BITS_IN_ROW (274)
#define CPLD_XC2C64A_BYTES_IN_ROW ((CPLD_XC2C64A_BITS_IN_ROW + 7) / 8)
static const uint8_t cpld_xc2c64a_row_address[CPLD_XC2C64A_ROWS] = { static const uint8_t cpld_xc2c64a_row_address[CPLD_XC2C64A_ROWS] = {
0x00, 0x40, 0x60, 0x20, 0x30, 0x70, 0x50, 0x10, 0x18, 0x58, 0x78, 0x38, 0x28, 0x68, 0x48, 0x08, 0x00, 0x40, 0x60, 0x20, 0x30, 0x70, 0x50, 0x10, 0x18, 0x58, 0x78, 0x38, 0x28, 0x68, 0x48, 0x08,
0x0c, 0x4c, 0x6c, 0x2c, 0x3c, 0x7c, 0x5c, 0x1c, 0x14, 0x54, 0x74, 0x34, 0x24, 0x64, 0x44, 0x04, 0x0c, 0x4c, 0x6c, 0x2c, 0x3c, 0x7c, 0x5c, 0x1c, 0x14, 0x54, 0x74, 0x34, 0x24, 0x64, 0x44, 0x04,
@ -40,25 +36,6 @@ static const uint8_t cpld_xc2c64a_row_address[CPLD_XC2C64A_ROWS] = {
0x05, 0x45, 0x05, 0x45,
}; };
static const uint8_t cpld_xc2c64a_mask[6][CPLD_XC2C64A_BYTES_IN_ROW] = {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0xf8, 0x1f, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x80, 0x1f, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01, 0x80, 0x07, 0x00, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, },
};
static const uint8_t cpld_xc2c64a_row_mask_index[CPLD_XC2C64A_ROWS] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 3, 4, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 5, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0,
};
typedef enum { typedef enum {
CPLD_XC2C_IR_INTEST = 0b00000010, CPLD_XC2C_IR_INTEST = 0b00000010,
CPLD_XC2C_IR_BYPASS = 0b11111111, CPLD_XC2C_IR_BYPASS = 0b11111111,
@ -121,12 +98,11 @@ static bool cpld_xc2c_jtag_clock(const jtag_t* const jtag, const uint32_t tms, c
return gpio_read(jtag->gpio->gpio_tdo); return gpio_read(jtag->gpio->gpio_tdo);
} }
static void cpld_xc2c_jtag_shift_ptr(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t count) { static void cpld_xc2c_jtag_shift_ptr_tms(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t start, const size_t end, const bool tms) {
for(size_t i=0; i<count; i++) { for(size_t i=start; i<end; i++) {
const size_t byte_n = i >> 3; const size_t byte_n = i >> 3;
const size_t bit_n = i & 7; const size_t bit_n = i & 7;
const uint32_t mask = (1U << bit_n); const uint32_t mask = (1U << bit_n);
const bool tms = (i == (count - 1));
const uint32_t tdo = cpld_xc2c_jtag_clock(jtag, tms, tdi_tdo[byte_n] & mask) ? 1 : 0; const uint32_t tdo = cpld_xc2c_jtag_clock(jtag, tms, tdi_tdo[byte_n] & mask) ? 1 : 0;
@ -135,6 +111,13 @@ static void cpld_xc2c_jtag_shift_ptr(const jtag_t* const jtag, uint8_t* const td
} }
} }
static void cpld_xc2c_jtag_shift_ptr(const jtag_t* const jtag, uint8_t* const tdi_tdo, const size_t count) {
if( count > 0 ) {
cpld_xc2c_jtag_shift_ptr_tms(jtag, tdi_tdo, 0, count - 1, false);
cpld_xc2c_jtag_shift_ptr_tms(jtag, tdi_tdo, count - 1, count, true);
}
}
static uint32_t cpld_xc2c_jtag_shift_u32(const jtag_t* const jtag, const uint32_t tms, const uint32_t tdi, const size_t count) { static uint32_t cpld_xc2c_jtag_shift_u32(const jtag_t* const jtag, const uint32_t tms, const uint32_t tdi, const size_t count) {
uint32_t tdo = 0; uint32_t tdo = 0;
@ -189,11 +172,18 @@ static uint8_t cpld_xc2c_jtag_shift_ir(const jtag_t* const jtag, const cpld_xc2c
return cpld_xc2c_jtag_shift_ir_pause(jtag, ir, 0); return cpld_xc2c_jtag_shift_ir_pause(jtag, ir, 0);
} }
static void cpld_xc2c_jtag_reset(const jtag_t* const jtag) {
/* Five TMS=1 to reach Test-Logic-Reset from any point in the TAP state diagram.
*/
cpld_xc2c_jtag_shift_u32(jtag, 0b11111, 0, 5);
}
static void cpld_xc2c_jtag_reset_and_idle(const jtag_t* const jtag) { static void cpld_xc2c_jtag_reset_and_idle(const jtag_t* const jtag) {
/* Five TMS=1 to reach Test-Logic-Reset from any point in the TAP state diagram. /* Five TMS=1 to reach Test-Logic-Reset from any point in the TAP state diagram.
* One TMS=0 to move from Test-Logic-Reset to Run-Test-Idle. * One TMS=0 to move from Test-Logic-Reset to Run-Test-Idle.
*/ */
cpld_xc2c_jtag_shift_u32(jtag, 0b011111, 0, 6); cpld_xc2c_jtag_reset(jtag);
cpld_xc2c_jtag_shift_u32(jtag, 0, 0, 1);
} }
static uint32_t cpld_xc2c_jtag_idcode(const jtag_t* const jtag) { static uint32_t cpld_xc2c_jtag_idcode(const jtag_t* const jtag) {
@ -215,6 +205,20 @@ static void cpld_xc2c_jtag_conld(const jtag_t* const jtag) {
static void cpld_xc2c_jtag_enable(const jtag_t* const jtag) { static void cpld_xc2c_jtag_enable(const jtag_t* const jtag) {
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_ENABLE); cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_ENABLE);
cpld_xc2c_jtag_clocks(jtag, 800);
}
static void cpld_xc2c_jtag_disable(const jtag_t* const jtag) {
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_DISABLE);
cpld_xc2c_jtag_clocks(jtag, 100);
}
static void cpld_xc2c_jtag_sram_write(const jtag_t* const jtag) {
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_WRITE);
}
static void cpld_xc2c_jtag_sram_read(const jtag_t* const jtag) {
cpld_xc2c_jtag_shift_ir(jtag, CPLD_XC2C_IR_ISC_SRAM_READ);
} }
static uint32_t cpld_xc2c_jtag_bypass(const jtag_t* const jtag, const bool shift_dr) { static uint32_t cpld_xc2c_jtag_bypass(const jtag_t* const jtag, const bool shift_dr) {
@ -265,7 +269,11 @@ static void cpld_xc2c64a_jtag_read_row(const jtag_t* const jtag, uint8_t address
cpld_xc2c_jtag_clocks(jtag, 100); cpld_xc2c_jtag_clocks(jtag, 100);
} }
bool cpld_xc2c64a_jtag_checksum(const jtag_t* const jtag, uint32_t* const crc_value) { bool cpld_xc2c64a_jtag_checksum(
const jtag_t* const jtag,
const cpld_xc2c64a_verify_t* const verify,
uint32_t* const crc_value
) {
cpld_xc2c_jtag_reset_and_idle(jtag); cpld_xc2c_jtag_reset_and_idle(jtag);
if( cpld_xc2c64a_jtag_idcode_ok(jtag) && cpld_xc2c_jtag_read_write_protect(jtag) && if( cpld_xc2c64a_jtag_idcode_ok(jtag) && cpld_xc2c_jtag_read_write_protect(jtag) &&
@ -287,9 +295,9 @@ bool cpld_xc2c64a_jtag_checksum(const jtag_t* const jtag, uint32_t* const crc_va
const size_t address = cpld_xc2c64a_row_address[row]; const size_t address = cpld_xc2c64a_row_address[row];
cpld_xc2c64a_jtag_read_row(jtag, address, dr); cpld_xc2c64a_jtag_read_row(jtag, address, dr);
const size_t mask_index = cpld_xc2c64a_row_mask_index[row]; const size_t mask_index = verify->mask_index[row];
for(size_t i=0; i<CPLD_XC2C64A_BYTES_IN_ROW; i++) { for(size_t i=0; i<CPLD_XC2C64A_BYTES_IN_ROW; i++) {
dr[i] &= cpld_xc2c64a_mask[mask_index][i]; dr[i] &= verify->mask[mask_index].value[i];
} }
/* Important checksum calculation NOTE: /* Important checksum calculation NOTE:
@ -318,3 +326,103 @@ bool cpld_xc2c64a_jtag_checksum(const jtag_t* const jtag, uint32_t* const crc_va
return false; return false;
} }
static void cpld_xc2c64a_jtag_sram_write_row(const jtag_t* const jtag, uint8_t address, const uint8_t* const data) {
uint8_t write[CPLD_XC2C64A_BYTES_IN_ROW];
memcpy(&write[0], data, sizeof(write));
/* Update-IR or Run-Test/Idle -> Shift-DR */
cpld_xc2c_jtag_shift_u32(jtag, 0b001, 0b000, 3);
/* Shift-DR -> Shift-DR */
cpld_xc2c_jtag_shift_ptr_tms(jtag, &write[0], 0, CPLD_XC2C64A_BITS_IN_ROW, false);
/* Shift-DR -> Exit1-DR */
cpld_xc2c_jtag_shift_u32(jtag, 0b1000000, address, 7);
/* Exit1-DR -> Update-DR -> Run-Test/Idle */
cpld_xc2c_jtag_shift_u32(jtag, 0b01, 0b00, 2);
}
static void cpld_xc2c64a_jtag_sram_read_row(const jtag_t* const jtag, uint8_t* const data, const uint8_t next_address) {
/* Run-Test/Idle -> Shift-DR */
cpld_xc2c_jtag_shift_u32(jtag, 0b001, 0b000, 3);
/* Shift-DR */
cpld_xc2c_jtag_shift_ptr_tms(jtag, data, 0, CPLD_XC2C64A_BITS_IN_ROW, false);
/* Shift-DR -> Exit1-DR */
cpld_xc2c_jtag_shift_u32(jtag, 0b1000000, next_address, 7);
/* Weird, non-IEEE1532 compliant path through TAP machine, described in Xilinx
* Programmer Qualification Specification, applicable only to XC2C64/A.
* Exit1-DR -> Pause-DR -> Exit2-DR -> Update-DR -> Run-Test/Idle
*/
cpld_xc2c_jtag_shift_u32(jtag, 0b0110, 0b0000, 4);
}
static bool cpld_xc2c64a_jtag_sram_compare_row(const jtag_t* const jtag, const uint8_t* const expected, const uint8_t* const mask, const uint8_t next_address) {
/* Run-Test/Idle -> Shift-DR */
uint8_t read[CPLD_XC2C64A_BYTES_IN_ROW];
memset(read, 0xff, sizeof(read));
cpld_xc2c64a_jtag_sram_read_row(jtag, &read[0], next_address);
bool matched = true;
if( (expected != NULL) && (mask != NULL) ) {
for(size_t i=0; i<CPLD_XC2C64A_BYTES_IN_ROW; i++) {
const uint8_t significant_differences = (read[i] ^ expected[i]) & mask[i];
matched &= (significant_differences == 0);
}
}
return matched;
}
void cpld_xc2c64a_jtag_sram_write(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program
) {
cpld_xc2c_jtag_reset_and_idle(jtag);
cpld_xc2c_jtag_enable(jtag);
cpld_xc2c_jtag_sram_write(jtag);
for(size_t row=0; row<CPLD_XC2C64A_ROWS; row++) {
const uint8_t address = cpld_xc2c64a_row_address[row];
cpld_xc2c64a_jtag_sram_write_row(jtag, address, &program->row[row].data[0]);
}
cpld_xc2c_jtag_disable(jtag);
cpld_xc2c_jtag_bypass(jtag, false);
cpld_xc2c_jtag_reset(jtag);
}
bool cpld_xc2c64a_jtag_sram_verify(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program,
const cpld_xc2c64a_verify_t* const verify
) {
cpld_xc2c_jtag_reset_and_idle(jtag);
cpld_xc2c_jtag_enable(jtag);
cpld_xc2c_jtag_sram_read(jtag);
/* Tricky loop to read dummy row first, then first address, then loop back to get
* the first row's data.
*/
bool matched = true;
for(size_t address_row=0; address_row<=CPLD_XC2C64A_ROWS; address_row++) {
const int data_row = (int)address_row - 1;
const size_t mask_index = (data_row >= 0) ? verify->mask_index[data_row] : 0;
const uint8_t* const expected = (data_row >= 0) ? &program->row[data_row].data[0] : NULL;
const uint8_t* const mask = (data_row >= 0) ? &verify->mask[mask_index].value[0] : NULL;
const uint8_t next_address = (address_row < CPLD_XC2C64A_ROWS) ? cpld_xc2c64a_row_address[address_row] : 0;
matched &= cpld_xc2c64a_jtag_sram_compare_row(jtag, expected, mask, next_address);
}
cpld_xc2c_jtag_disable(jtag);
cpld_xc2c_jtag_bypass(jtag, false);
cpld_xc2c_jtag_reset(jtag);
return matched;
}

View File

@ -27,6 +27,44 @@
#include "cpld_jtag.h" #include "cpld_jtag.h"
bool cpld_xc2c64a_jtag_checksum(const jtag_t* const jtag, uint32_t* const crc_value); /* Xilinx CoolRunner II XC2C64A bitstream attributes */
#define CPLD_XC2C64A_ROWS (98)
#define CPLD_XC2C64A_BITS_IN_ROW (274)
#define CPLD_XC2C64A_BYTES_IN_ROW ((CPLD_XC2C64A_BITS_IN_ROW + 7) / 8)
typedef struct {
uint8_t data[CPLD_XC2C64A_BYTES_IN_ROW];
} cpld_xc2c64a_row_data_t;
typedef struct {
cpld_xc2c64a_row_data_t row[CPLD_XC2C64A_ROWS];
} cpld_xc2c64a_program_t;
typedef struct {
uint8_t value[CPLD_XC2C64A_BYTES_IN_ROW];
} cpld_xc2c64a_row_mask_t;
typedef struct {
cpld_xc2c64a_row_mask_t mask[6];
uint8_t mask_index[CPLD_XC2C64A_ROWS];
} cpld_xc2c64a_verify_t;
bool cpld_xc2c64a_jtag_checksum(
const jtag_t* const jtag,
const cpld_xc2c64a_verify_t* const verify,
uint32_t* const crc_value
);
void cpld_xc2c64a_jtag_sram_write(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program
);
bool cpld_xc2c64a_jtag_sram_verify(
const jtag_t* const jtag,
const cpld_xc2c64a_program_t* const program,
const cpld_xc2c64a_verify_t* const verify
);
extern const cpld_xc2c64a_program_t cpld_hackrf_program_sram;
extern const cpld_xc2c64a_verify_t cpld_hackrf_verify;
#endif/*__CPLD_XC2C_H__*/ #endif/*__CPLD_XC2C_H__*/

View File

@ -867,3 +867,18 @@ void led_toggle(const led_t led) {
void hw_sync_enable(const hw_sync_mode_t hw_sync_mode){ void hw_sync_enable(const hw_sync_mode_t hw_sync_mode){
gpio_write(&gpio_hw_sync_enable, hw_sync_mode==1); gpio_write(&gpio_hw_sync_enable, hw_sync_mode==1);
} }
void halt_and_flash(const uint32_t duration) {
/* blink LED1, LED2, and LED3 */
while (1)
{
led_on(LED1);
led_on(LED2);
led_on(LED3);
delay(duration);
led_off(LED1);
led_off(LED2);
led_off(LED3);
delay(duration);
}
}

View File

@ -312,6 +312,7 @@ void led_toggle(const led_t led);
void hw_sync_enable(const hw_sync_mode_t hw_sync_mode); void hw_sync_enable(const hw_sync_mode_t hw_sync_mode);
void halt_and_flash(const uint32_t duration);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -25,6 +25,12 @@ project(hackrf_usb C)
include(../hackrf-common.cmake) include(../hackrf-common.cmake)
add_custom_command(
OUTPUT ${PATH_HACKRF_CPLD_DATA_C}
COMMAND ${PATH_CPLD_BITSTREAM_TOOL} --code ${PATH_HACKRF_CPLD_XSVF} >${PATH_HACKRF_CPLD_DATA_C}
DEPENDS ${PATH_CPLD_BITSTREAM_TOOL} ${PATH_HACKRF_CPLD_XSVF}
)
set(SRC_M4 set(SRC_M4
hackrf_usb.c hackrf_usb.c
"${PATH_HACKRF_FIRMWARE_COMMON}/tuning.c" "${PATH_HACKRF_FIRMWARE_COMMON}/tuning.c"
@ -48,6 +54,7 @@ set(SRC_M4
"${PATH_HACKRF_FIRMWARE_COMMON}/fault_handler.c" "${PATH_HACKRF_FIRMWARE_COMMON}/fault_handler.c"
"${PATH_HACKRF_FIRMWARE_COMMON}/cpld_jtag.c" "${PATH_HACKRF_FIRMWARE_COMMON}/cpld_jtag.c"
"${PATH_HACKRF_FIRMWARE_COMMON}/cpld_xc2c.c" "${PATH_HACKRF_FIRMWARE_COMMON}/cpld_xc2c.c"
"${PATH_HACKRF_CPLD_DATA_C}"
"${PATH_HACKRF_FIRMWARE_COMMON}/xapp058/lenval.c" "${PATH_HACKRF_FIRMWARE_COMMON}/xapp058/lenval.c"
"${PATH_HACKRF_FIRMWARE_COMMON}/xapp058/micro.c" "${PATH_HACKRF_FIRMWARE_COMMON}/xapp058/micro.c"
"${PATH_HACKRF_FIRMWARE_COMMON}/xapp058/ports.c" "${PATH_HACKRF_FIRMWARE_COMMON}/xapp058/ports.c"

View File

@ -45,6 +45,7 @@
#include "usb_api_sweep.h" #include "usb_api_sweep.h"
#include "usb_api_transceiver.h" #include "usb_api_transceiver.h"
#include "usb_bulk_buffer.h" #include "usb_bulk_buffer.h"
#include "cpld_xc2c.h"
#include "hackrf-ui.h" #include "hackrf-ui.h"
@ -211,6 +212,14 @@ void usb_set_descriptor_by_serial_number(void)
} }
} }
static bool cpld_jtag_sram_load(jtag_t* const jtag) {
cpld_jtag_take(jtag);
cpld_xc2c64a_jtag_sram_write(jtag, &cpld_hackrf_program_sram);
const bool success = cpld_xc2c64a_jtag_sram_verify(jtag, &cpld_hackrf_program_sram, &cpld_hackrf_verify);
cpld_jtag_release(jtag);
return success;
}
int main(void) { int main(void) {
pin_setup(); pin_setup();
enable_1v8_power(); enable_1v8_power();
@ -222,6 +231,10 @@ int main(void) {
#endif #endif
cpu_clock_init(); cpu_clock_init();
if( !cpld_jtag_sram_load(&jtag_cpld) ) {
halt_and_flash(6000000);
}
#ifndef DFU_MODE #ifndef DFU_MODE
usb_set_descriptor_by_serial_number(); usb_set_descriptor_by_serial_number();
#endif #endif

View File

@ -61,8 +61,6 @@ static void refill_cpld_buffer(void)
void cpld_update(void) void cpld_update(void)
{ {
#define WAIT_LOOP_DELAY (6000000)
int i;
int error; int error;
usb_queue_flush_endpoint(&usb_endpoint_bulk_in); usb_queue_flush_endpoint(&usb_endpoint_bulk_in);
@ -75,20 +73,7 @@ void cpld_update(void)
refill_cpld_buffer); refill_cpld_buffer);
if(error == 0) if(error == 0)
{ {
/* blink LED1, LED2, and LED3 on success */ halt_and_flash(6000000);
while (1)
{
led_on(LED1);
led_on(LED2);
led_on(LED3);
for (i = 0; i < WAIT_LOOP_DELAY; i++) /* Wait a bit. */
__asm__("nop");
led_off(LED1);
led_off(LED2);
led_off(LED3);
for (i = 0; i < WAIT_LOOP_DELAY; i++) /* Wait a bit. */
__asm__("nop");
}
}else }else
{ {
/* LED3 (Red) steady on error */ /* LED3 (Red) steady on error */
@ -106,7 +91,7 @@ usb_request_status_t usb_vendor_request_cpld_checksum(
if (stage == USB_TRANSFER_STAGE_SETUP) if (stage == USB_TRANSFER_STAGE_SETUP)
{ {
cpld_jtag_take(&jtag_cpld); cpld_jtag_take(&jtag_cpld);
const bool checksum_success = cpld_xc2c64a_jtag_checksum(&jtag_cpld, &cpld_crc); const bool checksum_success = cpld_xc2c64a_jtag_checksum(&jtag_cpld, &cpld_hackrf_verify, &cpld_crc);
cpld_jtag_release(&jtag_cpld); cpld_jtag_release(&jtag_cpld);
if(!checksum_success) { if(!checksum_success) {

241
firmware/tools/cpld_bitstream.py Executable file
View File

@ -0,0 +1,241 @@
#!/usr/bin/env python3
# Xilinx CoolRunner II XC2C64A characteristics
bits_of_address = 7
bits_of_data = 274
bytes_of_data = (bits_of_data + 7) // 8
bits_in_program_row = bits_of_address + bits_of_data
def values_list_line_wrap(values):
line_length = 16
return [' '.join(values[n:n+line_length]) for n in range(0, len(values), line_length)]
def dec_lines(bytes):
return values_list_line_wrap(['%d,' % n for n in bytes])
def hex_lines(bytes):
return values_list_line_wrap(['0x%02x,' % n for n in bytes])
def reverse_bits(n, bit_count):
byte_count = (bit_count + 7) >> 3
# n = int(bytes.hex(), 16)
n_bits = bin(n)[2:].zfill(bit_count)
n_bits_reversed = n_bits[::-1]
n_reversed = int(n_bits_reversed, 2)
return n_reversed.to_bytes(byte_count, byteorder='little')
def extract_addresses(block):
return tuple([row['address'] for row in block])
def extract_data(block):
return tuple([row['data'] for row in block])
def extract_mask(block):
return tuple([row['mask'] for row in block])
def equal_blocks(block1, block2, mask):
block1_data = extract_data(block1)
block2_data = extract_data(block2)
assert(len(block1_data) == len(block2_data))
assert(len(block1_data) == len(mask))
for row1, row2, mask in zip(block1_data, block2_data, mask):
differences = (row1 ^ row2) & mask
if differences != 0:
return False
return True
def dump_block(rows, endian='little'):
data_bytes = (bits_of_data + 7) >> 3
for row in rows:
print('%02x %s' % (row['address'], row['data'].to_bytes(data_bytes, byteorder=endian).hex()))
def extract_programming_data(commands):
ir_map = {
0x01: 'idcode',
0xc0: 'conld',
0xe8: 'enable',
0xea: 'program',
0xed: 'erase',
0xee: 'verify',
0xf0: 'init',
0xff: 'bypass',
# Other instructions unimplemented and if encountered, will cause tool to crash.
}
ir = None
program = []
verify = []
for command in commands:
if command['type'] == 'xsir':
ir = ir_map[command['tdi']['data'][0]]
if ir == 'program':
program.append([])
if ir == 'verify':
verify.append([])
elif ir == 'verify' and command['type'] == 'xsdrtdo':
tdi_length = command['tdi']['length']
end_state = command['end_state']
if tdi_length == bits_of_address and end_state == 1:
address = int(command['tdi']['data'].hex(), 16)
verify[-1].append({'address': address})
elif tdi_length == bits_of_data and end_state == 0:
mask = int(command['tdo_mask']['data'].hex(), 16)
expected = int(command['tdo_expected']['data'].hex(), 16)
verify[-1][-1]['data'] = expected
verify[-1][-1]['mask'] = mask
elif ir == 'program' and command['type'] == 'xsdrtdo':
tdi_length = command['tdi']['length']
end_state = command['end_state']
if tdi_length == bits_in_program_row and end_state == 0:
tdi = int(command['tdi']['data'].hex(), 16)
address = (tdi >> bits_of_data) & ((1 << bits_of_address) - 1)
data = tdi & ((1 << bits_of_data) - 1)
program[-1].append({
'address': address,
'data': data
})
return {
'program': program,
'verify': verify,
}
def validate_programming_data(programming_data):
expected_address_sequence = (0x00, 0x40, 0x60, 0x20, 0x30, 0x70, 0x50, 0x10, 0x18, 0x58, 0x78, 0x38, 0x28, 0x68, 0x48, 0x08, 0x0c, 0x4c, 0x6c, 0x2c, 0x3c, 0x7c, 0x5c, 0x1c, 0x14, 0x54, 0x74, 0x34, 0x24, 0x64, 0x44, 0x04, 0x06, 0x46, 0x66, 0x26, 0x36, 0x76, 0x56, 0x16, 0x1e, 0x5e, 0x7e, 0x3e, 0x2e, 0x6e, 0x4e, 0x0e, 0x0a, 0x4a, 0x6a, 0x2a, 0x3a, 0x7a, 0x5a, 0x1a, 0x12, 0x52, 0x72, 0x32, 0x22, 0x62, 0x42, 0x02, 0x03, 0x43, 0x63, 0x23, 0x33, 0x73, 0x53, 0x13, 0x1b, 0x5b, 0x7b, 0x3b, 0x2b, 0x6b, 0x4b, 0x0b, 0x0f, 0x4f, 0x6f, 0x2f, 0x3f, 0x7f, 0x5f, 0x1f, 0x17, 0x57, 0x77, 0x37, 0x27, 0x67, 0x47, 0x07, 0x05, 0x45,)
# Validate program blocks:
# There should be two extracted program blocks. The first contains the
# the bitstream with done bit(s) not asserted. The second updates the
# "done" bit(s) to finish the process.
assert(len(programming_data['program']) == 2)
# First program phase writes the bitstream to flash (or SRAM) with
# special bit(s) not asserted, so the bitstream is not yet valid.
assert(extract_addresses(programming_data['program'][0]) == expected_address_sequence)
# Second program phase updates a single row to finish the programming
# process.
assert(len(programming_data['program'][1]) == 1)
assert(programming_data['program'][1][0]['address'] == 0x05)
# Validate verify blocks:
# There should be two extracted verify blocks.
assert(len(programming_data['verify']) == 2)
# The two verify blocks should match.
assert(programming_data['verify'][0] == programming_data['verify'][1])
# Check the row address order of the second verify block.
assert(extract_addresses(programming_data['verify'][0]) == expected_address_sequence)
assert(extract_addresses(programming_data['verify'][1]) == expected_address_sequence)
# Checks across programming and verification:
# Check that program data matches data expected during verification.
assert(equal_blocks(programming_data['program'][0], programming_data['verify'][0], extract_mask(programming_data['verify'][0])))
assert(equal_blocks(programming_data['program'][0], programming_data['verify'][1], extract_mask(programming_data['verify'][1])))
def make_sram_program(program_blocks):
program_sram = list(program_blocks[0])
program_sram[-2] = program_blocks[1][0]
return program_sram
#######################################################################
# Command line argument parsing.
#######################################################################
import argparse
parser = argparse.ArgumentParser()
action_group = parser.add_mutually_exclusive_group(required=True)
action_group.add_argument('--checksum', action='store_true', help='Calculate bitstream read-back CRC32 value')
action_group.add_argument('--code', action='store_true', help='Generate C code for bitstream loading/programming/verification')
parser.add_argument('--crcmod', action='store_true', help='Use Python crcmod library instead of built-in CRC32 code')
parser.add_argument('--debug', action='store_true', help='Enable debug output')
parser.add_argument('hackrf_xc2c_cpld_xsvf', type=str, help='HackRF Xilinx XC2C64A CPLD XSVF file containing erase/program/verify phases')
args = parser.parse_args()
#######################################################################
# Generic XSVF parsing phase, produces a tree of commands performed
# against the CPLD.
#######################################################################
with open(args.hackrf_xc2c_cpld_xsvf, "rb") as f:
from xsvf import XSVFParser
commands = XSVFParser().parse(f, debug=args.debug)
programming_data = extract_programming_data(commands)
validate_programming_data(programming_data)
#######################################################################
# Patch the second programming phase into the first for SRAM
# programming.
#######################################################################
verify_blocks = programming_data['verify']
program_blocks = programming_data['program']
#######################################################################
# Calculate CRC of data read from CPLD during the second verification
# pass, which is after the "done" bit is set. Mask off insignificant
# bits (turning them to zero) and extending rows to the next full byte.
#######################################################################
if args.checksum:
if args.crcmod:
# Use a proper CRC library
import crcmod
crc = crcmod.predefined.Crc('crc-32')
else:
# Use my home-grown, simple, slow CRC32 object to avoid additional
# Python dependencies.
from dumb_crc32 import DumbCRC32
crc = DumbCRC32()
verify_block = verify_blocks[1]
for address, data, mask in verify_block:
valid_data = data & mask
bytes = valid_data.to_bytes(bytes_of_data, byteorder='little')
crc.update(bytes)
print('0x%s' % crc.hexdigest().lower())
if args.code:
program_sram = make_sram_program(program_blocks)
verify_block = verify_blocks[1]
verify_masks = tuple(frozenset(extract_mask(verify_block)))
verify_mask_index = dict([(k, v) for v, k in enumerate(verify_masks)])
verify_mask_row_index = [verify_mask_index[row['mask']] for row in verify_block]
result = []
result.extend((
'/* WARNING: Auto-generated file. Do not edit. */',
'',
'#include <cpld_xc2c.h>',
'',
'const cpld_xc2c64a_program_t cpld_hackrf_program_sram = { {',
))
data_lines = [', '.join(['0x%02x' % n for n in row['data'].to_bytes(bytes_of_data, byteorder='little')]) for row in program_sram]
result.extend(['\t{ { %s } },' % line for line in data_lines])
result.extend((
'} };',
'',
'const cpld_xc2c64a_verify_t cpld_hackrf_verify = {',
'\t.mask = {',
))
verify_mask_lines = [', '.join(['0x%02x' % n for n in mask.to_bytes(bytes_of_data, byteorder='little')]) for mask in verify_masks]
result.extend(['\t\t{ { %s } },' % line for line in verify_mask_lines])
result.extend((
'\t},'
'\t.mask_index = {',
))
result.extend(['\t\t%s' % line for line in dec_lines(verify_mask_row_index)])
result.extend((
'\t}',
'};',
'',
))
print('\n'.join(result))

View File

@ -0,0 +1,22 @@
class DumbCRC32(object):
def __init__(self):
self._remainder = 0xffffffff
self._reversed_polynomial = 0xedb88320
self._final_xor = 0xffffffff
def update(self, data):
bit_count = len(data) * 8
for bit_n in range(bit_count):
bit_in = data[bit_n >> 3] & (1 << (bit_n & 7))
self._remainder ^= 1 if bit_in != 0 else 0
bit_out = (self._remainder & 1)
self._remainder >>= 1;
if bit_out != 0:
self._remainder ^= self._reversed_polynomial;
def digest(self):
return self._remainder ^ self._final_xor
def hexdigest(self):
return '%08x' % self.digest()

208
firmware/tools/xsvf.py Normal file
View File

@ -0,0 +1,208 @@
import struct
class XSVFParser(object):
def __init__(self):
self._handlers = {
0x00: self.XCOMPLETE ,
0x01: self.XTDOMASK ,
0x02: self.XSIR ,
0x03: self.XSDR ,
0x04: self.XRUNTEST ,
0x07: self.XREPEAT ,
0x08: self.XSDRSIZE ,
0x09: self.XSDRTDO ,
0x0a: self.XSETSDRMASKS,
0x0b: self.XSDRINC ,
0x0c: self.XSDRB ,
0x0d: self.XSDRC ,
0x0e: self.XSDRE ,
0x0f: self.XSDRTDOB ,
0x10: self.XSDRTDOC ,
0x11: self.XSDRTDOE ,
0x12: self.XSTATE ,
0x13: self.XENDIR ,
0x14: self.XENDDR ,
0x15: self.XSIR2 ,
0x16: self.XCOMMENT ,
0x17: self.XWAIT ,
}
def tdomask(self):
return self._xtdomask
def read_byte(self):
return self.read_bytes(1)[0]
def read_bytes(self, n):
c = self._f.read(n)
if len(c) == n:
return c
else:
raise RuntimeError('unexpected end of file')
def read_bits(self, n):
length_bytes = (n + 7) >> 3
return self.read_bytes(length_bytes)
def read_u32(self):
return struct.unpack('>I', self.read_bytes(4))[0]
def parse(self, f, debug=False):
self._f = f
self._debug = debug
self._xcomplete = False
self._xenddr = None
self._xendir = None
self._xruntest = 0
self._xsdrsize = None
self._xtdomask = None
self._commands = []
while self._xcomplete == False:
self.read_instruction()
self._f = None
return self._commands
def read_instruction(self):
instruction_id = self.read_byte()
if instruction_id in self._handlers:
instruction_handler = self._handlers[instruction_id]
result = instruction_handler()
if result is not None:
self._commands.append(result)
else:
raise RuntimeError('unexpected instruction 0x%02x' % instruction_id)
def XCOMPLETE(self):
self._xcomplete = True
def XTDOMASK(self):
length_bits = self._xsdrsize
self._xtdomask = self.read_bits(length_bits)
def XSIR(self):
length_bits = self.read_byte()
tdi = self.read_bits(length_bits)
if self._debug:
print('XSIR tdi=%d:%s' % (length_bits, tdi.hex()))
return {
'type': 'xsir',
'tdi': {
'length': length_bits,
'data': tdi
},
}
def XSDR(self):
length_bits = self._xsdrsize
tdi = self.read_bits(length_bits)
if self._debug:
print('XSDR tdi=%d:%s' % (length_bits, tdi.hex()))
return {
'type': 'xsdr',
'tdi': {
'length': length_bits,
'data': tdi,
},
}
def XRUNTEST(self):
self._xruntest = self.read_u32()
if self._debug:
print('XRUNTEST number=%d' % self._xruntest)
def XREPEAT(self):
repeat = self.read_byte()
# print('XREPEAT times=%d' % repeat)
def XSDRSIZE(self):
self._xsdrsize = self.read_u32()
def XSDRTDO(self):
length_bits = self._xsdrsize
tdi = self.read_bits(length_bits)
tdo_mask = self._xtdomask
self._tdo_expected = (length_bits, self.read_bits(length_bits))
wait = self._xruntest
if wait == 0:
end_state = self._xenddr
else:
end_state = 1 # Run-Test/Idle
if self._debug:
print('XSDRTDO tdi=%d:%s tdo_mask=%d:%s tdo_expected=%d:%s end_state=%u wait=%u' % (
length_bits, tdi.hex(),
length_bits, tdo_mask.hex(),
self._tdo_expected[0], self._tdo_expected[1].hex(),
end_state,
wait,
))
return {
'type': 'xsdrtdo',
'tdi': {
'length': length_bits,
'data': tdi
},
'tdo_mask': {
'length': length_bits,
'data': tdo_mask,
},
'tdo_expected': {
'length': self._tdo_expected[0],
'data': self._tdo_expected[1],
},
'end_state': end_state,
'wait': wait,
}
def XSETSDRMASKS(self):
raise RuntimeError('unimplemented')
def XSDRINC(self):
raise RuntimeError('unimplemented')
def XSDRB(self):
raise RuntimeError('unimplemented')
def XSDRC(self):
raise RuntimeError('unimplemented')
def XSDRE(self):
raise RuntimeError('unimplemented')
def XSDRTDOB(self):
raise RuntimeError('unimplemented')
def XSDRTDOC(self):
raise RuntimeError('unimplemented')
def XSDRTDOE(self):
raise RuntimeError('unimplemented')
def XSTATE(self):
state = self.read_byte()
if self._debug:
print('XSTATE %u' % state)
return {
'type': 'xstate',
'state': state,
}
def XENDIR(self):
self._xendir = self.read_byte()
def XENDDR(self):
self._xenddr = self.read_byte()
def XSIR2(self):
raise RuntimeError('unimplemented')
def XCOMMENT(self):
raise RuntimeError('unimplemented')
def XWAIT(self):
wait_state = self.read_byte()
end_state = self.read_byte()
wait_time = self.read_u32()