Merge pull request #1153 from greatscottgadgets/measure-power

Measure digital signal power, not amplitude in hackrf_transfer
This commit is contained in:
Michael Ossmann
2022-09-09 20:11:08 -04:00
committed by GitHub
3 changed files with 81 additions and 41 deletions

View File

@ -343,17 +343,8 @@ uint32_t stream_tail = 0;
uint32_t stream_drop = 0; uint32_t stream_drop = 0;
uint8_t* stream_buf = NULL; uint8_t* stream_buf = NULL;
/* /* sum of power of all samples, reset on the periodic report */
* To report amplitude, best would be dB(fullscale) and the variance, volatile uint64_t stream_power = 0;
* but that would require more math per sample (dB(amplitude) = log(sqrt(i^2 + q^2) and sum of squares).
* For now, just sum iabs(i)+iabs(q) and divide by the number of samples*2.
* That allows us to give a measure of dB(fullscale).
* I don't know whether overload causes wrapping or clamping the 8-bit values.
* Clamping would produce a sigmoid curve, so with a signal of variable intensity you're
* probably getting substantial overload anytime this reports more than about -6dBfs.
*/
uint64_t stream_amplitude =
0; /* sum of magnitudes of all I&Q samples, reset on the periodic report */
bool transmit = false; bool transmit = false;
struct timeval time_start; struct timeval time_start;
@ -419,8 +410,18 @@ int rx_callback(hackrf_transfer* transfer)
return -1; return -1;
} }
byte_count += transfer->valid_length; /* Accumulate power (magnitude squared). */
bytes_to_write = transfer->valid_length; bytes_to_write = transfer->valid_length;
uint64_t sum = 0;
for (i = 0; i < bytes_to_write; i++) {
int8_t value = transfer->buffer[i];
sum += value * value;
}
/* Update both running totals at approximately the same time. */
byte_count += transfer->valid_length;
stream_power += sum;
if (limit_num_samples) { if (limit_num_samples) {
if (bytes_to_write >= bytes_to_xfer) { if (bytes_to_write >= bytes_to_xfer) {
bytes_to_write = bytes_to_xfer; bytes_to_write = bytes_to_xfer;
@ -428,11 +429,6 @@ int rx_callback(hackrf_transfer* transfer)
bytes_to_xfer -= bytes_to_write; bytes_to_xfer -= bytes_to_write;
} }
// accumulate stream_amplitude:
for (i = 0; i < bytes_to_write; i++) {
stream_amplitude += abs((signed char) transfer->buffer[i]);
}
if (receive_wav) { if (receive_wav) {
/* convert .wav contents from signed to unsigned */ /* convert .wav contents from signed to unsigned */
for (i = 0; i < bytes_to_write; i++) { for (i = 0; i < bytes_to_write; i++) {
@ -487,12 +483,19 @@ int tx_callback(hackrf_transfer* transfer)
stop_main_loop(); stop_main_loop();
return -1; return -1;
} }
byte_count += transfer->valid_length;
/* Accumulate power (magnitude squared). */
bytes_to_read = transfer->valid_length; bytes_to_read = transfer->valid_length;
uint64_t sum = 0;
for (i = 0; i < bytes_to_read; i++) { for (i = 0; i < bytes_to_read; i++) {
stream_amplitude += abs((signed char) transfer->buffer[i]); int8_t value = transfer->buffer[i];
sum += value * value;
} }
/* Update both running totals at approximately the same time. */
byte_count += transfer->valid_length;
stream_power += sum;
if (file == NULL) { // transceiver_mode == TRANSCEIVER_MODE_SS if (file == NULL) { // transceiver_mode == TRANSCEIVER_MODE_SS
/* Transmit continuous wave with specific amplitude */ /* Transmit continuous wave with specific amplitude */
if (limit_num_samples) { if (limit_num_samples) {
@ -503,7 +506,7 @@ int tx_callback(hackrf_transfer* transfer)
} }
for (i = 0; i < bytes_to_read; i++) for (i = 0; i < bytes_to_read; i++)
transfer->buffer[i] = amplitude; transfer->buffer[i] = -(uint8_t) amplitude;
if (limit_num_samples && (bytes_to_xfer == 0)) { if (limit_num_samples && (bytes_to_xfer == 0)) {
stop_main_loop(); stop_main_loop();
@ -625,7 +628,7 @@ static void usage()
printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n"); printf("\t[-S buf_size] # Enable receive streaming with buffer size buf_size.\n");
#endif #endif
printf("\t[-B] # Print buffer statistics during transfer\n"); printf("\t[-B] # Print buffer statistics during transfer\n");
printf("\t[-c amplitude] # CW signal source mode, amplitude 0-127 (DC value to DAC).\n"); printf("\t[-c amplitude] # CW signal source mode, amplitude 0-128 (DC value to DAC).\n");
printf("\t[-R] # Repeat TX mode (default is off) \n"); printf("\t[-R] # Repeat TX mode (default is off) \n");
printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n"); printf("\t[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.\n");
printf("\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n"); printf("\tPossible values: 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.\n");
@ -680,6 +683,7 @@ int main(int argc, char** argv)
unsigned int lna_gain = 8, vga_gain = 20, txvga_gain = 0; unsigned int lna_gain = 8, vga_gain = 20, txvga_gain = 0;
hackrf_m0_state state; hackrf_m0_state state;
stats_t stats = {0, 0}; stats_t stats = {0, 0};
static int32_t preload_bytes = 0;
while ((opt = while ((opt =
getopt(argc, getopt(argc,
@ -1012,9 +1016,9 @@ int main(int argc, char** argv)
if (signalsource) { if (signalsource) {
transceiver_mode = TRANSCEIVER_MODE_SS; transceiver_mode = TRANSCEIVER_MODE_SS;
if (amplitude > 127) { if (amplitude > 128) {
fprintf(stderr, fprintf(stderr,
"argument error: amplitude shall be in between 0 and 127.\n"); "argument error: amplitude must be between 0 and 128.\n");
usage(); usage();
return EXIT_FAILURE; return EXIT_FAILURE;
} }
@ -1269,9 +1273,11 @@ int main(int argc, char** argv)
.it_value = {.tv_sec = 1, .tv_usec = 0}}; .it_value = {.tv_sec = 1, .tv_usec = 0}};
setitimer(ITIMER_REAL, &interval_timer, NULL); setitimer(ITIMER_REAL, &interval_timer, NULL);
#endif #endif
preload_bytes = hackrf_get_transfer_queue_depth(device) *
hackrf_get_transfer_buffer_size(device);
while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) { while ((hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false)) {
uint32_t byte_count_now; uint64_t byte_count_now;
struct timeval time_now; struct timeval time_now;
float time_difference, rate; float time_difference, rate;
if (stream_size > 0) { if (stream_size > 0) {
@ -1304,7 +1310,7 @@ int main(int argc, char** argv)
} }
#endif #endif
} else { } else {
uint64_t stream_amplitude_now; uint64_t stream_power_now;
#ifdef _WIN32 #ifdef _WIN32
// Wait for interval timer event, or interrupt event. // Wait for interval timer event, or interrupt event.
HANDLE handles[] = {timer_handle, interrupt_handle}; HANDLE handles[] = {timer_handle, interrupt_handle};
@ -1315,13 +1321,28 @@ int main(int argc, char** argv)
#endif #endif
gettimeofday(&time_now, NULL); gettimeofday(&time_now, NULL);
/* Read and reset both totals at approximately the same time. */
byte_count_now = byte_count; byte_count_now = byte_count;
stream_power_now = stream_power;
byte_count = 0; byte_count = 0;
stream_amplitude_now = stream_amplitude; stream_power = 0;
stream_amplitude = 0;
if (byte_count_now < /*
sample_rate_hz / 20) // Don't report on very short frames * The TX callback is called to preload the USB
stream_amplitude_now = 0; * transfer buffers at the start of TX. This results in
* invalid statistics collected about the empty buffers
* before any USB transfer is completed. We skip these
* statistics and do not report them to the user.
*/
if (preload_bytes > 0) {
if (preload_bytes > byte_count_now) {
preload_bytes -= byte_count_now;
byte_count_now = 0;
} else {
byte_count_now -= preload_bytes;
preload_bytes = 0;
}
}
time_difference = TimevalDiff(&time_now, &time_start); time_difference = TimevalDiff(&time_now, &time_start);
rate = (float) byte_count_now / time_difference; rate = (float) byte_count_now / time_difference;
@ -1329,21 +1350,15 @@ int main(int argc, char** argv)
hw_sync_enable != 0) { hw_sync_enable != 0) {
fprintf(stderr, "Waiting for sync...\n"); fprintf(stderr, "Waiting for sync...\n");
} else { } else {
// This is only an approximate measure, to assist getting receive levels right: double full_scale_ratio = (double) stream_power_now /
double full_scale_ratio = (byte_count_now * 128 * 128);
((double) stream_amplitude_now / double dB_full_scale = 10 * log10(full_scale_ratio);
(byte_count_now ? byte_count_now : 1)) /
128;
double dB_full_scale_ratio = 10 * log10(full_scale_ratio);
// Guard against ridiculous reports
if (dB_full_scale_ratio > 1)
dB_full_scale_ratio = -0.0;
fprintf(stderr, fprintf(stderr,
"%4.1f MiB / %5.3f sec = %4.1f MiB/second, amplitude %3.1f dBfs", "%4.1f MiB / %5.3f sec = %4.1f MiB/second, average power %3.1f dBfs",
(byte_count_now / 1e6f), (byte_count_now / 1e6f),
time_difference, time_difference,
(rate / 1e6f), (rate / 1e6f),
dB_full_scale_ratio); dB_full_scale);
if (display_stats) { if (display_stats) {
bool tx = transmit || signalsource; bool tx = transmit || signalsource;
result = update_stats(device, &state, &stats); result = update_stats(device, &state, &stats);

View File

@ -2685,6 +2685,26 @@ int ADDCALL hackrf_start_rx_sweep(
return result; return result;
} }
/**
* Get USB transfer buffer size.
* @return size in bytes
*/
size_t ADDCALL hackrf_get_transfer_buffer_size(hackrf_device* device)
{
(void) device;
return TRANSFER_BUFFER_SIZE;
}
/**
* Get the total number of USB transfer buffers.
* @return number of buffers
*/
uint32_t ADDCALL hackrf_get_transfer_queue_depth(hackrf_device* device)
{
(void) device;
return TRANSFER_COUNT;
}
#ifdef __cplusplus #ifdef __cplusplus
} // __cplusplus defined. } // __cplusplus defined.
#endif #endif

View File

@ -25,6 +25,7 @@ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI
#define __HACKRF_H__ #define __HACKRF_H__
#include <stdint.h> #include <stdint.h>
#include <sys/types.h>
#ifdef _WIN32 #ifdef _WIN32
#define ADD_EXPORTS #define ADD_EXPORTS
@ -458,6 +459,10 @@ extern ADDAPI int ADDCALL hackrf_start_rx_sweep(
hackrf_sample_block_cb_fn callback, hackrf_sample_block_cb_fn callback,
void* rx_ctx); void* rx_ctx);
extern ADDAPI size_t ADDCALL hackrf_get_transfer_buffer_size(hackrf_device* device);
extern ADDAPI uint32_t ADDCALL hackrf_get_transfer_queue_depth(hackrf_device* device);
#ifdef __cplusplus #ifdef __cplusplus
} // __cplusplus defined. } // __cplusplus defined.
#endif #endif